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As sustainability becomes an integral design driver for current civil structures, new 

materials and forms are investigated. The aim of this study is to investigate analytically 

and numerically the mechanical behavior of monolithic domes composed of mycological 

fungi. The study focuses on hemispherical and elliptical forms, as the most typical 

solution for domes. The influence of different types of loading, geometrical parameters, 

material properties and boundary conditions is investigated in this study. For the cases 

covered by the classical shell theory, a comparison between the analytical and the finite 

element solution is given. Two case studies regarding the dome of basilica of “San Luca” 

(Bologna, Italy) and the dome of sanctuary of “Vicoforte” (Vicoforte, Italy) are included. 

After the linear analysis under loading, buckling is also investigated as a critical type of 

failure through a parametric study using finite elements model. Since shells rely on their 

shape, form-found domes are also investigated and a comparison between the behavior of 

the form-found domes and the hemispherical domes under the linear and buckling 

analysis is conducted. From the analysis it emerges that form-finding can enhance the 

structural response of mycelium-based domes, although buckling becomes even more 

critical for their design. Furthermore, an optimal height to span ratio for the buckling of 

form-found domes is identified. This study highlights the importance of investigating 

appropriate forms for the design of novel biomaterial-based structures. 
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Chapter 1: Introduction 

Shell structures always had an important role for architecture and engineering. Besides 

their aesthetic value, they also possess interesting mechanical properties and they are able 

to resist loads efficiently. Due to their curvature, shell structures are able to decompose 

stresses in multiple directions combining membrane and bending action and consequently 

enhancing the overall load carrying capacity. However, shell behavior is really 

susceptible to shape changes and other parameters such as support conditions. In fact, 

even the smallest change in the geometry or in the boundary conditions can completely 

alter the response of the structure. Moreover, multiple geometrical solutions can be 

considered for shell design, promoting different advantages and disadvantages as well as 

structural performance. Thanks to their extraordinary but also often unpredictable 

behavior, shells are termed the “prima-donnas” among structures. Therefore, the goal of 

the designer is to find the shell shape which, according to the given design constraints, 

optimizes the mechanical behavior without sacrificing the aesthetic value. Although 

industrialization and research have made materials less expensive, labor costs have 

increased in the developed countries. As a result, shells have lost popularity and the 

number of applications has diminished favoring other type of large-scale constructions 

since 1960s. However, new construction techniques based on pneumatic air-form may 

revamp shell structures. These new construction techniques allow to obtain various shell 

shapes without using the conventional formwork and false-work, which usually 

represents a major component in the construction cost of shell structures. Moreover, 

nowadays numerical tools give great support to designers. The development of finite 

element software has made possible the structural analysis of complex shell shapes that 
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go beyond the limits of the classical shell theory. However, the finite element results 

should always to be questioned and rightfully interpreted. The aim of this study is to 

investigate analytically and numerically the mechanical behavior of monolithic 

hemispherical and form-found domes, employing a new biodegradable material, based on 

mycological fungi, with very limited structural applications. In architecture and 

engineering, the production of concrete is particularly energy intensive and responsible 

for the emission of a significant amount of CO2, as well as construction wastes. 

Consequently, sustainability is becoming a key aspect for civil structures to the point that 

it occupies a prominent role in the design. Thanks to its low energy and environmental 

friendly production process, as well as biodegradable nature, mycological fungi opens 

new horizons and may represent a valid alternative construction material. However, due 

to its low stiffness in situations where high loads are involved, such as civil structures, 

the mechanical properties of mycological fungi may not be sufficient to provide the 

desired structural response. Therefore, the first application of such material should focus 

on light-weight structures, such as shells. Since the mechanical behavior of shells is 

based on their shape, it can be improved through “form-finding”. Form-finding describes 

the process of identifying an optimal geometry in static equilibrium with a design loading 

under given constraints. This technique has become very popular in the last decades and 

has produced remarkable results, both from structural and aesthetic point of view. Hence, 

optimizing the material use through “form-finding” could open a realm of biodegradable 

shell structures. 
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Chapter 2: State of Art 

2.1 Literature review 

Shell structures, such as domes, have a long historical tradition which started more than 

two thousand years ago. The first pioneers of this structural system were the Romans and 

the first shell, in particular a dome with an opening,  was the Pantheon (Fig. 2.1) realized 

by the architect Agrippa in 27 B.C.  

 

Figure 2.1. The Pantheon [1] 

Although the Romans may have not been aware of the exact mechanics governing shell 

structural behavior, they were able to understand the potential load-carrying capacity of 

shells. Pantheon is still considered a masterpiece of architecture and civil engineering to 

the point that its outstanding features inspiring generations until this day. Another 

emblematic shell structure is the famous “Dome of Santa Maria del Fiore” (Fig.2.2) in 

Florence realized by Filippo Brunelleschi in 1461. It has been the biggest dome of the 

world and it is still the biggest masonry dome ever built. Due to the extreme importance 

it has played in the development of architecture and the modern conception of building, 
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the dome of Brunelleschi is still considered the most important architectural work ever 

realized in Europe from the Roman age. 

 

Figure 2.2. The Dome of Brunelleschi [2] 

The passage from stocky to thin shell structure took place with the beginning of the last 

century, when a deeper knowledge about shells behavior started to develop and an 

extensive literature was made available to engineers. A structure that reflects this 

transition is the Leipzig Market Hall (Leipzig, Germany 1929). In the context of thin 

shell structures, the most relevant figures are Anton Tedesko (1903-1994), Pier Luigi 

Nervi (1891-1979), Eduardo Torroja (1891-1961) and Felix Candela (1910-1997). The 

work of Tedesko was fundamental for the historical development of thin shell structure in 

United States. His article in 1932 was the first to introduce shell structures in American 

literature. According to Billington [3], the contribution of Tedesko can be summarized by 

three thin shell concrete structures which were also the first of their types realized in 

Unite States: the barrel shell roof of Brook Hill Farm Dairy Exhibit (Chicago, Illinois, 

1933), the hemispherical dome of Hayden Planetarium (New York City, New York 
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1934), and the short barrel shell of Hershey Sports Arena (Hershey, Pennsylvania, 1936) 

(Fig.2.3).  

 

Figure 2.3. The Hershey Sports Arena [4] 

Pier Luigi Nervi’s work is equally important to Tedesko. According to “Costruire 

Correttamente” [5], the main contribution of Nervi to the history of thin shell structure 

and in general in the field of reinforced concrete was the invention of ferro-cemento. This 

composite material consists in a high quality cement mortar which covers a combination 

of few bars and layers of steel mesh. The outstanding features of “ferro-cemento” 

allowed Nervi to realize several structures characterized by daring technical-structural 

solutions and extraordinary elegance. Among his best-known works are the stadium 

Artemio Franchi (Florence, Italy, 1931), the hangar for the Italian aviation (Orbetello, 

Italy, 1940), the Turin Exhibition saloon (Turin, Italy, 1949) (Fig. 2.4), the Thompson 

Arena of Dartmouth College (New Hampshire, 1962), the Cathedral of St, Mary (San 

Francisco, California, 1971) and the Unesco venue (Paris, French,1958).  
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Figure 2.4. The Turin Exhibition saloon [6] 

Another pioneer of the thin shell structures was the engineer and architect Eduardo 

Torroja. His building technique influenced all the following generations of architects and 

engineers nowadays. Two of his most famous works are the Hipodromo de la Zarzuela 

(Madrid, Spain, 1931) and the Algeciras market (Algeciras, Spain, 1933). Another key 

character in the development of shell structure was Felix Candela. Candela is probably 

the most famous designer of hyperbolic paraboloids, to the point that his name became a 

synonymous of those shells. His works were based on the concept that an adequate 

strength for a structure should be achieved by the optimization of the shape rather than 

addition of mass. The most famous works of Candela are the Cosmic Ray Pavilion 

(Mexico city, Mexico 1950), the church of La Virgen Milagrosa (Mexico City, Mexico, 

1953), the Manantiales restaurant (Xochimilco, Mexico, 1958) and the Queensgate 

Market (Huddersfield, Great Britain, 1970) (Fig.2.5). 
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Figure 2.5. The Queensgate Market [7] 
 
The overview of the history of thin shell structures highlights the potentialities both from 

a structural and aesthetic point of view. However, as it has been already mentioned, the 

global behavior of shells sometimes may be difficult to predict and this fact makes the 

design more complex respect to standard constructions. A simplified analysis can be 

conducted by considering a series of assumptions which bring to the formulation of the 

membrane theory. Thanks to the work of Tymoshenko, “Theory of Plates and Shells” [8], 

the global behavior of thin shells was determined through analytic equations. The theory 

is based on a linear analysis predicting the distribution of the stresses, as well as the level 

of deformations. With the development of finite element software, it has been possible to 

compare the analytical with the numerical results. This is the content of two studies: 

“Analysis Methods for Thin Concrete Shells of Revolution” by A. Hauso [9] and “ A 

Finite Element Analysis of Monolithic Domes” by N. South [10]. Nonetheless, both 
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studies didn’t take in consideration buckling as a type of failure. Buckling is a critical 

aspect, especially for shells, such as domes, where instability is a main issue, which often 

governs the design. Buckling is defined as an instability which can result to a failure 

mode. Although the buckling of shells has been treated extensively, just few cases have 

been formulated analytically. In fact, the most part of the studies on buckling are case-

dependent and they combine theoretical predictions with experimentally determined 

correlation factors. This is particularly true for domes, where the buckling theory covers 

only the load case of a uniform external pressure. The study “Buckling of Spherical 

Shells” by Taylor and Francis Group, LLC (2008) [11] focuses on this load case for 

complete spherical configurations, hemispherical heads and shallow spherical caps. Even 

though the study recognizes the discrepancy between theory and experiments, the 

obtained results are based on numerical methods solely. They identified the buckling 

loads and the related correlation factors for different geometries and materials 

considering also the effect of initial imperfections. The study “Numerical Calculations of 

Stability of Spherical Shells” by T. Niezgodzinski et al (2010) [12] analyzed the stability 

of thin-walled spherical shells under uniform radial pressure through static and dynamic 

analyses. The authors also took into account different geometries and boundary 

conditions. The results obtained with FE calculations were compared to the available 

results obtained with analytical and other numerical methods, showing a good conformity 

[12].  Moreover, they found that the initial imperfections have a strong influence on the 

deflection modes, but not on the values of the corresponding buckling loads. In fact, the 

maximum difference between them resulted to be around 3%. Also the study “Buckling 

Analysis of Concrete Spherical Shells” by I. Mekjavic [13] focused on the buckling under 
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uniform external pressure of concrete spherical shells by taking into account large 

deflection and plasticity effects. A non-linear analysis with and without geometrical 

imperfections was performed numerically revealing that a lower value of the critical 

buckling load compared to the theoretical one, which is valid only in linear analysis.  

 
 

Figure 2.6. Kresge-MIT Auditorium, Boston, USA [13] 
 

A real experiment on a spherical concrete cap was conducted in the study “ Short-term 

behavior of shallow thin-walled concrete dome under uniform external pressure” by Z.T. 

Chang et al (2010) [14]. The dome, which was without reinforcement, was subjected to 

short-term loading by pressurized water entrapped in a rubber bladder. The testing 

showed how the dome failed due to a non-axisymmetric buckling mode well before the 

concrete reached its compressive strength [14]. From previous experiences in buckling it 

was known that there is a big discrepancy between the theoretical and the experimental 

results. Therefore symmetric and asymmetric initial imperfections were considered as a 

part of the non-linear deflection theory. In fact, the value of experimental failure pressure 
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was found to be only 31% of the classical theoretical, but really closed to the “lower” 

buckling load derived by Von Karman and Tsien [15]. Moreover, the experimental results 

identified the location of the failure where a significant non linearity was registered as 

well as bending effect. Although all the aforementioned studies investigated buckling, 

employing analytical and numerical methods as well as experiments, they only focused 

on one type of geometry (spherical domes) under one type of loading (uniform external 

pressure) and based on a common structural material (concrete). A more extensive study, 

“Buckling of Thin-Walled Doubly Curved Shells” was conducted by NASA (1969) [16]. 

The study focused on spherical caps under uniform external pressure, concentrated load 

at the apex, ellipsoidal shells under both external and internal pressure, toroidal shells and 

shallow toroidal segments under uniform external pressure, complete oblate spheroidal 

shells and torispherical bulkheads under uniform internal pressure. In this study the 

reduction of the buckling loads caused by initial imperfections and boundary conditions 

was taken into account by multiplying the theoretical buckling loads by a correlation 

factor in order to obtain a lower-bound conservative estimate [16]. Although different 

shell geometries were treated, the concept of optimization of the shapes to increase the 

performance of the mechanical response was not explored. This is the main idea behind 

the form-finding process. According to “Form Finding and Optimization of Shell 

Structure” [17], Form-finding can be defined as a forward process in which parameters 

are controlled to find an “optimal” geometry which is in static equilibrium with a design 

loading [17]. An expert in physical form-finding of shells was Heinz Isler. The paper 

“Concrete Shells Derived from Experimental Shapes” [18] summarizes his experiences in 
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design and construction of form-found shells using pneumatic, hanging and flow-

generated shells. 

 

Figure 2.7. Open-air theater, Grotzingen, Germany shape found by hanging model [18], 
 

Shells are typically made of concrete where formwork and cladding are two principal 

problems encountered during their construction process. Steel and glass were considered 

as construction materials in “Finding the Form of an Irregular Meshed Steel and Glass 

Shell Based on Construction Constraints” by S.Adriaenssens et al [19],. The form-finding 

process was based on two principal construction constraints: the height and the maximum 

bearing capacity of the existing historic masonry walls [19]. Even though the principle of 

inverting hanging models is the most popular application of the form-finding process, the 

optimization of the shape can be conducted also considering different design objectives. 
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The paper “Form-Finding of Shells by Structural Optimization” by K.-U. Bletizinger et al 

(1993) [20] analyzes different objective functions, such as minimum cost, minimum 

weight or minimum natural frequencies, where the criterion for optimality is not the 

generating rule itself, as it happens for hanging models. According to the author, in order 

to reach the best compromise between multiple objective functions, methods of multi-

criterion optimization have to be applied to leading to non-linear problems with possible 

multiple solutions. In terms of non-linearity and multiple solutions, a similar situation is 

found when the optimization process considers multiple load cases. This is the case of the 

study “On Shape Finding Methods and Ultimate Load Analyses of Reinforced Concrete 

Shells” by E. Ramm [21], where the study focuses on the compromise between multiple 

load cases. Moreover, the study shows how different form-finding approaches can lead to 

the same design solution if the initial constraints are the same. This is the case of pre-

stressed cable structures where the optimization can be conducted both with so-called 

force density method and dynamic relaxation. Since the principles of form-finding can be 

applied both to cables and shells, it seems logic that the same rules are valid also for a 

combination of them. This is the case of grid shell. According to the study “Form-Finding 

of a Grid Shell in Composite Materials” by C. Douthe et al (2008) [22], grid shells can be 

defined as “that kind of structures with the shape and the strength of a double-curvature 

shell, but made of a grid instead of a solid surface” [22]. For grid shell the optimization 

process is usually based on dynamic relaxation, where the equilibrium of the structures 

depends on damped vibrations. However, even though the form-finding processes 

discussed in the aforementioned studies optimize the shape according to certain criteria, 

the effects of such optimizations on the buckling behavior are rarely taken into 
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consideration. The study “Shape and Size Optimization of Concrete Shell” by A. Tomas 

et al (2010) [23] focuses on the optimization of a hyperbolic paraboloid (hypar) concrete 

shell and its impact on the overall instability of the structure. 

 

Figure 2.8. Hypar shell structure at the entrance of the Universal Oceanographic Park(Valencia,Spain) [23] 
 
 The optimization in this study involved the thickness and the geometry as variables of 

the problem. According to the author, the final form-finding process led to a reduction of 

the maximum deformation, as well as an improvement of the mechanical and buckling 

behavior. In the examples studied, the buckling loads were found to be approximately 

double of the initial values [23]. Another interesting study, “Buckling Behavior of 

Symmetric Arches” by S. Qaqish (1977) [24] analyzed the buckling behavior of 

hemispherical, parabolic and catenarian arches under different types of loading and 

boundary conditions. In this work a parametric study on the geometries was conducted to 

find the ratio between the height and the span that maximizes the buckling load. 

According to the author, circular arches can resist the highest total loads at buckling, 

followed by the catenarian and then the parabolic arches, when the height-to-span ratio is 

equal to 0.3 for all of them [24]. 
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2.2 New trends for shells 

2.2.1 New construction methods: Pneumatic air-form 

The construction process of monolithic domes has always been characterized by a high 

cost relating to the production of formworks and false-works. This is because in the last 

century, differently from the price of the construction materials, the labor cost has 

increased exponentially. As a result, in the last 30 years the realization of shells has 

significantly reduced. However, newly presented construction techniques based on 

pneumatic air-forms have the potential to revamp shell constructions. These new 

construction methods are intended for concrete shells of various shapes and thus could be 

also employed for shells composed of new materials. An application based on pneumatic 

air-form was developed at the institute for Structural Engineering at Vienna University of 

Technology. The main idea behind this construction technique is to cut a flat hardened 

concrete plate in segments like an orange and to transform it in a double-curvature 

surface thanks to the use of an air-supported formwork and post-tensioned cables [25]. 

