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Abstract

The currently accepted flat-ACDM Standard Cosmological Model
accounts for the existence of two major energy components, Cold Dark
Matter and Dark Energy, and for the flatness of the metric. Despite
the theoretical framework of the Standard Cosmological Model is well
outlined and generally accepted by the scientific community, there are
still an amount of unresolved issues, which span from the definition of
the initial conditions, to the physical nature of the major components of
the Universe. The appearance of today’s large scale structure depends
on the initial conditions and on the metric and energy properties of the
Universe. Thus, from the observable characteristics of these structures,
it should be possible to impose constraints on the cosmological model’s
defining parameters.

In this context, Cosmic Voids are a major component of the large-
scale distribution of matter in the Universe. They emerge out of the
density troughs on the primordial Gaussian field of density fluctuations
and are between the largest observable structures in the Universe (Guzzo
and The Vipers Team, 2013; Nadathur, 2016).

With their relatively simple structure and shape, voids are useful
probes of a variety of cosmic parameters and have indeed been shown to
possess great potential for constraining Dark Energy and testing theories
of gravity (Krause et al., 2013; Sutter et al., 2014b; Pollina et al., 2016).
In spite of their popularity as cosmological tools, a gap of knowledge
between Cosmic Void observations, simulations and theory still persists.
Voids are for their nature only mildly non-linear and tend to become
more spherical as they evolve (Icke, 1984), which suggests that their
evolution should be easier to reconstruct than that of positive perturba-
tions. Therefore, the spherical evolution approximation is particularly
suited for describing the expansion of cosmic voids (Blumenthal et al.,
1992). This approximation was used to build a theoretical model for
the prediction of the void statistical distribution as a function of size
(Sheth and van de Weygaert, 2004, hereafter SvdW), with the same
approach used to derive the halo mass function. Since the Dark Matter
halo distribution provides a large amount of cosmological information,
the negative of this information should also be found in the Cosmic Void
distribution. However, the SvdW model of void size function has been
proven unsuccesful in reproducing the results obtained from cosmologi-
cal simulations: previous works could only fit the observed distributions
with a SVAW size function in relaxed conditions (i.e. letting the lower
threshold §, vary to better represent the data), since voids found in
simulations are usually under-predicted by models (Colberg et al., 2005;
Pisani et al., 2015; Nadathur and Hotchkiss, 2015). This undermines
the possibility of using voids as cosmological probes.

The goal of our thesis work is to cover the gap between theoretical
predictions and measured distributions of cosmic voids. To this end we
develop an algorithm to identify voids in simulated tracer distributions,
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consistently with theory. We reconsider the accepted SvdW model, by
inspecting the possibilities offered by a recently proposed refinement
(the Vdn model, Jennings et al., 2013). Comparing the void catalogues
obtained applying our algorithm to a set of simulations which differ in
resolution, total size and cosmology, we validate the Vdn model, finding
out that it is reliable over a large range of radii, at all the redshifts
considered and for all the cosmological models inspected.

We have then extended our discussion to more realistic cases, search-
ing for a size function model for voids identified in a distribution of biased
tracers. We find that, naively applying the same procedure used for the
unbiased tracers to a halo mock distribution does not provide success-
full results, suggesting that the Vdn model requires to be reconsidered
when dealing with biased samples. Thus, we test two alternative exten-
sions of the model and find that two scaling relations exist: both the
Dark Matter void radii and the underlying Dark Matter density contrast
scale with the halo-defined void radii. We use these findings to develop
a semi-analytical model which gives promising results.

v
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Sommario

Il modello cosmologico attualmente accettato, chiamato flat-ACDM,
prevede che I’Universo sia composto principalmente da due componenti
energetiche principali, Materia Oscura Fredda ed Energia Oscura, e che
abbia una metrica piatta. Nonostante la struttura teorica del Mod-
ello Cosmologico Standard sia ben delineata e generalmente accettata
dalla comunita scientifica, sono ancora presenti svariati problemi non
risolti. Tali problemi spaziano dalla definizione delle condizioni iniziali,
alla natura fisica delle componenti principali dell’Universo. L’aspetto
delle strutture su grande scala dipende dalle condizioni iniziali, dalla
metrica e dalle proprieta energetiche dell’Universo. Percio, dalle carat-
teristiche di queste strutture dovrebbe essere possibile imporre dei limiti
al parametri che definiscono il modello cosmologico.

In questo contesto, i vuoti cosmici sono una componente rilevante
della distribuzione su grande scala delle materia. Si formano dalle de-
pressioni del campo Gaussiano di fluttuazioni in densita e sono tra le piu
grandi strutture osservabili nell’Universo (Guzzo and The Vipers Team,
2013; Nadathur, 2016).

Grazie alla loro forma relativamente semplice, i vuoti sono utili sonde
di una varieta di parametri cosmologici ed e stato infatti dimostrato
che hanno un grande potenziale nel porre limiti sull’Energia Oscura e
per testare le teorie di gravitazione (Krause et al., 2013; Sutter et al.,
2014b; Pollina et al., 2016). A dispetto della loro popolarita come sonde
cosmologiche, le osservazioni, i risultati delle simulazioni e i modelli
teorici di vuoti non sono tuttora in totale accordo.

I vuoti sono per loro natura solo lievemente non lineari e tendono a
diventare sferici mentre evolvono (Icke, 1984). Questo suggerisce che la
loro evoluzione dovrebbe essere piu semplice da modellare rispetto alle
perturbazioni di densita positive. Per tale motivo, I’approssimazione di
evoluzione sferica e particolarmente adatta a descrivere ’espansione dei
Vuoti Cosmici (Blumenthal et al., 1992). Questa approssimazione & stata
infatti utilizzata per costruire un modello teorico in grado di predire la
distribuzione statistica dei vuoti in funzione delle loro dimensioni (Sheth
and van de Weygaert, 2004, da qui in avanti SvdW), con lo stesso
approccio utilizzato per derivare la funzione di massa degli aloni. Dato
che la distribuzione degli aloni di Materia Oscura fornisce una grande
quantita di informazione cosmologica, il negativo di questa informazione
dovrebbe trovarsi nella distribuzione di vuoti cosmici. Ciononostante,
il modello di funzione delle dimensioni di SvdW si e rivelato di scarso
successo nel riprodurre i risultati ottenuti da simulazioni cosmologiche:
nei lavori precedenti e stato soltanto possibile adattare la curva teorica
alle distribuzioni osservate, lasciando libere le condizioni sui parametri
(ovvero lasciando che la soglia di densita inferiore che entra nel modello,
dy, variasse per meglio rappresentare i dati), dato che i vuoti trovati
nelle simulazioni sarebbero altrimenti sottostimati dai modelli (Colberg
et al., 2005; