Late Transition Metal-Oxo complexes: Synthesis, and Biorelevant Reactivity

Cecchini, Chiara (2016) Late Transition Metal-Oxo complexes: Synthesis, and Biorelevant Reactivity. [Laurea magistrale], Università di Bologna, Corso di Studio in Chimica industriale [LM-DM270]
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 3.0 (CC BY-NC-ND 3.0)

Download (1MB) | Anteprima

Abstract

High-valent terminal metal-oxygen adducts are supposed to be potent oxidising intermediates in enzymatic catalyses. In contrast to those from groups 6-8, oxidants that contain late transition metals (Co, Ni, Cu) are poorly understood. Because of their high reactivity, only a few examples of these compounds have been observed. The aim of this project was to investigate the reactivity of high-valent Ni(III) complexes, containing a monodentate oxygen-donor ligands, in hydrogen atom abstraction (HAA) and oxygen atom transfer (OAT) reactions which are typical of biological high-valent metal-oxygen species. Particularly, the Ni(III) complexes were generated in situ, at low temperature, from the oxidation of the Ni(II) species.The nickel complexes studied during this work were supported by tridentate ligands, with a strong σ-donating ability and exceedingly resistant to several common degradation pathways. These complexes vary based on the monodentate group in the fourth coordination position site, which can be neutral or anionic. In particular, we prepared four different Ni(III) complexes [NiIII(pyN2Me2)(OCO2H)] (12), [NiIII(pyN2Me2)(ONO2)] (14), [NiIII(pyN2Me2)(OC(O)CH3)] (18) and [NiIII(pyN2Me2)(OC(O)H)] (25). They feature a bicarbonate (-OCO2H), nitrate (-ONO2), acetate (-OC(O)CH3) and formate (-OC(O)H) group, respectively.HAA and OAT reactions were performed by adding 2,6-di-tert-butylphenol (2,6-DTBP) at -40°C, and triphenylphosphine (PPh3) at -80°C, to the in situ generated Ni(III) complexes, respectively. These reactions were carried out by adding 7 to 500 equivalents of substrate, in order to ensure pseudo-first order conditions. Since, the reactivity of the Ni(III) complex featured by the bicarbonate group has been studied in a previous work, we only investigated that of the species bearing the nitrate, acetate and formate ligand. Finally we compared the value of the reaction rate of all the four species in the HAA and OAT reactions.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Cecchini, Chiara
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
nickel high-valent metal complexes oxidation reactions oxygen atom transfer reaction hydrogen atom abstraction reaction Uv-visible spectroscopy biomimetic complexes
Data di discussione della Tesi
22 Luglio 2016
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^