The use of pneumatic air-form combined with shotcrete was also investigated. According 

to this method the construction process begins with the placement of a ring beam footing 

and the pouring of a circular steel-reinforced concrete slab floor [26]. After that, in many 

cases the following step is the realization of a stem wall to confer to the dome a better 

looking. Then, an air-form is attached to the ground and inflated thanks to the use of giant 

fans, creating the future final shape of the dome. Once the air-form is inflated, the next 

step involves the employment of treated wood in the interior of the dome to attach 

properly windows and doors. After that, approximately three inches of polyurethane foam 

is sprayed on the rest of the air-form and a grid of steel reinforcing rebar is embedded in 
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the foam thanks to the use of special hooks [25]. Finally, a layer of shotcrete with 

variable thickness is sprayed into the interior surface of the polyurethane foam, 

embedding the steel reinforcement.  

 

Figure 2.9. Employed materials for the monolithic dome construction [27]. 
 

Besides achieving an excellent mechanical behavior, the resulting monolithic domes offer 

also great level of insulation mainly due to the foam that allows the structure to maintain 

a constant the indoor temperature. In fact, according to C. Lanham, monolithic domes can 

save up to the 50% of the cost for heating and cooling respect to conventional buildings 

of the same size. Moreover, the construction technique previously described provides a 

fast, labor- and material-saving building method in comparison to construction method 

with formwork and false-work [25]. 
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2.2.2 New materials: Mycelium 

Shells structures are traditionally made of concrete. However, the development of new 

biodegradable materials could provide an alternative solution for future shell structures. 

Mycological fungi are natural composites materials which offer a series of benefits 

respect to the traditional construction material, such as carbon capture and storage, low 

cost of production, low usage of natural resources and low environmental impact. The 

sustainability nature of mycological fungi is thus opening new horizons in a large variety 

of applications, especially in those where the use of composite materials has become too 

expensive in terms of raw material and production process. The vegetative part of fungi is 

named mycelium and is characterized by a fast and safe growing process. It also serves as 

the matrix for a new generation of natural composites, which can potentially replace 

traditional polymeric materials for applications such as insulation, packing and sandwich 

panels [28]. In addition, mycelium material is particularly lightweight and has shown 

relatively good mechanical performances, especially in compression. For this specific 

reason, it has been decided to investigate the use of mycelium in civil structures, 

especially in those types of constructions that work essentially in compression, such as 

domes. A recent study demonstrated that its strength decreases with the increase of the 

moisture content [28]. Therefore, coatings might become essential in guaranteeing long 

term consistency and performance. From a biological point of view, mycelium resembles 

to a carbon-based network of trusses. It is composed by hyphae, which grows from the 

inoculation of a mycelium fungal strain spore into a cellular material [29]. Another 

peculiarity of mycelium material is its fast growth rate that potentially never stops if 

sufficient nutrients are available. One of the oldest and largest mycelium growth is 
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situated in Oregon, it is more than 2000 years old and it covers an area of more than 2400 

acres. The mycelium hypae network exerts the important functions of growing and 

seeking new feed-stock, of recognizing and transporting nutrients, and of transmitting 

chemical signaling mechanism which regulate several other functions. The growth and 

nutrient harvesting are achieved by the secretion of digestive enzymes, dismantling 

macro-molecules into components than absorbed using a diffusion gradient or by 

transport mechanisms [28]. The skeletal structural of the mycological fungi instead, is 

achieved thanks to chitin composed of polysaccharides which confers stiffness to the 

cellular structure. 

Material properties 

The mechanical behavior of natural composite materials is difficult to describe because of 

their heterogeneous and anisotropic properties. This is true especially for mycological 

fungi, due to the fact that there are different species and different ways to produce it. 

However, previous studies demonstrated that the mechanical behavior of mycelium can 

be predicted by looking at the behavior of open-cell foams. A cell is defined as “Open-

cell” when it does not have cell walls, but only beams forming cell edges [28], allowing 

liquids and gasses to pass easily through it. Depending to the composition, foams are 

characterized by different stress-strain curve showing usually a different behavior in 

tension and compression. The curves associated to the compressive or tensile states vary 

according to the nature of foam, which can be elastomeric, elastic-plastic or brittle. 

Typical stress-strain curves of foams are shown in Fig. 2.10 
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Figure 2.10. Typical stress-strain behavior in foams [28] 

In each compressive curve, it is possible to distinguish the following three zones: linear 

elastic, plateau and densification. The first one represents the elastic bending of the cell 

edges and stretching of cell walls (if present). The second one occurs as the cells begin to 

collapse, via elastic buckling (for elastomers), plastic yielding (for elastic-plastic 

materials) or crushing (for brittle materials). The third one occurs when the cells are 

completely collapsed, the solid material is compressed and the stiffness increases to 

fracture during the densification region [28]. Each tensile curve starts with a linear-elastic 

region, but after the behavior varies depending on the nature of the foam. It is important 

to underline that some foams demonstrate brittle behavior in tension, but elastic-plastic 
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behavior in compression [30]. In order to be as much conservative as possible, in this 

study the mycelium material considered is assumed linear and brittle with the material 

properties presented in Table 2.1. Since for mycological fungi the Poisson ratio is 

difficult to define, an average value equal to 0.25 is also assumed. 

Table 2.1. Material properties of mycelium. The values have been chosen according to [28] [31]. 

MATERIAL PROPERTIES OF MYCELIUM 
Density                                
(kg/m3) 

Tensile Strength            
(kPa) 

Elastic Modulus            
(kPa) 

Compressive 
Strength (kPa) 

Poisson                               
Ratio 

130 17 690 55 0.25 
 
Table 2.1 also reveals that the mechanical properties of mycological fungi are lower 

compared with traditional dome construction materials, such as concrete and brick, which 

are discussed in the following chapters. 

Production Process 

Mycelium fungi usually grows under controlled conditions without light, water or 

petrochemicals. After an adequate level of growth, it is possible to stop the process by 

holding the material at a higher temperature. The heat treatment usually requires a 

temperature of 220 °C for 120 minutes [28]. In order to reduce the moisture content from 

60-65% to10-20%, a convective heating based on solar dryers or renewable energy 

sources can be applied during the post-processing phase. The principal steps of the 

production process are summarized in the Fig. 2.11: 

 

Figure 2.11. Principal steps of the production process of mycelium material [28]. 
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According to the container shape employed, mycelium elements can be produced in 

different shapes, such as simple rectangular block molds. A hard chitin skin is 

automatically formed when mycelium comes into contact with non-porous, inorganic 

materials preserving the moisture and the nutrient content [28]. 

Applications 

Mycological fungi play a fundamental role in our ecosystem. They are actually able to 

recycle carbon and minerals and they are involved in the nitrogen-fixing cycle. They also 

have an extend range of applications including human consumptions (when they are 

edible), environmental and biological control, capture and safe removal of heavy metal 

contaminants and even medical uses against cancer [28]. Since mycelium is 

biodegradable, it represents also a great sustainable option that can substitute synthetic 

materials or even structural material. In fact, mycelium is currently commercialized for 

packaging materials, insulation, structural insulating panels and acoustical tiles [31]. In 

architecture, one of the first prototypes using mycelium based building blocks was 

realized in Germany (Fig.2.12): 
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Figure 2.12. Mycotectural Alpha by Professor PG Ross exhibited   

   at Kunsthalle Dusseldorf as part of the Eat Art Exhibit 2009 [28]. 

The first large scale application of mycelium was “Hi-Fi” (Fig.2.13), a circular tower 

made of organic bricks situated in Moma’s PS1 courtyard.  The structure was designed 

for the Young Architects Program of Moma by architect David Benjamin, who 

collaborated with the company Ecovative, responsible for the production of the materials. 

 
 

Figure 2.13. Illustration of Hi-Fi [32] 
 

Since nowadays civil engineering is oriented towards fast, cheap and sustainable 

construction and  production processes, mycological fungi represents a great material for 

future applications. However, further investigations on its material properties need to be 

performed. 
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Chapter 3: Structural Analysis 

3.1 Thin shells theory 

3.1.1 General Introduction 

Shell structures are curved surface structures characterized by a particular geometry, in 

which one dimension, the thickness, is significantly smaller compared to the other two. In 

civil engineering and architecture, shells have been used to cover large span areas without 

the use of columns. The study developed in the following chapters is concentrated on 

shells of revolution and in particular on hemispherical domes. Such shells are obtained by 

rotating a planar curve around an axis, called meridian axis, situated in the meridian 

plane. Their geometry is completely defined by the thickness and the shape of the middle 

surface. As a definition, a shell can be considered thin when the ratio between its radius 

and its thickness 𝑹
𝒕
 is in the range between 20 and 1000. Another key-concept is the 

radius of curvature which gives a quantitative measurement of the curvature of the shell 

in the two principal directions. It is possible to derive analytical solutions which are valid 

only in specific configuration defined by the radius of curvature. 

 
Figure 3.1. Radius of curvature and geometry of shells [3] 

The study of thin shell behavior typically requires the understanding of two separate 

theories: the membrane theory and the bending theory. The first one describes the actions 

of the membrane forces, while the second one focuses on the effects of edge disturbances. 
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In few cases, an approximate solution in terms of stress and strain can be reached by 

solely using the membrane theory. 

3.1.2 Definition of shells by the Gaussian Curvature 

The Gaussian curvature allows the definition of shells in a more general way and it can 

be defined as:                                         K = 1
rx ry

,  

where ry and rx represents the principal radii of curvature [3]. According to sign of the 

Gaussian curvature, it is possible to extrapolate useful information about the geometry 

and the load-carrying capacity of shells. Figure 3.2 illustrates the influence of the 

curvature on the geometry of three types of curved surface, respectively “saddle surface”, 

a cylinder and a sphere. 

 

Figure 3.2. Shells and their Gaussian Curvature [33] 

 
This study has been concentrated on synclastic surfaces, such as domes, characterized by 

a positive curvature. For this type of shells, the edge disturbances tend to damp rapidly. 

Therefore the membrane theory is sufficient to describe their global behavior. 

3.1.3 Simplified Assumptions 

A simplified shell analysis can be performed by considering more elementary forms such 

as arches, rings cantilevers and beams. In fact, a thin shell concrete structure can be 
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thought as a combination of such elements if it is possible to justify this equivalence. To 

make this possible, it becomes necessary to refer to the Kirchhoff-Love assumptions: 

• Geometrical linearity: The strain and displacement are assumed to be small. 

Equilibrium is valid only for the undeformed configuration. 

• Physical linearity: The material is elastic isotropic and homogeneous satisfying 

Hooks law. 

• Thin shell: It can be defined by its middle surfaces, as halfway between the inner 

and the outer edges of the shell. Plane cross sections remain plane and vectors 

normal to the middle surface remain normal after deformations. 

 

Figure 3.3. Definitions of thin shells [3] 

 
Furthermore, for domes loaded symmetrically with respect to their axes the amount of 

stress resultants (forces per unit length of middle surface) are simplified by symmetry in 

the following:  Nθ dy = ∫ σh/2
−h/2 Rθ dz ,  where: 

Nθ is the force per unit length of middle surface 
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h is the thickness of the surface element 

σθ is the internal force in the θ direction 

And stress couples (bending moment per unit length of middle surface): 

My r dθ = r dθ ∫ 𝜎ℎ/2
−ℎ/2 Ry z (1 - 𝑧

𝑟
 ) dz , where:                                                    

My is bending moment per unit length of middle surface 

r is the radius of curvature 

σy is the internal force in the y direction 

z is the arm of the internal force σy 

3.2 Analytical method: Membrane theory 

3.2.1 Assumptions 

The Membrane theory is sufficient to describe the behavior of thin shell structures, such 

as domes. The theory is based on the concept that arbitrary loads can be carried solely by 

membrane forces. This becomes true when the following assumptions are added to the 

ones mentioned in the previous section: 

• Bending and shear stiffness are very small, therefore they can be neglected 

• The shell’s surface is C2 continuous 

• Rapid or abrupt changes in shell thickness are excluded  

• Concentrated loads cannot be treated  

• Edge forces are tangential to the surface, also for simply supported conditions. 
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3.2.2 Membrane forces 

The following development of the membrane forces has been taken from Billington’s 

“Thin Shell Concrete Structures”, which is considered one of the main references for 

modern day dome analysis.  

According to Billington [3], shell analysis is usually divided in 4 parts: 

1) Primary system based on the membrane theory 

2) Errors at the boundaries due to membrane stress resultants 

3) Corrections due to unite edge affects at the boundaries 

4) Compatibility which is achieved by computing the size of the edge effects 

necessary to eliminate errors. 

 

Figure 3.4. Definitions of the differential element in polar coordinates from Billington [3] 
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The equations that govern the stress resultants of shell systems, which are symmetrical 

about their axis of revolution, can be expressed in polar coordinates as follow (1): 

dN′θ
dθ

 r1 + N'θΦ dr0
dΦ

 + d(N′Φθ r0)
dΦ

 + pθ r0 r1 = 0                                                            [Eq. 3.1] 

d(N′θ r0 )
dθ

 – N'θ dr0
dΦ

 + dN′θΦ
dΦ

 r1 + pΦ r0 r1 = 0                                                             [Eq. 3.2] 

N′θ
r2

 + N′Φ
r1

 + pz = 0                                                                                                    [Eq. 3.3] 

Where: 

N'ϕ is the meridional stress resultants 

N'θ is the hoop stress resultants 

N'θΦ is the shear stress resultants 

r0 is the radius  

r1 is the principal radius of meridional curvature 

r2 is the principal radius of ration 

pθ is the circumferential component of the load 

pΦ is the meridional component of the load 

pz is the component of the load in the z direction 

 

Figure 3.5. Definitions of the stress resultants in polar coordinates from Billington [3] 
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The loading is symmetrical with respect to the axis. Therefore, all terms involving dθ can 

be simplified. Additionally the terms in dϕ can be written as total differentials dϕ as 

nothing varies with θ. The circumferential component of load, pθ , is null, and the shear 

stress resultants disappear along the meridians and parallel circles. The equations 

governing the stress resultants reduce to: 

 d(N′Φ r0)
dΦ

 – N'θ 
dr0
dΦ

 + pΦ r0 r1 = 0                                                                              [Eq. 3.4] 

  N′θ
r2

 + N′Φ
r1

 + pz  = 0                                                                                                 [Eq. 3.5] 

For small values of the angle ϕ ,it is valid the following geometrical approximation:   

cosΦ ~ dr0
r1dΦ

    dr0
dΦ

 = cosΦ r1 

 

Figure 3.6. Geometrical approximation for small values of Φ [3] 

which can be substituted into Eq. 3.4 to give:   d(N′Φ r0)
dΦ

 – N'θ cosΦ r1 + pΦ r0 r1 = 0 

Eq. 3.5 can be solved for:   N'θ = – r0
sinΦ

 ( 
N′Φ

r1
 + pz )                                                   (a)                             

And when (a) is introduced into Eq. 3.4 and each term is multiplied by sinΦ, it gives   

sinΦ d(N′Φ r0)
dΦ

 + sinΦ r0
sinΦ

 ( N′Φ
r1

 + pz )  cosΦ r1 + sinΦ pΦ r0 r1 = 0 

which, when multiplied by 2π and integrated with respect to Φ, it yields 
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 ∫ sinΦ d(N′Φ r0)
dΦ

Φ
0  dΦ + ∫ N′Φr0

Φ
0  cosΦ dΦ = – 1

2π
 ∫ (Φ

0 sinΦ pΦ R + cosΦ pz ) 2 π r0 r1 dΦ 

Integrating now by parts the first integral the previous expression can be simplified as: 

N'Φ = – 1
2 π r0 sinΦ

 ∫ (Φ
0 sinΦ pΦ R + cosΦ pz ) ( 2 π r0 ) r1 dΦ                                   [Eq. 3.6]  

The expression ( sinΦ pΦ R + cosΦ pz ) represents the vertical component of the load. 2π 

r0 instead allows to sum such vertical load over a complete parallel circle and ∫ r1dΦΦ
0  

integrates the vertical load along a meridian. As a consequence the integral of Eq. 3.6 

represents the total vertical load (R in Fig. 3.7) above the parallel circle defined by Φ. 

 

Figure 3.7. Dome equilibrium from Billington [3] 

Therefore Eq. 3.6 can be rewritten as: 

N'Φ = –  R
2 π r0 sinΦ

                                                                                                   [Eq. 3.7]  

And substituting in ( a ) : 

N'θ = R
2 π r1 sin2Φ

 – pz  
r0

sinΦ
                                                                                      [Eq. 3.8]  

Eq. 3.7 and 3.8 assume different expressions according to the specific loading condition. 



30 
 

 
 

3.2.3 Membrane displacements 

In order to determine the membrane strains εϕ and  εθ, it has been decided to consider 

the following figure: 

 

Figure 3.8. Displacements in domes from Billington [3] 

 
The element AB and A’B’ represent respectively the undeformed and the deformed 

configuration of the infinitesimal domes element of length r1dΦ. The two parameters v 

and w instead, describe the meridional displacement and the radial displacements. The 

general expression of the strains can be written as follow:   

 ε = 𝐴
′𝐵′−𝐴𝐵

𝐴𝐵
                                                                                                            [Eq. 3.9] 

According now to fig 3.8 the length of the deformed configuration A’B’ can be expressed 

as:  A’B’ = (r1 – w) dΦ – v + (v + dv) = (r1 – w) dΦ + dv  
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therefore substituting now in Eq. 3.9 it has been possible to compute the strain in the 

tangent to the meridian direction: 

εϕ  =  �r1 – 𝑤�dΦ + d𝑣 −  r1dΦ 
r1dΦ

 = 1
r1

d𝑣
dΦ

− w
r1

                                                                 [Eq 3.10] 

with similar considerations it has been computed also the strain in the hoop direction: 

 εθ =   r0
′  dθ − r0dθ

r0dθ
 = 𝑣

r0
 cosΦ –  𝑤

r2
                                                                            [Eq 3.11] 

with r'0 = r0 – w sinΦ + v cosΦ 

Combining now Eq. 3.10 and 3.11 and solving for v : 

d𝑣
dΦ

  – cotΦ = r1 εϕ  – r2 εθ                                                                                       [Eq 3.12] 

Considering now the Hooke’s law it is possible to relate the strains to the membrane 

forces as follow: 

εϕ = 1
E h

 ( N'Φ – v N'θ )                                                                                            [Eq 3.13] 

εθ = 1
E h

 (N'θ  – v  N'Φ)                                                                                            [Eq 3.14] 

Substituting now Eq. 3.13 and 3.14 in Eq.3.12  

d𝑣
dΦ

  – v cotΦ = 1
E h

 [N'Φ (r1 + v r2) – N'θ (r2 + v r1)]                                               [Eq 3.15] 

Eq. 3.15 can be solved by integration where: 

f(Φ) = d𝑣
dΦ

  – v cotΦ 

Therefore: 

f(Φ) = 1
E h

 [N'Φ (r1 + v r2) – N'θ (r2 + v r1)] 

At this point, the general solution is: 

v = sinΦ (∫ f(Φ)
sin Φ

 dΦ + C ) )                                                                                  [Eq 3.16] 

where C is the constant determined by the boundary conditions 
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Substituting now v in Eq. 3.11 it has been possible to determine also w: 

w = v cotΦ – r2 εθ = v cotΦ –  r2
E h

 (N'θ  – v  N'Φ) )                                                [Eq 3.17] 

Eq. 3.16 and 3.17 represent the membrane deformations for general thin shells. 

The meridian rotation Δϕ can be obtained from Fig. 3.8 as  

Δϕ = 𝑣
r1

 +  d𝑤
r1 dΦ

                                                                                                       [Eq 3.18] 

The horizontal movement ΔH instead, can be directly derived from Eq. 3.14: 

ΔH = r0 εθ = 1
E h

 (N'θ  – v  N'Φ) r0 =  r2 sin Φ
E h

 (N'θ  – v  N'Φ)                                    [Eq 3.19] 

Which can be thought also as: ΔH
sin Φ

 = r2 
E h

 (N'θ  – v  N'Φ)                                       [Eq 3.20]   

In order to analyze the effects of the edge disturbances in shells, it is not necessary to 

evaluate v and w, but only the meridian rotation Δϕ and the horizontal movement ΔH at 

the edges.  Since v is equal to 0 at the edge, Eq. 3.18 becomes: 

Δϕ = d𝑤
r1 dΦ

 = cot Φ
r1

  d𝑣
 dΦ

 –  d
r1 dΦ

 [ 𝑟2
𝐸 ℎ

 (N'θ  – v  N'Φ)]                                                 [Eq 3.21]   

From Eq. 3.15, with v = 0,  

 d𝑣
dΦ

 = 1
E h

 [N'Φ (r1 + v r2) – N'θ (r2 + v r1)]                                                              [Eq 3.22]                                                                                                                                    

Substituting now Eq. 3.22 and 3.20 in Eq. 3.21, we get 

Δϕ = cot Φ
r1E h

  [N'Φ (r1 + v r2) – N'θ (r2 + v r1)] –  d
r1 dΦ

 [ ΔH
sin Φ

 ]                                 [Eq 3.23] 

3.2.4 Failure Criterion 

Since the constitutive shell materials in this study are assumed brittle, the adopted failure 

criterion is Coulomb-Mohr which is based on the Mohr’s circle. According to this 

criterion, the failure of the material occurs when in any point of a structure stresses 
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exceed the envelope generated by the two Mohr’s circles for uniaxial compression 

strength and uniaxial tensile strength. 

 

Figure 3.9. Circles of Mohr [34] 

As Fig. 3.9 illustrates, the right circle represents the uniaxial tension at the limiting 

tension stress σt, whereas the left circle represents the uniaxial compression at the 

limiting compression stress σt. The one in the middle instead represents the maximum 

allowable stress for an intermediate stress state. Each possible intermediate state is 

summarized in Table 3.1. 

Table 3.1. Criterion requirement for intermediate states [34] 
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3.2.5 Spherical domes 

Uniform load over the dome surface (self-weight) 

 

Figure 3.10. Hemispherical dome under uniform load over the dome surface from Billington [3] 

A hemispherical dome of uniform thickness subjected to its own weight is described by: 

r1 = r2 = a                             pϕ = q sinΦ                                pz = q cosΦ       

R = 2 π a2 q ∫ sinΦ dΦΦ
0  = 2 π a2 q (1 – cosΦ)           

where q is the dead weight of the shell. In this case, Eq. 3.7 and 3.8 become: 

N'Φ = – aq 1
1 + cosΦ

                                                                                                 [Eq 3.24]                                     

N'θ = aq ( 1
1 + cosΦ

 – cosΦ)                                                                                    [Eq 3.25]                                     

The meriodional stresses increase from the crown to the edge and are in pure 

compression. Hoop stresses decreases from a maximum value of compression at the 

crown to zero where cosΦ = 1
1 + cosΦ

 , which corresponds to approximately 51°50’; Hoop 

stresses then become tension reaching their maximum value at the edge. Substituting now 

Eq.3.24 and 3.25 in Eq. 3.21 and 3.23, Δϕ and ΔH assume the following expressions : 

ΔH = q a2

E h
 ( 1 + 𝑣

1 + cosΦ
 – cosΦ) sinΦ                                                                                                                   [Eq 3.26]                                     

Δϕ = –  a q
E h

 (2 + v) sinΦ                                                                                                                                         [Eq 3.27]                                    
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Uniform load over a horizontal projection of the dome surface 

 

Figure 3.11. Hemispherical dome under uniform load over  
 

an horizontal  projection of the dome surface [3] 
 

When the hemispherical dome is subjected to a uniform load over the horizontal 

projection of the dome surface, the load is given by: 

pz  = p cos2Φ                            pΦ = p sinΦ cosΦ                                 pθ = 0  

R = 2 π r0
2 = p a2 π sin2 Φ 

In this case, Eq. 3.7 and 3.8 become: 

N'Φ = –  a p 
2

                                                                                                            [Eq 3.28]                                     

N'θ = –  a p 
2

 cos(2Φ)                                                                                               [Eq 3.29]                                     

Therefore N’
Φ is a constant compression, whereas N’

θ varies from compression at the 

crown to tension at the edge. Zero hoop value occurs where cos2Φ = 0 or Φ = 45°. 

Substituting now Eq.3.28 and 3.29 in Eq. 3.21 and 3.23, Δϕ and ΔH assume the 

following expressions for this load case: 

ΔH =  a2p
2 E h

 [– cos(2Φ) + v] sinΦ                                                                               [Eq 3.30]  

                                                                                                                                        
Δϕ =   a q

2 E h
 (3 + v) sin(2Φ)                                                                                                                                  [Eq 3.31]  
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Uniform external pressure over the dome surface  

 

Figure 3.12. Hemispherical dome under uniform external pressure  

When the hemispherical dome is subjected to uniform pressure p  over the dome surface, 

the load can be described only by its vertical component to the surface of the dome: 

pz = p                                       pΦ = 0                                    pθ = 0 

R = π  a2 p
2

  (2 sin2 Φ)0 
Φ

R  

In this case, Eq. 3.7 and 3.8 become: 

N'Φ = – π a2 p sin2Φ
2 a sin2Φ

 = – a p 
2

                                                                                      [Eq 3.32]                                     

N'θ = – a (p – a p 
2a

 ) = – a p 
2

                                                                                      [Eq 3.33]       

Substituting now Eq.3.28 and 3.29 in Eq. 3.21 and 3.23, Δϕ and ΔH assume the 

following expressions for this load case: 

ΔH =  a2p
2 E h

 (–1 + v) sinΦ                                                                                           [Eq 3.30]  

                                                                                                                                        
Δϕ = 0                                                                                                                                                                              [Eq 3.31]  
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3.2.6 Elliptical domes 

The general expression of an elliptical arch is given by: 

x2

a2  +  y
2

b2  = 1                                                                                                           [Eq 3.32]                                     

where a and b represent respectively the major and minor axis, instead x corresponds to 

r0, the radius of the parallel circle; so 

x = r0 = a �1 −  y2

b2  =  a 
b
 �b2 − y2                                                                       [Eq 3.33]                                     

dy
dx

 = 1
dx/dy

 = – tanΦ = –  b 
ay

 �b2 − y2                                                                   [Eq 3.34]       

For an elliptical geometry sinΦ and cosΦ can be expressed as:  

sinΦ = dy
ds

 = dy
�dy2+ dx2 

 = dx/dy
�(dy/dx)2+1 

 = − tanϕ
�tanϕ2+1 

 = −b �b2−y2

�b4+ y2(a2−b2) 
                       [Eq 3.35]                                     

cosΦ = 1
�tanϕ2+1 

 = a y 
�b4+ y2(a2−b2) 

                                                                        [Eq 3.36] 

The two principal radii of curvature are thus given by the expressions: 

r1 = [b4+y2( a2− b2)]3/2

a b4                                                                                             [Eq 3.37]                                     

r2 = a
b2 �b4 +  y2(a2 − b2)                                                                                 [Eq 3.38]                                

The coordinates at the crown of the dome are: y = b and r1 = r2 = a
b2 , 

while the coordinates at the base of the dome are: y = 0, r1 = b
2

a
, r2 = a. 
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Uniform load over the dome surface 

 

Figure 3.13. Distribution of the two membrane stress resultants over the ellipsoid [3] 

When a spherical dome of uniform thickness is subjected to its own weight, 

pz = q cosΦ                                   pϕ = q sinΦ                              pθ = 0                       

R = 2 π q ∫ x dsb
y                                                                                                    [Eq 3.39] 

According to Eq. 3.33:  

x = r0 = a �1 −  y2

b2  =  a 
b
 �b2 − y2  

 and considering:  ds = dy �1 + ( dx
dy

 )2   

Inverting Eq. 3.28:    dx
dy

 = –  a y 
b�b2−y2  

and substituting it in the previous one:     

ds = dy �1 +  a2b2

b2(b2− y2)
                                                                                        [Eq 3.40] 

Substituting now Eq. 3.27 and 3.34 in Eq. 3.33: 

R = 2 π q ∫  [ a 
b

b
y  �b2 − y2�1 +  b2 (b2− y2)+ a2 y2

b2(b2− y2)
 dy ] 

R = 2 π q a
b2 ∫ �b4 +  y2(a2 − b2)b

y  dy 
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R = 2 π a2 q [ 1
2
 –  y

2 a b2 �b4 +  y2(a2 − b2)  

                                  +  b2

2a √a2−b2 
 log b (a + �b2−y2 )

y √a2−b2+ �b4+ y2(a2−b2)
 ]                           [Eq 3.41] 

The quantity in the bracket varies according to the ratios y/b and b/a and it has been listed 

in Table 3.1 as a quantity C (1). Therefore Eq.3.41 can be rewritten as : 

R = 2 π a2 q C                                                                                                        [Eq 3.42] 

In this case the membrane forces become: 

N'Φ = –  R
2 π r0 sinΦ

  = –  2 π a2 q C
2 π r2 sin2Φ

 = –  a2 q C b2

a sin2ϕ�b4+ y2(a2−b2) 
 

Substituting now Eq. 3.29 in the previous one: 

N'Φ = –  a2 q C b2 [b4+ y2�a2−b2�]
b2(b2− y2) a �b4+ y2(a2−b2) 

 = – a
2q
b

 C
(b2 − y2)/b2   �b4 +  y2(a2 − b2) 

 ab 
 

Calling now:   Q =   �b4 +  y2(a2 − b2) 
 ab 

  

Since the parameter Q varies according to the ratio y/b and b/a , therefore it is listed in 

Table 3.1 as well. In conclusion, Eq. 3.7 and 3.8 can be rewritten in this case as: 

N'Φ = – a
2q
b

 C Q
1 – (y2/b2)

                                                                                            [Eq 3.43] 

N'θ = – r2 ( pz + N′Φ
𝑟1

 ) = – r2 q cosΦ – N′Φ
𝑟1

 r2                                                         [Eq. 3.44] 
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Table 3.2. Coefficients for elliptical domes from Billington [3] 
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3.3 Numerical method: Finite Element Method with Abaqus 

3.3.1 Introduction to Finite Element Analysis 

The finite element method can be defined as a numerical method for finding approximate 

solutions to boundary value problems for partial differential equations [35]. The main 

concept behind this method is to subdivide a large problem into smaller, simpler parts 

(called finite elements) and to interconnect them through the points (called nodes) or/and 

the edges or/and the surfaces that they have in common. This process is commonly 

named “Discretization”. Through this process, it is possible to formulate an equation for  

each finite element and after to combine to obtain a solution of the domain. The finite 

element method has become very popular especially when, due to the complexity of the 

problem, an analytical solution is difficult to achieve. In fact, numerical methods provide 

approximate solutions of the unknowns (called degrees of freedom) with a reasonable 

loss of accuracy. Structural analysis, fluid dynamic, distribution of electromagnetic 

potential, heat transfer represent some examples of problems where the finite element 

method has been successfully applied. In structural analysis which involves structures 

subjected to applied loads, displacements and stresses are usually the unknowns of the 

problem. For nonstructural analysis, the unknown values may be fluid pressures, 

electromagnetic potential or temperature, etc.  

3.3.2 Steps of the Finite Element Method 

According to Logan’s “A first Course in the Finite Element Method” [35], the main steps 

of the finite element method can be synthetized as follow: 

 

https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Partial_differential_equations
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• Step 1: Discretize and select the element types. Step 1 involves the subdivision of  

the body in a set of finite elements interconnected by nodes and the selection of 

the element type that best models the real physical behavior of the body. The 

dimensions of such elements have to be wisely decided so that they reach an 

adequate accuracy of the solution and on the other hand to reduce  computational 

time and effort. For relative constant problems, large elements can be used. 

However, when the properties of the body change rapidly, the use of smaller 

elements becomes necessary. Also the choice of the type of elements has an 

influence on the accuracy of the result, therefore it has to be established according 

to the geometry of the body and the type of loading conditions. The most common 

type of elements are shown in the figures below: 

 

Figure 3.14. Simple line element typically used to represent a bar or a beam element [35] 

                                    

Figure 3.15. Simple 2-dimensional elements used to represent plan stress/strain [35] 
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Figure 3.16. Simple 3-dimensional elements used to represent 3-dimensional stress [35]

 

 
                                        Figure 3.17. Simple axisymmetric element [35] 

 
• Step 2: Select a displacement function. Step 2 involves the choice of a 

displacement function which is defined within the element using the nodal values 

of the element. In general, the finite element process works really well with linear, 

quadratic and cubic polynomials, because of the simplicity of their formulation. 

However, also other functions can also be employed, such as trigonometric series. 

Once the displacement function has been selected, it can be used repeatedly for 

each element. Through this process, any continuous function of interest can be 

approximated by a series of piecewise-continuous functions defined within each 

finite domain or finite element.  
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• Step 3: Define the Strain/Displacement and Stress/Strain relationship. Step 3 

involves the definition of Strain/Displacement and Stress/Strain relationships to 

derive the equations for each finite element. In the simplest case of one-

dimensional deformation, the strain εx in the x direction, related to the 

displacement u, is defined as: εx =  du
dx

 for small strains. Furthrmore, the strain 

must be related to the stress through a constitutive law. The most common and 

simplest constitutive law is the Hooke’s law, which in one dimensional case is 

expressed as: σx = E εx where E represents the modulus of elasticity and σx the 

stress in the x direction. 

 
• Step 4: Derive the element stiffness matrix and equations. Step 4 involves the use 

of the direct equilibrium/stiffness method or the work/energy method or the 

weighted residuals method. 

Direct equilibrium or stiffness method 

This method is based on force equilibrium conditions for a single element. The 

stiffness matrix element equations that relate the nodal forces to the displacement 

are provided using force/deformation relationship [35]. 

Work or energy method 

The work or energy method represents the best solution when it is necessary to 

develop the stiffness matrix and equations for two- and three-dimensional 

elements. The principle of virtual work, the principle of minimum potential 

energy and Castigliano’s theorem are the most popular methods for this kind of 

purpose. The first one is applicable for any kind of materials, whereas the other 

two only to elastic materials. 
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Method of weighted residuals 

When a function such as potential energy is not readily available, the method of 

weighted residuals becomes particularly useful. The most famous one is the 

Galerkin’s method. This method provides the same results of the energy methods, 

wherever the energy methods are applicable. In addition, it can also be directly 

applied to any kind of differential equations by using them.  

The purpose of any of the aforementioned methods is to provide the equations to 

describe the behavior of each element. These equations can be conveniently 

written in a compact form as: { f } = [k] { d } 

where { f } is the vector of nodal element forces, [k] is the element stiffness matrix 

and { d } is the vector of the degrees of freedom or generalized displacements. 

 

• Step 5 : Assemble the equations to obtain the global or total equations and 

introduce boundary conditions. Step 5 focuses on the assembly of the individual 

element nodal equilibrium equations into the global nodal equilibrium equations. 

In order to obtain the global equations it is also possible to use a more direct 

method, commonly named as “direct stiffness method”. Such method implicitly 

assumes that the structure remains together (no tears occur anywhere within the 

structure). The assembled or global equation can be written in the matrix form:     

{ 𝐅} = [𝐊] { d } 

where { 𝐅} is the vector of global nodal forces, [𝐊] is the structure global or total 

stiffness matrix, and { d } is the vector of known and unknown degrees of freedom 

or generalized displacements. At this stage, it is also important to choose the 
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appropriate boundary conditions in order to avoid rigid body motion from the 

structure. 

 

• Step 6: Solve for the unknown degrees of freedom. Step 6 involves the resolution 

of the unknown degrees of freedom through the set of the algebraic equations that 

can be written in the following matrix form as: 

 

where now n is the structure total number of unknown nodal degrees of freedom. 

 

• Step 7: Solve for element strains and stresses. Step 7 involves the resolution of 

stress and strain quantities thanks to the relations and the constitutive laws  pre-

defined in step 3. 

• Step 8: Interpret the results. Step 8 involves the interpretation of the results and 

requires critical thinking. The main goal is to determine the locations where the 

structure experiences large stresses or deformations because, in order to improve 

the designing process. Postprocessor computer software helps the understanding 

of the user by showing the results in various graphical forms. 

3.3.3 Abaqus: Pre-processing, Analysis, Post-processing 

The finite element software Abaqus has been chosen to compute the analysis of shells in 

this research. Abaqus has been released in 1978 and it is very suitable for finite element 

analysis and computer-aided engineering. A Student edition has been used for this study. 
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The modeling process of any finite element software can be usually divided in three main 

stapes: pre-processing, analysis and post-processing. A general description of these steps 

is shown here below. 

• Step 1: Pre-processing. This step is responsible of the general construction of the 

model. Since the analyzed problems are always axisymmetrical, each shell has 

been created in Abaqus by rotating around the y-axis at x=0 half of the geometry 

of interest. This has been done in Section “Part” selecting the following:            - 

- Modeling Space: 3D 

- Type: Deformable  

- Shape: Shell                                     

- Base feature type: Revolution 

Afterwards, it is necessary to define the material properties. Since this research is focused 

on linear elastic material, it has been sufficient to define the “Density”, the “Modulus of 

elasticity” and the “Poisson’s ratio” of the material in section “Property”. The selected 

“Category” and “Type” of section for each shell were decided to be “Solid” and 

“Homogeneous”, respectively. Then, in section “Assembly” it has been chosen 

“Independent (mesh on instance)” as an “Instance Type”. The two type of analysis 

involved in this paper are “Static, General” and “Linear perturbation, Buckle” and they 

can be set up in section “Step”. After the definition of the load and the boundary 

conditions, the creation of an appropriate mesh is required. The chosen “ Element shape” 

has been “Quad” for each shell. Although the student version is restricted to 1000 

elements in total, staying under this threshold provided a satisfactory level of accuracy  

for the scope of this study. Finally, when all the inputs are determined, the next step is to 
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run the model. This requires the creation of a “Job” which can be done in section “Job 

Manager”. 

• Step 2: Analysis. In this step the validity of the model is tested. A dat. file 

containing the global stiffness matrix and other important information are created 

when running the model. If some input parameters are missing, the software stops 

the analysis giving back an error as an output. 

• Step 3: Post-processing. This step involves the evaluation and the discussion of 

the results. Abaqus shows them in several ways, ranging from illustrations, graphs 

to tables. Thanks to this step, it is also possible to compare the numerical solution 

obtained from the software with the analytical one. 

3.4 Comparison 

3.4.1 Assumptions 

The aim of this section is to compare analytical and numerical solutions in order to 

confirm the validity of the models created with the finite element software. In this study, 

different geometries and different load cases have been considered, while a constant 

thickness along the dome surface is assumed. The results of the membrane theory are 

valid for simply supported conditions. Moreover, all dome configurations examined are 

simply supported in accordance with the membrane theory. However, in order to run the 

analysis in the finite element software, it is necessary to avoid rigid body motions. 

Therefore the finite structure needs to have at least one point of the boundary conditions 

restrained against translation in each direction generating edge disturbances which affects 

the symmetry of the stress distribution. Nevertheless, the edge disturbances tend to damp 

rapidly allowing at a sufficient distance from the pinned points the stress distribution to 
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reflect the correct one. The material employed in this comparison is based on mycelium 

with the properties already stated in Table 2.1. 

3.4.2 Influence of the type of loading 

This section involves a comparison between the analytical and the numerical solution for 

a hemispherical dome (angle of cut ϕ = 90°) with a radius a = 5m and a thickness t = 

0.1m subjected to the following load cases: 

• Case 1: Uniform load over the dome surface: p = self-weight  

• Case 2: Uniform load over a horizontal projection of the dome surface: p= 500 Pa 

• Case 3: Uniform external pressure over the dome surface: p = 1000 Pa 

Case 1: Uniform load over the Dome surface: p = self-weight 

As it has been already shown, the analytical solution for a hemispherical dome subjected 

to its own weight can be computed according to Eq. 3.24 and 3.25:     

N'Φ = – aq 1
1 + cosΦ

                                                                                                   [Eq 3.24]                                     

N'θ = aq ( 1
1 + cosΦ

 – cosΦ)                                                                                      [Eq 3.25]                                     

The only missing parameter is q, which represents the pressure that the weight exerts per 

unit m2 of dome surface and it can be computed with the following procedure: 

Volume of the dome : V = 1
2
 (Volsphere_full – Volsphere_empty)  

V = 1
2
 [ 4

3
 π a3 –  4

3
 π (a - t)3] = 1

2
 ∙ [ 4

3
 π 53 –  4

3
 π (5 – 0.1)3] = 15.4 m3 

Weight of the dome: W = V δ g = 15.4 ∙ 130 ∙ 9.81 = 19639.6 N 

Where: 

δ is the density of the material 

g is the gravity acceleration 
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Surface of the hemisphere: S = 1
2
 Ssphere = 1

2
 ∙ 4 π a2 = 2 ∙ π ∙ 52 = 157.1 m2 

Pressure on dome surface: q =  𝑊
𝑆

 = – 19639.6
157.1

 =  125 Pa 

Since the maximum values of the stresses occur at the edge (ϕ = 90°), according to       

Eq. 3.24 and 3.25: 

Meridional force: N'Φ = – aq 1
1 + cosΦ

 = – 5 ∙ (125) ∙ 1
1 + cos (90°)

 = – 625 N/m 

Hoop force: N'θ = aq( 1
1 + cosΦ

 – cosΦ) = 5 ∙ (125) ∙ ( 1
1 + cos (90°)

 – cos(90°)) = 625N/m 

Dividing now by the thickness t of the dome , we obtained the following internal stress : 

Meridional stress: σΦ = NΦ 
′

t
 = 625

0.1
 = – 6250 Pa    

Hoop stress: σθ = Nθ
′

t
 = – 625

0.1
 = 6250 Pa 

Since the edge is subjected both to tension and compression, according to the Mohr’s 

failure criterion:  �σ𝚽
σc

 � + �σ𝛉
σt

�  < 1   � −6250
−55000

 � + � 6250
17000

� = 0.48  < 1   

Therefore, the hemispherical dome can be considered safe. The numerical results 

obtained with the Abaqus model are shown in Fig.3.18 and 3.19:  

 

 
 

Figure 3.18. Illustration of the meridional stresses 
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Figure 3.19. Illustration of the hoop stresses 
 
 As it can be seen in the Table 3.3 the numerical solution is close to the analytical 

solution, therefore the numerical model is considered valid. An even greater level of 

accuracy it can be reached by increasing the refinement of the mesh, which in our case 

was limited by the student version of the software.  

Table 3.3. Stress generated by a uniform load over the dome surface (self-weight) 

 CASE 1 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa) Mohr’s Criterion 
Analytical Solution -6250  6250 0.48 
Numerical Solution -6110 6294 0.47 

 
Therefore it can be affirmed that, according to the linear analysis, the material strength is 

higher than the stresses sustained by the structure when it is subjected to its own weight. 

Although Fig. 3.18 and 3.19 show stress distributions that are not symmetric, if an arch at 

a sufficient distance from the pinned points is considered and  the meridional and the 

hoop stresses are plotted separately, the obtained results are in accordance with the 

theory. The meridional and the hoop stress distribution are shown in Fig. 3.20 and 3.21 

respectively. 
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Figure 3.20. Meridional stress vs height plot 
 

 

Figure 3.21. Hoop stress vs height plot 
 

Case 2: Uniform load over a Horizontal Projection of the Dome Surface: p = 500 Pa   

As it has been already shown, the analytical solution for an hemispherical dome subjected 

to a uniform load over a horizontal projection of the dome surface can be computed 

according to Eq. 3.28 and 3.29:     
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N’
Φ = –  a p 

2
                                                                                                              [Eq 3.28]                                     

N’
θ = –  a p 

2
 cos(2Φ)                                                                                                 [Eq 3.29]                                     

Since the maximum values of the stresses occur at the edge (ϕ = 90°): 

Meridional force: N'Φ = –  a p 
2

 = – 5  ∙ (500) 
2

 = – 1250 N/m 

Hoop force: N'θ = – a p 
2

 cos2Φ = – 5  ∙  (500) 
2

 cos(2 ∙ 90°) = 1250 N/m 

Dividing now by the thickness t of the dome, we obtained the following internal stresses : 

Meridional stress: σΦ = 𝑁Φ
′

t
 =  – 1250

0.1
 = – 12500 Pa      

Hoop stress: σθ = 𝑁θ
′

t
 = 1250

0.1
 = 12500 Pa 

Since the edge is subjected both to tension and compression, according to the Mohr’s 

failure criterion: �σ𝚽
σc

 � + �σ𝛉
σt

�  < 1   �−12500
−55000

 � + �12500
17000

� = 0.96  < 1 Therefore the 

hemispherical dome can be considered safe by Mohr’s critetrion. The numerical results 

obtained with the Abaqus model are shown in Fig. 3.20 and 3.21: 

 
 

Figure 3.22. Illustration of the meridional stresses 
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Figure 3.23. Illustration of the hoop stresses 
 

As it can be seen in the Table 3.4, the numerical and analytical solutions are close, 

validating further the numerical model. The considerations about how to increase the 

accuracy are obviously valid also for this case.  

Table 3.4: Stress generated by a uniform  
 

load over a horizontal projection of the dome surface. 
 

CASE 2  
UNIFORM LOAD OVER AN HORIZONTAL 

PROJECTION OF THE DOME SURFACE 
 σΦ (Pa) σθ (Pa) Mohr’s Criterion 

Analytical Solution -12500 12500 0.96 
Numerical Solution -11980 12340 0.94 

 
Therefore it can be affirmed that, according to the linear analysis, the material strength is 

higher than the stresses sustained by the structure when it is subjected to a uniform load 

over the horizontal projection of the dome surface p = 500 Pa. Considering again an arch 

at a sufficient distance from the pinned points it is possible to plot the correct stress 

distributions (Fig.3.24). 
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Figure 3.24. Meridional stress vs height plot 
 

 

Figure 3.25. Hoop stress vs height plot 
 
 

Case 3: Uniform external pressure over the dome surface: p = 1000 Pa 

As it has been already shown, the analytical solution for a hemispherical dome subjected 

to a uniform external pressure  can be computed according to Eq. 3.28 and 3.29:     
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N'Φ = –  π a2 p sin2Φ
2 a sin2Φ

 = – a p 
2

                                                                                      [Eq 3.32]                                     

N'θ = – a (p – a p 
2a

 ) = – a p 
2

                                                                                        [Eq 

3.33]       

Meridional force: N'Φ = –   a p 
2

 = –  5  ∙  (1000) 
2

 = – 2500 N/m 

Hoop force: N'θ = –   a p 
2

 = –  5  ∙  (1000) 
2

 = –  2500 N/m 

Dividing now by the thickness t of the dome, we obtained the following internal stresses: 

Meridional stress: σΦ = 𝑁Φ
′

t
 = −2500

0,1
 = – 25000 Pa     

Hoop stress: σθ = 𝑁θ
′

t
 = −2500

0,1
 = – 25000 Pa 

Since the edge is subjected only to compression, according to the Mohr’s failure 

criterion:  �σ𝚽
σc

 � + �σ𝛉
σt

�  < 1   �−25000
–55000

 � + � 0
17000

� = 0.45 < 1   

Therefore the hemispherical dome can be considered safe by Mohr’s critetrion. In this 

case the distribution of the stresses is constant along the dome surface. However, due to a 

non-optimal level of refinement of the mesh, this result has been partially obtained with 

the Abaqus as it can be seen in Fig 3.22 and 3.23: 
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Figure 3.26. Illustration of the meridional stresses 
 

 
 

Figure 3.27. Illustration of the hoop stresses 
 
As it can be seen in the Table 3.5, the numerical and analytical solutions are close, 

validating further the numerical model. The considerations about how to increase the 

accuracy are obviously valid also for this case.  

Table 3.5. Stresses generated by a uniform external pressure over the dome surface. 

 CASE 3 
UNIFORM EXTERNAL PRESSURE                

ALONG THE DOME SURFACE 
 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 

Analytical Solution -25000 -25000 0.45 
Numerical Solution -24930 -25060 0.46 

 
Therefore it can be affirmed that, according to the linear analysis, the material strength is 

higher than the stresses sustained by the structure when it is subjected to a uniform 

external pressure p = 1000 Pa. For each scenario it has been shown how the 

hemispherical dome can be considered safe according to the Mohr’s criterion. However, 

this first analysis does not exclude the possibility of other type of failure, such as 

buckling, which will be discuss in the next chapter. Considering again an arch at a 
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sufficient distance from the pinned points it is possible to plot the correct stress 

distributions (Fig.3.28). 

 

Figure 3.28. Meridional stress vs height plot 
 

 

Figure 3.29. Meridional stress vs height plot 
 

3.4.3 Influence of the geometrical parameters 

The second  type of comparison focuses the geometry of the domes, in order to verify 

that the analytical and the numerical solution provide similar results. Therefore, different 
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values of the angle of cut, different values of thickness and different of radius have been 

considered separately. Since the previous section revealed that the validity of the 

numerical models does not depend on the type of loading, only a uniform load over the 

dome surface was considered as acting load on the dome models. All the geometrical 

variations respect to the original configuration are shown in Table 3.6. 

Table 3.6. Variation of the geometrical parameters of the domes 
 

 

 

 

The comparison in terms of stresses between the analytical and the numerical solution is 

summarized in the Table 3.7. 

 
 
 

Table 3.7. Comparison between the analytical and numerical solutions for different geometries 
 

CASE A 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -2405 -1481 0.13 
Numerical Solution -2376 -1412 0.13 

CASE B UNIFORM LOAD OVER THE DOME SURFACE 

Case φ (deg) t (m) a (m) V (m^3) W (N) S (m^2) q (Pa)
A 30 0.1 5 1.5 1888.5 21.0 89.7
B 45 0.1 5 3.8 4810.4 46.0 104.6
C 60 0.1 5 7.1 9074.2 78.5 115.5

DIFFERENT VALUE OF THE ANGLE OF CUT

Case φ (deg) t (m) a (m) V (m^3) W (N) S (m^2) q (Pa)
D 90 0.05 5 7.8 9916.4 157.1 63,1
E 90 0.2 5 30.2 38483.5 157.1 245.0
F 90 0.4 5 57.9 73890.0 157.1 470.4

DIFFERENT VALUE OF THE THICKNESS

Case φ (deg) t (m) a (m) V (m^3) W (N) S (m^2) q (Pa)
G 90 0.1 2.5 3.8 4810.4 39.3 122.5
H 90 0.1 10 62.2 79330.8 628.3 126.3
I 90 0.1 15 140.4 179092.0 1413.7 126.7

DIFFERENT VALUE OF THE RADIUS
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 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -3062 -634 0.09 
Numerical Solution -2990 -601 0.09 

CASE C 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -3851 963 0.13 
Numerical Solution -3894 978 0.13 

 

CASE D 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -6313 6313 0.49 
Numerical Solution -6374 6127 0.48 

 CASE E 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -6125 6125 0.47 
Numerical Solution -6160 6084 0.47 

 CASE F 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -5880 5880 0.45 
Numerical Solution -5991 6102 0.47 

 

 CASE G 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -3062 3062 0.24 
Numerical Solution -2955 2984 0.23 

CASE H 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -12625 12625 0.97 
Numerical Solution -12750 12250 0.95 

CASE I 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Analytical Solution -19002 19002 1.46 
Numerical Solution -18890 18220 1.42 

  
 

The comparison shows similar results between the analytical and the numerical solution, 

confirming further the validity of the finite element models. Looking at cases A, B and C, 

one can observe that the meridional stress increases according to the rise of the angle of 

cut, while the hoop stress decreases becoming in tension in case C, cause the angle of cut 
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(ϕ = 60°) is greater than 51°50’. Moreover, according to cases G, H and I, the principal 

stresses increase with the increase of the radius. Also this result makes sense, because 

increasing the radius implies that a bigger volume and consequently a larger weight of the 

structure is considered. Nonetheless, when the radius is bigger than 10 m, the Mohr’s 

criterion is no longer satisfied as the tension in the hoop stresses becomes greater of the 

ultimate tensile strength. Therefore, for large scale structures the use of reinforcement 

becomes necessary. Similarly, a reduction of the stresses was expected by increasing the 

thickness. However, for the three values of the thickness considered in cases C, D and F, 

almost the same result in terms of stresses was obtained. In fact, the increase in the 

thickness seems to impact in the weight and the stress experienced by the structure in 

approximately the same ratio. Therefore, when a lightweight material with low stiffness 

such as  mycelium is used for a dome, increasing the thickness does not necessarily 

provide a lower level of stresses. A greater level of stiffness should occur through other 

considerations such as changing the shape. 

3.4.4 Influence of the material properties 

The third comparison focuses on the performance of different construction materials, 

through the investigation of mycelium and concrete. As it is well-known the material 

properties of concrete are not standard vary according to its composition, class of 

resistance, production process, etc. The selected concrete of this study belongs C25/30 

with average properties summarized in Table 3.8. 

Table 3.8. Material properties of concrete [36] 
 

MATERIAL PROPERTIES OF CONCRETE 
Density                                
(kg/m3) 

Tensile Strength            
(MPa) 

Elastic Modulus            
(MPa) 

Compressive 
Strength (MPa) 

Poisson                               
Ratio 

2500 1.55 31500 25 0.15 
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For comparison and consistency purposes, the same geometry of hemispherical dome 

(angle of cut ϕ = 90°) with a radius r = 5m and a thickness t = 0.1 was considered. 

According to the membrane theory, the behavior of a dome subjected to a uniform load 

over a horizontal projection of the dome surface or to a uniform external pressure does 

not depend on the material properties. Therefore, concrete has been considered as a 

construction material only for the case of a dome subjected to its own weight. However, 

this first analysis does not exclude the possibility of other type of failure, such as 

buckling, which will be discuss in the next chapter. 

Case L: Uniform load over the Dome surface: p = self-weight 

Volume of the dome : V = 1
2
 (Volsphere_full – Volsphere_empty)  

V = 1
2
 [ 4

3
 π a3 –  4

3
 π (a - t)3] = 1

2
 ∙ [ 4

3
 π 53 –  4

3
 π (5 – 0.1)3] = 15.4 m3 

Weight of the dome: W = V δ g = 15.4 ∙ 2500 ∙ 9.81 = 377685 N 

Surface of the hemisphere: S = 1
2
 Ssphere = 1

2
 ∙ 4 π a2 = 2 ∙ π ∙ 52 = 157.1 m2 

Pressure on dome surface: q = – 𝑊
𝑆

 = – 377685
157.1

 = – 2404.1 Pa 

Since the maximum values of the stresses occur at the edge (ϕ = 90°), according to       

Eq. 3.24 and 3.25: 

Meridional force: N'Φ = – aq 1
1 + cosΦ

 = – 5 ∙ (– 2404.1) ∙ 1
1 + cos (90°)

 = 12020.5 N/m 

Hoop force: N'θ = aq( 1
1 + cosΦ

 – cosΦ) = 5 ∙ (–2404.1) ∙ ( 1
1 + cos (90°)

 – cos(90°))  

N'θ = –  12020.5N/m 

Dividing now by the thickness t of the dome, the following stresses have been obtained: 

Meridional stress: σΦ = NΦ 
′

t
 = 12020.5

0.1
 = 120205 Pa    
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Hoop stress: σθ = Nθ
′

t
 = – 12020.5

0.1
 = –120205 Pa 

Since the edge is subjected both to tension and compression, according to the Mohr’s 

failure criterion:  �σ𝚽
σc

 � + �σ𝛉
σt

�  < 1   � −120205
−25000000

 � + � 120205
1550000

�  = 0.08 < 1 

Table 3.9. Stresses generated by a uniform load over the dome surface (self-weight) 

 CASE L 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa) Mohr’s criterion 
Analytical Solution -120205 120205 0.08 
Numerical Solution -117500 120700 0.08 

 
As it can be seen in Table 3.9, the analytical and the numerical solution are similar, 

therefore the numerical model is considered valid. Therefore it can be affirmed that, 

according to the linear analysis, the material strength is higher than the stresses sustained 

by the structure. Although the concrete dome experiences larger stresses compared to the 

mycelium dome, stresses always remain lower to  the ultimate strength of the material as 

expressed by the Mohr s criterion. Here it is interesting to report that the specific strength 

of concrete defined as the ratio between the ultimate strength and the density of the 

material is close to five times larger compared with the specific strength of mycological 

fungi.  

3.4.5 Influence of the boundary conditions 

The results of the membrane theory, as well as the ones obtained with the finite element 

software, are based on the assumption that the structure is simply supported. In this 

section it has investigated the effect of boundary conditions. Since an analytical solution 

does not exist for other boundary conditions, the following results were obtained using 

the finite element software only. Therefore, fixed boundary conditions were considered 
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everywhere along the base of the dome and the same cases were analyzed. A comparison 

between the supported and the fixed conditions is shown in Table 3.10 for Case 1 2 3. 

Table 3.10. Comparison between supported and fixed boundary conditions  
 

CASE 1  
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Fixed Condition -8379 3312 0.35 

Supported Condition -6110 6294 0.47 

 CASE 2 
UNIFORM LOAD OVER AN HORIZONTAL 

PROJECTION OF THE DOME SURFACE 
 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 

Fixed Condition -16430 6492 0.68 
Supported Condition -11980 12340 0.94 

 CASE 3 
UNIFORM EXTERNAL PRESSURE                 

 σΦ (Pa) σθ (Pa)   Mohr’s Criterion 
Fixed Condition -43030 -27200 0.78 

Supported Condition -25060 -24930 0.46 
 
Table 3.10 reveals the effect of fixed boundary conditions in the distribution of stresses. 

Looking at cases 1 and 2, the maximum value of compression and tension, which again 

belong to the meridional and hoop stresses respectively, do not occur at the edges of the 

dome, but in another region above it. Moreover, even though the maximum compression 

is higher for fixed supports, the maximum tension is much lower making the dome safer 

as expressed by Mohr’s criterion. Conversely, in case 3, both meridional and hoop 

stresses are in pure compression and higher for the fixed conditions, making the domes 

less safe by Mohr’s criterion. 

3.5 Case study 

3.5.1 Dome of the basilica of San Luca  

As a first case study, the hemispherical dome of the basilica of San Luca has been 

analyzed. Even if the basilica was built in the XII century, the present dome is the result 
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of a project of restoration and extension designed by the architect Carlo Francesco Dotti 

in 1723. Few years later a lantern was built on the top of the dome. The dominant style of 

the dome is baroque and the used material is the “Italian” solid brick, which belongs to 

the architectural tradition of the city. A summary of the estimated material properties is 

given in Table 3.11:  

Table 3.11. Material properties of “Italian” brick [37] 
 

MATERIAL PROPERTIES OF THE “BOLOGNESE” BRICK 
Density                                
(kg/m3) 

Tensile Strength            
(MPa) 

Elastic Modulus            
(MPa) 

Compressive 
Strength (MPa) 

Poisson                               
Ratio 

1800 0.8 10000 7 0.25 
 
The general dimensions of the dome and the lantern instead were obtained from the 

archives of the “Soprintendenza of Bologna”.  

 

Figure 3.30. Picture of the basilica of San Luca [38] 

The following two figures represent the planimetry and altimetry of the basilica, 

respectively. 
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Figure 3.31. Planimetry of the basilica of Bologna [39] 
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Figure 3.32. Altimetry of the basilica of Bologna [39] 
 
The dimensions of the dome and the lantern are presented in Table 3.12 and 3.13. 
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Table 3.12. Geometrical dimensions of the dome of San Luca 
 

 
 

Table 3.13. Geometrical dimension of the lantern of San Luca 
 

 
 
Where Rext and Rint are respectively the external and internal radius and hav is the average 

height. Since the aim of this research is to study the behavior of domes, the interactions 

dome-walls and dome-lantern were neglected. Moreover, the analysis was conducted by 

considering the following assumptions: 

• The dome is pinned all along its base  

• The dome is an hemisphere with constant material properties and thickness 

• The lantern is a cylinder with constant material properties and thickness 

• The effect of the lantern on the dome is the same of a distributed load acting on a 

portion of the dome surface equal to the area of the base of the lantern. 

• The forces acting on the dome are the self-weight and the distributed load coming 

from the lantern  

The weight of the lantern was converted in a distributed load as presented below: 

Area of the base of the lantern: A = π (Rext
2 – Rint

2) = π ∙  (1.922 –1.542)  = 4.13 m2 

Volume of the lantern: V = A h = 4.13 ∙ 5.8 = 23.96 m3 

Weight of the lantern: W = δ V = 1800 ∙ 23.96 = 43127.64 Kg 

Weight force of the lantern: F = W g = 43127.64 ∙ 9.81 = 423082.15 N 

Rext. (m) Rint. (m) Rav. (m) t (m) hav. (m)
6.20 5.52 5.86 0.68 5.86

DOME

Rext. (m) Rint. (m) Rav. (m) t (m) hav. (m)
1.92 1.54 1.73 0.38 5.80

LANTERN
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Area of influence of the lantern: Ainfl. = π Rav.
2 = 9.40 m2 

Equivalent distributed load: P = 
F 
A

 = 
423082.15 

9.40
 = 45008.73 Pa 

The stress generated by this distributed load and the self-weight are shown here below: 

 

Figure 3.33. Illustration of the meridional stresses 

 

Fig. 3.34. Illustration of the hoop stresses 
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Since it is not easy to identify in which region of the dome the highest stresses occur, the 

maximum values of compression and tension identified were employed in Mohr’s 

criterion, even if they do not occur in the part of the dome surface. According to Mohr’s 

failure criterion: 

 �σ𝚽
σc

 � + �σ𝛉
σt

�  < 1   � −225700
−7000000

 � + � 78340
800000

� = 0.13 < 1   

Therefore it has been proved that the dome of San Luca is able su sustain its own weight 

and the lantern above it. 

3.5.2 Dome of the sanctuary of Vicoforte 

The dome of the sanctuary of Vicoforte is the largest masonry elliptical domes of the 

world. The construction of the sanctuary started in the 1596 thanks to the will of the duke 

Carlo Emanuele I Savoia. However, due to the settlements of the soil foundation, the 

construction phase was interrupted for several decades. It was only at the  beginning of 

the XVIII century, when thanks to a new project by architect Francesco Gallo, that the 

realization of the dome restarted. The dome was finally realized in 1732. The 

predominant style of the sanctuary is baroque and the construction material is again the 

“Italian” solid brick. The material properties were already summarized in Table 3.8.  

 

Figure 3.35. Illustration of the sanctuary of Vicoforte [40] 
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Figure 3.36. Planimetry of the the sanctuary of Vicoforte [40] 
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Figure 3.37. Altimetry of the sanctuary of Vicoforte [40] 
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Summing up the geometrical dimensions of the dome and the lantern: 

Table 3.14. Geometrical dimensions of the dome of Vicoforte 
 

 
 

Table 3.15. Geometrical dimension of the lantern of Vicoforte 
 

 
 
Where aav bav and cav are the three semi-axis of the ellipsoid. The analysis of the dome 

follows the same assumptions and procedure discussed for the case study of the dome of 

basilica di San Luca. The base of the dome was considered pinned and the lantern was 

converted in the following equivalent distributed load: 

Equivalent distributed load: P = 
F 
A

 = 
969245.98 

21.24
 = 45633.05 Pa 

The distributions of the stresses are shown in Fig. 3.31 and 3.32: 

 
 

Figure 3.38. Illustration of the meridional stresses 

aav. (m) bav. (m) cav. (m) t (m)
18.6 12.5 20 0.68

DOME

Rext. (m) Rint. (m) Rav. (m) t (m) hav. (m)
2.8 2.4 2.6 0.4 8.4

LANTERN
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Figure 3.39. Illustration of the hoop stresses 

The same considerations regarding the stress already discussed for the dome of San Luca 

are also valid in this case study. According, to the Mohr’s failure criterion: 

�σ𝚽
σc

 � + �σ𝛉
σt

�  < 1   � −434600
−7000000

 � + �145900
800000

� =  0.24 < 1   

Therefore it has been proved that the dome of Vicoforte is able su sustain its own weight 

and the lantern above it. 
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Chapter 4: Buckling Analysis  

4.1 Buckling theory 

In engineering, buckling is defined as an instability which can result to a failure mode. 

Buckling is the consequence of a bifurcation in the analytical solution of the static 

equilibrium equations. Such bifurcation, with the increasing of the load, leads to two 

possible different states of equilibrium: state of pure compression or state with lateral 

deformation. Therefore, a failure due to buckling implies an abrupt side-way deflection of 

the structural element when it is subjected to high values of compression. However, this 

compression is always smaller than the ultimate compressive strength of the material. 

The main causes of this phenomenon are imperfections, which may involve the geometry, 

the material or the point of application of the load. From a modeling point of view, the 

effects of the imperfections can be taken into account by introducing in the structural 

model an “artificial” axial load eccentricity. Once the structural member buckles, it might 

still be able to carry the load, if the deformations are not catastrophic. However, in many 

cases, buckling leads to a completely loss of the carrying capacity of the structural 

member. Moreover for complex structures, such as shells, the design phase may include 

multiple bifurcation points which involve multiple buckling modes. In these conditions 

the different buckling modes can interact each other influencing the overall behavior of 

the structure. This particular phenomenon of interaction can strongly reduce the general 

load-carrying capacity of the structure. The buckling strength of shells is usually 

determined by combining theoretical considerations with experimentally determined 

correlation factors [3]. 
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However, the thin shell theory cannot explain alone the behavior of shells under 

buckling. In fact, for hemispherical domes the analytical solution exists only for spherical 

domes under external pressure. Therefore, for all other cases including different geometry 

or types of loading, the designer has to be aware that a reasonable level of safety can be 

reach only by conducting small-scale experiments and by considering previous 

experiences by other designers. 

Buckling of spherical domes under uniform external pressure 
 
The buckling of hemispherical domes under uniform external pressure is the only case 

that has been  investigated analytically. The solution is thus valid only for spherical shells 

with the base restrained against translation, but still free to rotate. The equation for the 

bifurcation buckling of spherical domes under axisymmetrical radial pressure can be 

expressed as follow: 

Pcr = 2
�[3 (1−𝑣2)]

 E ( t
a
 )2                                                                                        [Eq. 4.1] 

Where: 

E is the elastic modulus 

v is the Poisson ratio        

t is the thickness 

a is the radius of curvature                     

4.2 Comparisons 

4.2.1 Assumptions 

The aim of this section is to compare the analytical and the numerical solutions in order 

to confirm the validity of the buckling models created with the finite element software. 

Since an analytical solution is available only for the case of uniform external pressure on 
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a hemispherical dome, the solution for the other types of load and geometries was 

numerically explored. A constant thickness along the dome surface was considered in 

each situation. Moreover, since the existing analytical solution is valid for pinned support 

conditions, the same typology was selected in the finite element model. The material 

employed is mycelium-based (see Table 3.2). Finally the study focuses on the first 

buckling mode (which is the one that corresponds to the minimum amount of energy), 

obtained through the Abaqus option to compute the first eigenvalue.  

4.2.2 Influence of the type of loading 

The first comparison involves a hemispherical dome (angle of cut ϕ = 90°) with a radius 

r = 5m and a thickness t = 0.1m. According to Eq. 3.34: 

Pcr = 2
�[3 (1−𝑣2)]

 E ( t
R

 )2 = = 2
�[3 (1−0.252)]

 ∙ 690000 ∙ ( 0.1
5

 )2 = 329.15 Pa 

The dome was also modeled numerically using the finite element software. Considering 

pinned support conditions and constant thickness, the numerical results obtained with the 

finite element model are shown in Fig 4.1. 

                            
 

Figure 4.1. Illustration of the buckling of the hemispherical dome under uniform external pressure 
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 The results are very similar (Analytical solution: Pcr = 329.15, Numerical solution: Pcr = 

338.08), therefore the numerical model has to be considered valid. An even greater level 

of accuracy can be reached by increasing the refinement of the mesh, which in our case 

was limited by the student version. Since the value of the buckling load Pcr generated by 

the uniform external pressure is lower than the one used for the linear analysis (p = 1000 

Pa), hemispherical dome is not able to sustain the prescribed uniform external pressure p 

= 1000 Pa employed in the linear analysis although the Mohr’s criterion is satisfied. 

4.2.3 Influence of the geometrical parameters 

In this section, the geometry of the domes is explored for the buckling of the dome. 

Therefore, different values of the angle of cut, thickness and radius have been considered 

separately. Unfortunately analytical formulations of the buckling solution for 

configuration other than the hemisphere were not found in literature. Hence, a 

comparison between the analytical and the numerical model is given only for variations 

of the thickness and radius of the hemispherical dome. The different cases with respect to 

the original configuration are summarized in Table 4.1. 

Table 4.1. Variation of the geometrical parameters of the domes 
 

 

 

Case φ (deg) t (m) a (m)
A 30 0.1 5
B 45 0.1 5
C 60 0.1 5

DIFFERENT VALUE OF THE ANGLE OF CUT

Case φ (deg) t (m) a (m)
D 90 0.05 5
E 90 0.2 5
F 90 0.4 5

DIFFERENT VALUE OF THE THICKNESS
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The analytical and numerical buckling loads for the aforementioned cases are reported in 

the Table 4.2.  

Table 4.2. Buckling under uniform external pressure for different geometries 

DIFFERENT VALUE OF 
THE ANGLE OF CUT 

CRITICAL BUCKLING LOAD Pcr (Pa) 
Analytical solution Numerical solution 

CASE A  N/A 332.80  
CASE B  N/A 335.14  
CASE C   N/A 337.62  

 
DIFFERENT VALUE OF 

THE THICKNESS 
CRITICAL BUCKLING LOAD Pcr (Pa) 

Analytical solution Numerical solution 
CASE D 82.29 85.11 
CASE E   1316.60 1337.7 
CASE F   5266.39 5195.05 

 
DIFFERENT VALUE OF 

THE RADIUS 
CRITICAL BUCKLING LOAD Pcr (Pa) 

Analytical solution Numerical solution 
CASE G 1316.60 1344.9 
CASE H  82.29 85.11 
CASE I 36.57 37.74 

 
The result reveal that the value of the critical buckling load increases with the increase of 

the angle of cut and the thickness, while decreases with the increasing of the radius. The 

first trend can be explained by considering the fact that hemispheres are subjected both to 

tension and compression, while caps may be subjected just to compression depending on 

their angle of cut. The second and the third trend instead can be explained by considering 

Case φ (deg) t (m) a (m)
G 90 0.1 2.5
H 90 0.1 10
I 90 0.1 15

DIFFERENT VALUE OF THE RADIUS
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the fact that the buckling mode is controlled by the slenderness ratio t
R
. However, the 

critical buckling loads Pcr generated by the uniform external pressure are in most cases 

lower than the value tested in the linear analysis  ( p = 1000 Pa). Therefore they represent 

an upper limit of the loads that the domes can actually sustain. 

4.2.4 Expansion to another load case 

In this section the buckling behavior was investigated for other types of loading, such as 

the uniform load over a horizontal projection of the dome surface. Since the literature 

does not cover this load case, the solution found using the numerical model solely. 

Therefore, further researches are necessary to prove the validity of the results. As a first 

investigation, the classical hemispherical dome (angle of cut ϕ = 90°) geometry with a 

radius r = 5 m and a thickness t = 0.1 m was analyzed. The results obtained with Abaqus 

are shown in Fig. 4.2: 

 

Figure 4.2. Illustration of the buckling of the hemispherical dome                                                    

under uniform load over an horizontal projection of the dome surface  

The critical buckling load Fcr corresponding to a uniform load over an horizontal 

projection over the dome surface for the standard hemispherical dome was found to be 

214.17 Pa. The ratio between Pcr and Fcr is equal to 1.58. In order to see if there is a 
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correlation between Pcr and Fcr, it has been analyzed the same cases Table 4.1. The 

results obtained with Abaqus are summarized in Table 4.3. 

Table 4.3. Buckling under uniform load over an horizontal projection of the dome surface 

DIFFERENT VALUE OF 
THE ANGLE OF CUT 

CRITICAL BUCKLING LOAD Fcr (Pa) 
Numerical solution 

CASE A  332.40 
CASE B 320.46 
CASE C 294.48 

 
DIFFERENT VALUE OF 

THE THICKNESS 
CRITICAL BUCKLING LOAD Fcr (Pa) 

Numerical solution 
CASE D  53.57 
CASE E  862.13 
CASE F  3471.4 

 
DIFFERENT VALUE OF 

THE RADIUS 
CRITICAL BUCKLING LOAD Fcr (Pa) 

Numerical solution 
CASE G 884.53 
CASE H 53.57 
CASE I  23.9 

 
To facilitate the comparison between  the two critical buckling loads, it was decided to 

divide all the cases analyzed in two groups and to do the ratio between Pcr and Fcr: 

• Group 1: Domes obtained by cutting an hemisphere: CASE A, CASE B, CASE C 

• Group 2: Hemispherical domes with different values of the thickness or radius:  

CASE D, CASE E, CASE F, CASE G, CASE H, CASE I 

 

 

 

 

 



82 
 

 
 

Table 4.4. Ratio Pcr/Fcr for domes obtained by cutting the hemisphere 

Group 1 Pcr (Pa) Fcr (Pa) Ratio 
CASE A 332.80 332.40 1.00 
CASE B 335.14 320.46 1.05 
CASE C 337.62 294.48 1.15 

 
Table 4.4 reveals that increasing the angle of cut Pcr increases, while Fcr, therefore the 

ratio increases as a consequence. It is important to notice that for small values of the 

angle of cut the surface of the dome can be approximated with its horizontal projection, 

therefore the two types of loading are almost the same. This becomes clear if we compare 

the two types of loads for ϕ= 30° as it is shown in Fig 4.3 and 4.4: 

                   
       
      Figure 4.3. Sketch of the uniform vertical load          Figure 4.4. Sketch of the uniform external pressure 

Table 4.5. Ratio Pcr/Fcr for hemispherical domes 
 

Group 2 Pcr (Pa) Fcr (Pa) Ratio 
CASE D 85.11 53.57 1.59 
CASE E 1337.70 862.13 1.55 
CASE F 5195.05 3471.40 1.50 
CASE G 1344.90 884.53 1.52 
CASE H 85.11 53.57 1.59 
CASE I 37.74 23.90 1.58 

 
Table 4.5 shows that when the geometry of the dome varies by increasing the thickness or 

the radius, the ratio between Pcr and Fcr remains almost constant. Since the range of 

values of the thickness and the radius that have been considered were limited  
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(0.05 m < t < 0.4 m, 2.5 m < r < 15 m), it has been decided to investigate greater values, 

in order to verify if such ratio remains constant. Therefore two additional cases were 

analyzed. 

Table 4.6. Ratio Pcr/Fcr for to additional hemispherical domes 

 

The ratio between the two buckling loads is slightly different from before, but remains 

close to the 1.5 value. Therefore, it can be affirmed that the formulation of Fcr has the 

same degree of dependency of Pcr by the slenderness ratio and the material properties. 

However, the critical buckling loads Fcr generated by the uniform external pressure are in 

most cases lower than the value tested in the linear analysis  ( p = 500 Pa). Therefore they 

represent an upper limit of the loads that the domes can actually sustain. 

4.2.5 Influence of the material properties 

Focusing on the material employed, it has been decided to compare mycelium and 

concrete. The selected concrete of this study belongs C25/30 with average properties 

already summarized in Table 3.6. For comparison purposes, the same geometry of a 

hemispherical domes (angle of cut ϕ = 90°) with a radius r = 5m and a thickness t = 0.1is 

analyzed. According to Eq. 3.34: 

Pcr = 2
�[3 (1−𝑣2)]

 E ( t
R

 )2 = = 2
�[3 (1−0.152)]

 ∙ 31500∙106 ∙  ( 0.1
5

 )2 =  1.47∙107 Pa 

The numerical results are shown in Fig 4.5: 

Case φ (deg) t (m) a (m) Pcr Lcr Ratio
L 90 1 5 32915 20996 1,57

M 90 0,1 50 3,29 2,24 1,47
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Figure 4.5. Illustration of the buckling Pcr of the hemispherical concrete dome  

The analytical and the numerical solution are similar (Analytical solution: Pcr = 1.47∙107, 

Numerical solution: Pcr = 1.51∙107 Pa), therefore the numerical model is considered valid. 

Similar to previous analysis, an even greater level of accuracy it can be reached by 

increasing the refinement of the mesh, which in our case was limited by the student 

software version. In conclusion, the buckling load Pcr for the concrete hemispherical 

dome occurs for a higher value of the uniform external pressure compared to the 

mycelium dome.   

4.2.6 Influence of the boundary conditions 

The results of the buckling theory, as well as the ones obtained with the finite element 

software, are based on the assumption that the dome is pinned everywhere along its edge. 

We want now to investigate the effect of new boundary conditions, such as fixed 

supports. Since an analytical solution does not exist for other boundaries, the following 

results were obtained only by using the finite element software. For practical purposes, it 

has been analyzed only the hemispherical dome with the standard geometry under a 

uniform external pressure and under a uniform distributed load over a horizontal 
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projection of the dome surface. The comparison between the supported and the fixed 

conditions is shown in Table 4.6. 

Table 4.7. Comparison for the critical buckling load Pcr and Fcr between pinned and fixed condition 

CASE 1 
CRITICAL BUCKLING LOAD Pcr (Pa) 

Numerical solution 
Fixed condition 344.28 

Pinned condition 338.08 
 

CASE 2 
CRITICAL BUCKLING LOAD Fcr (Pa) 

Numerical solution 
Fixed condition 279.67 

Pinned condition 214.17 
 
As it can be seen, the values of the critical buckling loads Pcr and Fcr are higher for fixed 

conditions compared with the corresponding  pinned configuration. This occurs because 

blocking rotations confers an overall greater stiffness and stability to the structure. 

4.3 Case study 

4.3.1 Dome with openings under uniform external pressure 

The case study involves the buckling analysis of a hemispherical dome with openings 

under uniform external pressure and uniform distributed load over a horizontal projection 

of the dome surface. Opening are defined as voids in the matter of the surface of the 

considered elements. Depending on the function, openings can be divided in two main 

groups: doors and windows. Doors are usually rectangular, while windows can be either 

rectangular or circular. The buckling analysis was conducted on the hemispherical dome 

default geometry, with an angle of cut ϕ = 90°, a radius r = 5m and a thickness t = 0.1. 

Regarding the openings, it has been considered a door of 1 x 2.5 m and 3 oculi of 0.4m of 

radius at a height of 2.1m place at 90°, 180° and 270° degrees from the door. The 

consideration of stiffeners around the openings was excluded from the analysis. As a 
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constraint, it has been decided to pin the dome along its edge. The material employed is 

concrete C25/30 with average properties already summarized in Table 3.6. The results 

obtained from the finite element analysis are shown in Fig 4.6 and 4.7 

 
 

Figure 4.6. Illustration of the buckling Pcr of the hemispherical concrete dome with opening  
 

 
 

Figure 4.7 Illustration of the buckling Fcr of the hemispherical concrete dome with opening  
 

The critical buckling Pcr and Fcr are respectively equal to 1.11∙107 Pa and 8.57∙106 Pa. 

These values are lower respect to the ones obtained for the same hemispherical dome 

without openings. In fact, introducing openings in a surface reduces the overall stability 

and stiffness of the structure. Moreover, according to the buckling deformation, it seems 

that the greater instability is concentrated on openings such as windows rather than doors.
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Chapter 5: Form-Finding 

5.1 Description of the principle and methods available 

Shells represent one of the most efficient structural solutions in situations where a high 

level of structural performance is required, such as long spans and minimal material use. 

At the same time, shells possess a great aesthetic value mainly due to their light weight 

and graceful shape. In contrast with one dimensional curved structures, shells exploit the 

so-called “double arch effect”, which allows them to carry several different types of loads 

only by membrane actions. However, when they are not appropriately designed, the 

structural response can be compromised by their intrinsic weakness, such as a reduction 

in the buckling load in presence of small initial deformations or the occurrence of large 

inextensional deformations. Other structural issues can be caused by states of tension and 

bending. Therefore, shell design should involve shape as a key parameter, in order to 

reach a pure membrane stress state in compression and avoid structural issues such as 

buckling. The identification of appropriate shapes for shells is often called form-find. The 

general idea behind form-finding is to determine an equilibrium shape under a set of 

given conditions, such as the span, the type of boundaries, the selected material and/or 

the acting load. For conventional construction materials, such as concrete, the self-weight 

is usually the one that contributes more to the load that needs to be sustained, therefore 

the form finding process is often based on it. Numerical form find techniques such as 

particle-spring system, force density, and dynamic relaxation [17] have been successfully 

applied for shell structures and other form-found systems such as grid shells where the 

shape is set by the level of internal prestress and boundary supports [19]. The form-finding 

process adopted in this research is based on the principle of Hooke’s law and its 
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inversion. A catenary is a particular case of a funicular curve obtained when a rope or a 

chain hangs under its own weight [17]. When a cable is carrying only vertical loads, for 

definition it is subjected to pure tension. The horizontal component H  and the vertical 

component V of such tension can be respectively expressed as: 

H = T cos λ = constant                                                                                            [Eq.5.1] 

V = T sin λ = H tan λ = H 𝑑𝑦
𝑑𝑥

                                                                                  [Eq.5.2] 

Where:  

T is tension in the cable 

λ is the slope between the cable and the horizontal 

Now, if the self-weight w is constant along the arc length s, then: 

w = 𝑑𝑉
𝑑𝑠

 = 𝑑𝑥
𝑑𝑠

 𝑑𝑉
𝑑𝑥

 = cos λ 𝑑𝑉
𝑑𝑥

 = 1
√1+𝑡𝑎𝑛2λ

 𝑑𝑉
𝑑𝑥

 = 1

�1+� 𝑑𝑦
𝑑𝑥2�

2 H 𝑑
2𝑦

𝑑𝑥2                                    [Eq.5.3] 

Integrating the previous expression: 

𝑑𝑦
𝑑𝑥

 = sinh ( 𝑥
𝑐
 )    with c = 𝑤

𝐻
 

After a second integration: 

𝑦
𝑐
 = cosh ( 𝑥

𝑐
 ) −1                                                                                                      [Eq.5.4] 

Where the first constant of integration has been neglected and the second one is chosen 

so that the curve goes through the origin. The arc length s can be simply related to the x 

and y direction by the following relation: 

s = ∫ 1 +  � 𝑑𝑦
𝑑𝑥2�

2𝑥
0 dx = c sinh ( 𝑥

𝑐
 )                                                                          [Eq.5.5] 

An illustration of the process to obtain a segmental arch and a catenary arch is shown in 

Fig. 5.1. 



89 
 

 
 

 

Figure 5.1. Illustration of how to obtain a segmental or a catenary arch [42] 
 
Once the catenary has been obtained, inverting it upside-down, it passes from a state of 

pure tension to a state of pure compression. This principle of inverting the catenary was 

applied long time ago by the architect Govanni Poleni for San Peter in Rome. The 

equivalent 3D shape obtained by rotating the catenary around its axis is called “catenoid” 

and it will be analyzed further in this chapter. 

5.2 Form-finding with Abaqus 

The form-finding process has been conducted numerically with the finite element 

software, Abaqus. The principal aim of the process was to identify the geometry of a 

form-found shell comparable to the hemispherical dome and investigate which one has a 

better structural performance. The process started by drawing in Abaqus a circle with the 

same radius, thickness and material properties of the hemispherical dome of interest. 

Then, looking at the center of the circle, a gravity acceleration value which produces a 

vertical displacement at the center equal to the radius of the circle was applied. In terms 

of supports/constraint, the circle was considered pinned along its circumference. 
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According to the principle of the catenary, the obtained form-found shell is subjected to 

pure tension, that by rotating it 180° respect to the horizontal axis, transforms to pure 

compression. The form-found shell is then studied considering a linear static analysis and 

buckling analysis similar to those conducted in chapter 3 and 4. Considering the 

paradigm of the hemispherical mycelium-based dome with a radius a = 5m and a 

thickness t = 0.1m, the main steps that produced the corresponding form-found shape are 

shown here below in Fig. 5.2 - 5.4. 

 
 

Figure 5.2. Illustration of the initial circle 
 

The value of the acceleration of gravity that generated a vertical displacement of the 

center approximately equal to 5 m was found to be 0.58 m
s2. 

 
 

Figure 5.3. Illustration of the deformed circle subjected to a gravity acceleration of 0.58 m
s2. 

 
(The deformation is not in scale) 
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The structure is then rotated and its geometry is extracted and re-imported in Abaqus 

resulting in the following form-found shape, a catenoid: 

  
 

Figure 5.4. Illustration of the form-found shape 
 

The influence of the type of loading, the geometry, the material properties and the 

boundary conditions is presented in the following sections. In order to isolate the single 

contributes, each case reflects the variation of a single parameter while keeping the others 

constant.  

5.3 Assumptions 

The aim of this chapter is to analyze numerically and compared the performance of the 

form-found shell with the corresponding hemisphere. Moreover the influence of using 

different geometries, types of loading and material properties is analyzed. Furthermore, 

similar to the linear analysis conducted in chapter 3, a constant thickness along the dome 

surface in each situation is assumed. Both for linear and buckling analysis pinned 

supported conditions are also considered. Moreover, only the first buckling mode (which 

is the one that corresponds to the minimum amount of energy), is of interest selecting the 

option to compute the first eigenvalue solely. The material employed is mycelium with 

the same properties as stated in Table 2.1.  
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5.4 Linear Analysis 

5.4.1 Influence of the type of loading 

This section focuses on the application of different types of loading. Since analytical 

formulations do not exist for any type of load, all the results were obtained numerically. 

Similarly to chapter 3, the following load cases have been considered: 

• Case 1: Uniform load over the dome surface: p = self-weight  

• Case 2: Uniform load over a horizontal projection of the dome surface: p= 500 Pa 

• Case 3: Uniform external pressure over the dome surface: p = 1000 Pa 

Case 1: Uniform load over the dome surface: p = self-weight 

The linear analysis of the form-found shell was conducted similarly to chapter 3, 

obtaining the results shown in Fig. 5.5 and 5.6: 

 

Figure 5.5. Illustration of the meridional stresses 
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Figure 5.6. Illustration of the hoop stresses 
 

Both meridional and hoop stresses on the form-found shell are in pure compression along 

the form-found surface, confirming the form-finding process. Considering Mohr’s failure 

criterion: �σ𝚽
σc

� + �σ𝛉
σt

�  < 1   � −6925
−55000

� = 0.13 < 1           

Therefore it can be affirmed that, according to the linear analysis, the material strength is 

higher than the stresses sustained by the structure when it is subjected to its own weight. 

A numerical comparison in terms of stresses between the form-found and hemispherical 

dome is shown in Table 5.1. 

Table 5.1: Comparison between form-found and hemispherical dome in terms distribution of stress 
 

CASE 1 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa) Mohr’s criterion 
Form-found dome -6925 -6820 0.13 

Hemispherical dome -6110 6294 0.47 
 
The form-found dome is subjected to a compression which is higher respect to the 

hemispherical dome. 
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 However, it has to be considered safer by Mohr’s failure criterion, because tension never 

occurs in the form-found surface. 

Case 2: Uniform load over a Horizontal Projection of the Dome Surface: p = 500 Pa 

The linear analysis of the form-found shell was conducted similarly to chapter 3, 

obtaining the results shown in Fig. 5.7 and 5.8: 

 

Figure 5.7. Illustration of the meridional stresses 
 

  
 

Figure 5.8. Illustration of the hoop stresses 
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Both meridional and hoop stresses are in pure compression along the form-found surface. 

In fact, the nature of the type of loading (Case 2) is similar to the  previous one (Case 1). 

This becomes evident when comparing the distributions of stresses. Thus, having pure 

compression all along the form-found dome is valid result. Considering the Mohr’s 

failure criterion: 

 �σ𝚽
σc

� + �σ𝛉
σt

�  < 1   �−13570
−55000

� = 0.25 < 1   

Therefore, the form-found dome is able to carry a uniform load over the horizontal 

projection of the dome surface p = 500 Pa. A numerical comparison in terms of stresses 

between the form-found and hemispherical dome is shown in Table 5.2. 

Table 5.2. Comparison between form-found and hemispherical dome in terms distribution of stress 
 

CASE 2 
UNIFORM LOAD OVER AN HORIZONTAL 

PROJECTION OF THE DOME SURFACE 
 σΦ (Pa) σθ (Pa) Mohr’s criterion 

Form-found dome -13570 -13450 0.25 
Hemispherical dome -11980 12340 0.94 

 
The form-found dome is subjected to compression which is higher respect to the 

hemispherical dome. However, it has to be considered safer by Mohr’s failure criterion, 

because tension never occurs in the form-found configuration. 

Case 3: Uniform external pressure over the dome surface: p = 1000 Pa 

The linear analysis of the form-found shell was conducted similarly to chapter 3, 

obtaining the results shown in Fig. 5.9 and 5.10: 
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Figure 5.9. Illustration of the meridional stresses 

 

 

Figure 5.10. Illustration of the hoop stresses 

Similar to the other cases, both meridional and hoop stresses are in pure compression 

along the form-found surface. This fact is quite obvious because the uniform external 

pressure is perpendicular in each point to the dome surface, therefore it induces a state of 

compression everywhere. The same situation was observed in chapter 3 for the 

hemispherical dome. Considering the Mohr’s failure criterion: 

 �σ𝚽
σc

� + �σ𝛉
σt

�  < 1   �−52740
σc

� < 1   
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Therefore it can be affirmed that, according to the linear analysis, the material strength is 

higher than the stresses sustained by the structure when it is subjected to a uniform load 

over a horizontal projection of the dome surface. A numerical comparison in terms of 

stresses between the form-found and hemispherical dome is shown in Table 5.3. 

Table 5.3. Comparison between form-found and hemispherical dome in terms distribution of stress 

 CASE 3 
UNIFORM EXTERNAL PRESSURE                 

 σΦ (Pa) σθ (Pa)   Mohr’s criterion 
Form-found dome -50930 -52740 0.96 

Hemispherical dome -24930 -25060 0.46 
 
The two principal stress states are pure compression and in particular they are greater for 

the form-found shell. Hence, the hemispherical dome can better sustain a uniform 

external pressure. In conclusion, considering this first set of comparisons, it can be 

affirmed that form-found dome has a more optimal shape to carry vertical loads, such as 

the uniform load over the dome surface and uniform distributed load over a horizontal 

projection of the dome surface. Contrary, the hemispherical dome minimizes the 

principal stresses under the uniform external pressure. However, these first linear 

analyses do not exclude the possibility of other type of failure, such as buckling. 

5.4.2 Influence of the geometry 

This section investigates the influence of varying the geometry in a form-found dome. 

Therefore, different values of the thickness, radius and height are considered. Differently 

to chapter 3, the variation of the angle of cut was neglected because in the context of 

form-finding it is not applicable. Since for the form-found dome a solution can solely be 

obtained numerically, only the uniform load over the dome surface is considered as 

loading for the following set of form-found dome models. All the geometrical variations 

respect to the original configuration are shown in Table 5.4. 
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Table 5.4. Variation of the geometrical parameters for the form-found dome 
 

DIFFERENT VALUE OF THE THICKNESS 
Case t (m) a (m) h (m) 

A 0,05 5 5 
B 0,2 5 5 
C 0,4 5 5 

 
DIFFERENT VALUE OF RADIUS AND HEIGHT 

Case t (m) a (m) h (m) 
D 0,1 2,5 2,5 
E 0,1 10 10 
F 0,1 15 15 

 
The linear analysis of the form-found domes was conducted similarly to chapter 3, 

obtaining the results shown in Table 5.5. 

Table 5.5. Results of linear analysis for different geometries of form-found domes 

DIFFERENT VALUE OF 
THE THICKNESS 

UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa)  σΦ (Pa) Mohr’s 
criterion 

CASE A  -6955 -6839 0.13 
CASE B  -6822 -6786 0.12 
CASE C  -6743 -6681 0.12 

 
DIFFERENT VALUE OF 

THE RADIUS AND 
HEIGHT 

UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa)  σΦ (Pa) Mohr’s 
criterion 

CASE D -3409 -3391 0.06 
CASE E  -14060 -14000 0.26 
CASE F  -20760 -20300 0.38 

 
According to the results, it can be affirmed that all the new geometries of the form-found 

dome can carry their self-weight. Moreover, the variations of the thickness and the radius  

in the form-found dome show similar with the hemispherical domes. Therefore, the 
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considerations made for the hemispherical dome remain valid also for the form-found 

dome. 

5.4.3 Influence of the material properties 

This section introduces material considerations involving the use of a different material, 

in particular concrete. The concrete employed belongs to C25/30 class with average 

properties already summarized in Table 3.6. Only the uniform load over the dome surface 

is considered as an acting load. The linear analysis of the form-found domes was 

conducted numerically as in chapter 3, obtaining the results shown in Table 5.5. 

Table 5.6. Results of linear analysis for different geometries of form-found domes 

 CASE G 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa) Mohr’s Criterion 
concrete - 135700 -137000 0.01 

mycelium -50930 -52740 0.96 
 
As it was expected, both meridional and hoop stresses are in pure compression along the 

form-found surface and they are higher respect to the form-found dome made of 

mycelium. Considering the Mohr’s failure criterion: 

 �σ𝚽
σc

� + �σ𝛉
σt

�  < 1   � 135700
25000000

� = 0.01 < 1           

Therefore it can be affirmed that, according to the linear analysis, the material strength is 

higher than the stresses sustained by the structure. Although the concrete dome 

experiences larger stresses compared to the mycelium dome, stresses always remain 

lower to  the ultimate strength of the material as expressed by the Mohr s criterion.  
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5.4.4 Influence of the boundary conditions 

This section focuses on the consideration of a different boundary condition. For practical 

purposes, fixed boundary conditions were considered only for the default geometry of the 

form-found dome subjected to the three load cases. A comparison between the simply 

supported and the fixed conditions is shown in Table 5.7. 

Table 5.7. Comparison between fixed and pinned supports for form-found domes in linear analysis 
 

 CASE 1 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa) Mohr’s Criterion 
Fixed condition -5993 -5651 0.11 

Pinned condition -6925 -6862 0.13 
 

 CASE 2 
UNIFORM LOAD OVER AN HORIZONTAL 

PROJECTION OF THE DOME SURFACE 
 σΦ (Pa) σθ (Pa) Mohr’s Criterion 

Fixed condition -23500 -22160 0.43 
Pinned condition -27150 -26900 0.49 

 

 CASE 3 
UNIFORM EXTERNAL PRESSURE 

 σΦ (Pa) σθ (Pa) Mohr’s Criterion 
Fixed condition -54060 -54710 0.99 

Pinned condition -50930 -52740 0.96 
 
According to Table 5.7, the distribution of the stresses changes when fixed supports are 

considered. However, the maximum stresses are lower in Cases 1 and 2 and higher in 

Case 3 compared with their corresponding pinned configurations. 

5.5 Buckling analysis 

5.5.1 Influence of the type of  loading 

This section investigates buckling under the different types of loading. Since analytical 

formulations do not exist for any type of loads, all the results were obtained numerically. 

Similar to chapter 4, the following load cases have been considered: 
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• Case 1: Uniform external pressure over the dome surface 

• Case 2: Uniform load over a horizontal projection of the dome surface 

The uniform load over the dome surface has been again excluded from this analysis. 

Case 1: Uniform external pressure over the dome surface 

The buckling analysis of the form-found dome was conducted numerically in the same 

methodology presented in chapter 4, obtaining the result shown in Fig. 5.11: 

 
 

Figure 5.11. Illustration of the buckling load Pcr of form-found dome 
 

Comparing the critical buckling load of the form-found dome with the corresponding 

load for the hemispherical dome (Table 5.8), it can be seen that the critical buckling load 

of the hemispherical dome occurs with a higher value.  

Table 5.8. Comparison between form-found and hemispherical dome 
 

CASE 1 
CRITICAL BUCKLING LOAD Pcr (Pa) 

Numerical solution 
Form-found dome 73.97 

Hemispherical dome 338.08 
 
Therefore, since also in the linear analysis the principal stresses experienced by 

hemispherical dome were lower respect to the form-found, it can be affirmed that the 

hemispherical dome can sustain better a uniform external pressure. In fact, a hemisphere 
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can be seen as the optimal form-found shape to carry this type of load. Moreover, since 

the value of the buckling load Pcr generated by the uniform external pressure is lower 

than the one used for the linear analysis (p = 1000 Pa), form-found dome is not able to 

sustain the prescribed uniform external pressure p = 1000 Pa employed in the linear 

analysis although the Mohr’s criterion is satisfied. 

Case 2: Uniform load over a Horizontal Projection of the Dome Surface 

The buckling analysis of the form-found dome was conducted numerically in the same 

methodology presented in chapter 4, obtaining the result shown in Fig. 5.12: 

 
 

Figure 5.12. Illustration of the buckling load Fcr of form-found dome 
 

Comparing the critical buckling load of the form-found dome with the corresponding 

load for the hemispherical dome (Table 5.9), it can be seen that the critical buckling load 

of the form-found dome occurs again with a lower value. 

Table 5.9. Comparison between form-found and hemispherical dome 

CASE 2 
CRITICAL BUCKLING LOAD Fcr (Pa) 

Numerical solution 
Form-found dome 114.75 

Hemispherical dome 214.17 
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This result was unexpected because form-found showed lower stresses compared with the 

hemispherical dome subjected to the same type of load in linear analysis. However, a 

direct correlation between the linear and the buckling analysis does not exist. In fact, 

considering again the hemispherical dome under the uniform external pressure and 

comparing the analytical formulations of the stresses for linear and buckling analysis, the 

expressions for meridional, hoop and critical stresses are: 

Linear analysis:     σΦ = NΦ
′

t
 = – a p 

2 t
              σθ = Nθ

′

t
 = – a p 

2 t
                                                                                      

Buckling analysis: σcrit = Pcl
1
2 Ssphere

  =  

2

�[3 (1−v2)]
 E ( t

a )2

2 π a2  

The formulations have a completely different grade and type of dependency on the 

geometrical parameters. In addition, the expressions of σΦ and σθ do not take into account 

the material properties of the dome. This example validates further that the linear and the 

buckling analysis are not directly related. Hence, when a form-found dome is subjected to 

a uniform load over a horizontal projection of the dome surface, it performs better in 

linear but worse in buckling analysis compared with a hemispherical dome. Since the 

value of the buckling load Fcr generated by the uniform load over an horizontal projection 

of the dome surface is lower than the one used for the linear analysis (p = 500 Pa), form-

found dome is not able to sustain the prescribed uniform load over an horizontal 

projection of the dome surface p = 500 Pa employed in the linear analysis, although the 

Mohr’s criterion is satisfied. 
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5.5.2 Influence of the geometry 

This section investigates the influence of varying the geometry. Therefore, different 

values of the thickness, the radius and the height were considered individually. The 

variation of the angle of cut was once again neglected because in the context of form-

finding it is not applicable. Instead, a parametrical study of the ratio between the radius 

and the height of the form-found dome is included. Uniform external pressure and 

uniform distributed load over a horizontal projection of the dome surface are also part of 

this analysis. In addition, for each case, it has been considered  the ratio between the two 

correspondent critical buckling loads Pcr and Fcr, in order to see if a correlation between 

them exists also for the form-found dome. For the default geometry the ratio Pcr
Fcr

 is equal 

to 0.64. All the geometrical variations respect to the original configuration are presented 

in the Table 5.10. 

Table 5.10. Variation of the geometrical parameters for the form-found dome 
 

DIFFERENT VALUE OF THE THICKNESS 
Case t (m) a (m) h (m) 

A 0,05 5 5 
B 0,2 5 5 
C 0,4 5 5 

DIFFERENT VALUE OF RADIUS AND HEIGHT 
Case t (m) a (m) h (m) 

D 0,1 2,5 2,5 
E 0,1 10 10 
F 0,1 15 15 

 
The linear analysis of the form-found domes was conducted numerically following the 

method described in chapter 4, obtaining the results summarized in Table 5.11. 
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Table 5.11. Ratio Pcr/Fcr for different geometries of form-found domes 
 

Group 1 Pcr (Pa) Fcr (Pa) Ratio 

CASE A 15.00 24.96 0.60 

CASE B 374.09 543.91 0.69 

CASE C 1976.30 2484.4 0.80 
 

Group 2 Pcr (Pa) Fcr (Pa) Ratio 

CASE D 374.80 543.98 0.69 

CASE E 14.29 23.80 0.60 

CASE F 5.98 10.30 0.58 
 
The ratio between Pcr and Fcr increases with an increase of the thickness but decreases 

with the increase of the radius/height. Since the range of the thickness and the radius 

considered is limited (0.05m < t < 0.4m, 2.5 m < a/h < 15 m), additional values were also 

investigated to verify if the trends persist. Therefore, the following two cases were 

analyzed. 

Table 5.12: Ratio Pcr/Fcr for two additional geometries of form-found domes 

 

The ratio between Pcr and Fcr for the new geometries confirms the trends affirming that 

the correlation between Pcr and Fcr is not the same with the one found in chapter 4.  

Moreover, the critical buckling loads Pcr and Fcr generated respectively by the uniform 

external pressure and the uniform load over an horizontal projection of the dome surface 

are in most cases lower than the values tested in the linear analysis (p = 1000 Pa and p = 

Case t (m) a (m) h (m) Pcr Lcr Ratio
G 1 5 5 17837 17918 1,00

H 0,1 50 50 0,38 0,69 0,55

DIFFERENT GEOMETRIES
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500 Pa respectively). Therefore they represent an upper limit of the loads that the form-

found domes can sustain. 

5.5.3 Influence of the material properties 

This section focuses on the influence of material properties with the use of a different 

material, in particular concrete. The concrete employed belongs to C25/30 class with 

average properties summarized in Table 3.6. Only the uniform external pressure has been 

considered as an acting load. The buckling analysis of the form-found domes has been 

conducted numerically similar to chapter 4, leading to the results shown in Fig. 5.15: 

Figure 5.13. Illustration of the buckling load Pcr of concrete-based form-found dome 

A comparison between the form-found dome made of concrete and the one made of 

mycelium is shown in Table 5.13. 

Table 5.13. Comparison between concrete and mycelium in buckling analysis for form-found domes 

CASE I 
CRITICAL BUCKLING LOAD Pcr (Pa) 

Numerical solution 
Concrete 3.33 ∙ 106 

Mycelium 73.97 
 
In conclusion, the buckling load Pcr for the concrete hemispherical dome occurs for a 

higher value of uniform external pressure compared to the mycelium dome. 
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5.5.4 Influence of the boundary conditions 

This section involves the consideration of a different boundary condition.  For practical 

purposes, fixed boundary conditions were considered only for the configuration of Case 

1, where the type of loading is the uniform external pressure, the material employed is 

mycelium and the default geometry employed. A comparison between the pinned and the 

fixed supports is shown in Table 5.14. 

Table 5.14. Comparison between fixed and pinned supports for form-found domes in linear analysis 

CASE 1 
CRITICAL BUCKLING LOAD Pcr (Pa) 

Numerical solution 
Fixed condition 83.73 

Pinned condition 73.97 
 

CASE 2 
CRITICAL BUCKLING LOAD Fcr (Pa) 

Numerical solution 
Fixed condition 137.97 

Pinned condition 114.75 
 
The values of the critical buckling loads Pcr and Fcr are higher for fixed conditions 

compared with the corresponding  pinned configuration. This occurs because blocking 

rotations confers an overall greater stiffness and stability to the structure. 

5.5.5 Trend of the critical buckling load varying the height 

In this section, the existence of an optimal ratio between the height and the span of the 

form-found dome when it is subjected to a uniform external pressure or a uniform load 

over a horizontal projection of the dome surface is investigated. For practical purposes  

only the following values of height/span ratio were considered (Table 5.15): 
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Table 5.15. Different values of the height/span ratio and the associate buckling load Pcr and Fcr 

 

CASE a (m) h (m) Ratio = h/2a Pcr (Pa) Fcr (Pa) 
A 5 2.5 0.25 69.05 81.86 
B 5 5 0.50 73.97 114.75 
C 5 7.5 0.75 61.50 118.91 
D 5 10 1.00 50.96 116.63 
E 5 15 1.50 37.41 104.40 

 

Figure 5.16 shows the optimal ratio between the height and the span exists in both cases 

and it depends on the type of load: 

 
Figure 5.14. Trends of the buckling load Pcr and Fcr varying the height/span ratio 

 
For Pcr the optimal ratio is 0.5, or rather the height is equal to the radius. For this value of 

the height/span ratio the form-found dome is geometrically similar to the hemispherical 

dome (radius equal to height), which is the optimal shape to resist a uniform external 

pressure. Therefore, the more the form-found dome is geometrically different from a 



109 
 

 
 

hemisphere, the more the critical buckling load Pcr decreases. For Fcr instead, the 

maximum buckling load occurs for a ratio of 0.75. Looking at the problem in two 

dimensions, a previous study conducted by Qaqish S. [24] on catenarian arches subjected 

to a uniform load along the arch axis revealed that the optimal ratio between the height 

and the span is equal to 0.3. Although buckling under a uniform load over the dome 

surface is out of the scope of this research, a parametric study of the height/span ratio for 

this load case is also conducted to investigate the correlation between the 2D and the 3D 

case. Calling Wcr the critical buckling load under a uniform load over the dome surface, 

the trend for different values of the height/span ratio is shown in Figure 5.17: 

 

Figure 5.15. Trends of the buckling load Wcr varying the height/span ratio 

The maximum buckling load Wcr occurs again for a height/span ratio equal to 0.75, the 

same value obtained for the buckling load Fcr under a uniform load over a horizontal 

projection of the dome surface. To further investigate the link between the 2D and the 3D 
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form-found structures, it was decided to perform similar buckling analysis on catenary 

arches subjected to these two load cases. This was done for two reasons: from one side to 

confirm the validity of the study mentioned before and on the other side to see if the 

height/span ratio that maximizes Fcr is again the same also for Wcr. Similarly to the 

previous analysis, a standard span equal to 10 m for each catenarian arch was considered, 

whereas the height of the dome varied. The results of the buckling analysis are shown in 

Fig. 5.18: 

 

Figure 5.16.  Trends of the buckling loads Fcr and Wcr varying the height/span ratio for catenary arches 

Figure 5.16 shows that the optimal height/span ratio is again the same for the two load 

case   (Fcr and Wcr) and it is equal to 0.3. Thus, this result confirms the validity of the 

previous study as well as the correlation in the trends between the two load cases. 
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Therefore, according with the numerical results of this study, the optimal height/span 

ratio passes from 0.3 for the planar case to 0.75 for the tridimensional one. 

5.6 Case Study 

5.6.1 Igloo 

This case study focuses on the linear and the buckling analysis of an Igloo. Igloos are a 

type of shelter built of compacted snow. Their shapes vary from a hemisphere to a 

catenoid/paraboloid. Catenoid and paraboloid are two 3D surfaces respectively obtained 

by rotating of 180° a catenary and a parabola around their axis of symmetry. The linear 

analysis was conducted by comparing a paraboloid and a catenoid with the same 

thickness, height and span. A uniform load over the dome surface was considered as 

acting load. From a geometrical point of view, a radius a = 5m, a height h = 5m and a 

thickness t = 0.1m were assumed. The material employed is compacted snow/ice with the 

material properties summarized in Table 5.16. 

Table 5.16. Material properties of compact snow/ice [42] 

MATERIAL PROPERTIES OF ICE 
Density                                
(Kg/m3) 

Tensile Strength            
(KPa) 

Elastic Modulus            
(MPa) 

Compressive 
Strength (KPa) 

Poisson                               
Ratio 

430 N/A 9000 180 0.33 
 
It is important to highlight that the values of the density and the compressive strength of 

ice strongly depend on the temperature. Therefore, a constant value for them does not 

exist. The distribution of the principal stresses for the catenoid igloo is shown in Fig. 5.19 

and 5.20: 
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Figure 5.17. Illustration of the meridional stresses for catenoid igloo 

 

 Figure 5.18. Illustration of the hoop stresses for catenoid igloo 

As it was expected, the meridional and the hoop stresses are pure in compression for the 

catenoid. Considering the Mohr’s failure criterion: 

 �σ𝚽
σc

� + �σ𝛉
σt

�  < 1   � 22380
180000

� = 0.12 < 1  

Therefore it can be affirmed that, according to the linear analysis, the material strength is 

higher than the stresses sustained by the structure when it is subjected to its own weight. 
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The distribution of stresses for paraboloid igloo instead is shown in Fig. 5.21 and 5.22: 

 

Figure 5.19. Illustration of the meridional stresses for paraboloid igloo 

 
 

Figure 5.20. Illustration of the hoop stresses for paraboloid igloo 

As it can be seen, the meridional and the hoop stresses are again pure compression also 

for the paraboloid. According to the Mohr’s failure criterion: 

 �σ𝚽
σc

� + �σ𝛉
σt

�  < 1   � 17080
180000

� = 0.09 < 1  
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Therefore it can be affirmed that, according to the linear analysis, the material strength is 

higher than the stresses sustained by the structure when it is subjected to its own weight. 

Table 5.17. Comparison between catenoid and parabloid for linear analysis 

 CASE 1 
UNIFORM LOAD OVER THE DOME SURFACE 

 σΦ (Pa) σθ (Pa) Mohr’s Criterion 
Catenoid -22380  -22180 0.12 

Paraboloid -17080 -16900 0.09 
 
Comparing the two types of igloos one can observe that the distributions of the principal 

stresses are very similar, but higher for catenoid. This unexpected result might be due to 

the fact that form-finding process is conducted manually, influencing the overall accuracy 

of the response. For the buckling study, a uniform external pressure and a uniform load 

over a horizontal projection over the dome surface were considered. As shown in this 

chapter, the value of the height/span ratio that maximizes the critical buckling load Pcr 

under a uniform external pressure results to be 0.5, while for the critical buckling load Fcr 

under a uniform load over a horizontal projection of the dome surface is 0.75. Therefore, 

in the first case a radius a = 5m and a height h = 5m, whereas in the second one a radius a 

= 5m and a height h = 7.5 m were employed. Thickness and material properties remain 

always as before the same. The illustrations of buckling modes of the two types of igloo 

under uniform external pressure, respectively for catenoid and paraboloid, are shown in 

Fig. 5.23 and 5.24: 
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Figure 5.21. Illustration of the buckling load Pcr of catenoid igloo 

 

Figure 5.22. Illustration of the buckling load Pcr of paraboloid igloo 

As it can be seen in Table 5.18, the two values of the buckling loads Pcr are very similar, 

at the point that the difference between them is around 1%. 

Table 5.18. Comparison between catenoid and paraboloid for the critical buckling load Pcr  

CASE 1 
CRITICAL BUCKLING LOAD Pcr (Pa) 

Numerical solution 
Catenoid 988511 

Paraboloid 1001700 
 

The illustrations of buckling modes of the two types of igloo under uniform distributed 

load over a horizontal projection of the dome surface, respectively for catenoid and 

paraboloid, are shown in Fig. 5.25 and 5.26: 



116 
 

 
 

 

Figure 5.23. Illustration of the buckling load Fcr of catenoid igloo 

 

Figure 5.24. Illustration of the buckling load Fcr for paraboloid igloo 

Also the vaue of the two buckling loads Fcr are very similar, with a difference between 

them again around the 1%.  

Table 5.19. Comparison between catenoid and paraboloid for the critical buckling load Fcr  

CASE 2 
CRITICAL BUCKLING LOAD Fcr (Pa) 

Numerical solution 
Catenoid 1587090 

Paraboloid 1607230 
 

As general conclusion, it can be affirmed that the linear static and buckling behaviors of a 

catenoid and a paraboloid are almost the same. The results have shown a higher 

discrepancy in linear analysis respect to buckling analysis.  
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Chapter 6: Conclusions  

According to the analyses conducted in this study, it is evident that shells are 

characterized by a peculiar structural behavior which distinguishes them from other 

structural elements. The comparisons between analytical formulations and numerical 

studies using the finite element software confirm the validity of the classical shell theory, 

as well as the reliability of the finite element models. It can thus be concluded that 

mycological fungi can be employed as a constitutive material for domes. In fact, the 

stresses experienced in the dome structures analyzed never reached the ultimate strength 

of the material highlighting the importance of an appropriate shape. However, buckling 

analysis demonstrates that the use of mycelium as a constitutive material in domes results 

in weaker structures compared to concrete for this type of failure. Regarding the “form-

finding” process, the numerical results obtained with the finite element validate the 

principle of Hooke’s law and its inversion: all form-found domes are in pure compression 

when subjected to vertical loads. Although the form-found domes show better 

performance in linear elastic analysis compared with the hemispherical domes, the 

opposite trend is found when it comes to buckling. From a technical point of view, this 

study allows to draw the following conclusions: 

• For hemispherical mycelium-based domes with a radius of curvature equal or 

greater than 10 m, the hoop stresses, which are in pure tension, exceed the 

ultimate tensile strength of the material. Therefore, for large scale structures, the 

use of reinforcement becomes necessary. 

 
• For mycelium-based domes, increasing the thickness does not necessarily 

guarantee a better structural performance. In fact, the additional stiffness is 
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“balanced” by the additional self-weight that the structure has to sustain. A 

greater level of stiffness could be reached through other considerations such as 

changing the shape or adding reinforcement. 

 
• Fixed boundary conditions produces a different distribution of the stresses with 

respect to the simply supported conditions. Furthermore, for hemispherical domes 

subjected to vertical loads, the maximum compression is higher for fixed 

supports, whereas the maximum tension is much lower, making the dome overall 

safer by Mohr’s criterion compared to simply supported conditions. Conversely, 

for hemispherical domes subjected to uniform external pressure, both meridional 

and hoop stresses are higher for fixed boundary conditions, making the domes 

less safe by Mohr’s criterion. 

 
• The value of the critical buckling load Pcr generated by a uniform external 

pressure increases with the increasing of the angle of cut and the thickness, while 

it decreases with an increase of the span (radius). 

 
• For hemispherical domes, the ratio between the buckling loads Pcr and Fcr 

(respectively generated by a uniform external pressure and a uniform load over a 

horizontal projection of the dome surface) seems to be always approximately 

equal to 1.5, as long as the geometrical parameters of the considered dome are the 

same. Therefore, it is assumed  that the formulation of Fcr has the same degree of 

dependency of Pcr, especially looking at the slenderness ratio and the material 

properties. 
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• The critical buckling loads Pcr and Fcr are higher for fixed conditions respect to 

the pinned conditions. This result is due to the fact that blocking rotations confers 

an overall greater stiffness and stability to the structure. 

 
• For domes with opening the values of the buckling loads Pcr and Fcr are lower 

than the ones obtained for domes without opening. Furthermore, according to the 

finite element model, the deformations due to buckling seem to concentrate more 

around windows rather than doors. 

 
• Form-found domes perform better in linear analysis but worse in buckling 

analysis compared to hemispherical domes of comparable geometry when they 

are subjected to the same type of loads reflecting the fact that linear analysis and 

buckling analysis do not have the same degree of dependency on the geometrical 

parameters and material properties. 

 
• Differently from hemispherical domes, for form-found domes a correlation 

between the buckling loads Pcr and Fcr (respectively generated by a uniform 

external pressure and a uniform load over a horizontal projection of the dome 

surface) was not found. 

 
• According with the numerical results of this study, the optimal height/span ratio 

to resist the buckling load Pcr and Fcr passes from 0.3 for the planar case of 

catenarian arches to 0.75 for the tridimensional case of form-found domes. 
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• Paraboloids show better performance both in linear and buckling analysis 

compared to catenoids. However, looking at the order of magnitude, the 

mechanical responses are very similar. 
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Chapter 7: Future works 

Although the results obtained through this study reflect the special character of shell 

structures as well as the potential of mycological fungi as a construction material, they 

also underline the need of further investigations. First of all, in order to have a deeper 

understanding of the structural behavior of domes, non-linear analyses need to be 

performed. In addition, the effect of imperfections as well as the edge effect have to be 

taken into consideration. Similarly, the buckling analysis, that was performed solely 

using finite element modeling, should also be extended considering non-linearity and 

imperfections as well as multiple buckling modes while being validated through 

experimental testing. Regarding the material, a deeper knowledge about the behavior of 

mycological fungi is also required. In particular, a life-cycle analysis and the long-term 

behavior (shrinkage, creep and cracking) need to be investigated. Last but not least, in 

order to clarify the performances of the material associated to the optimization of the 

shape (form-finding), future works should also involve experimental testing of near full 

scale structures. 
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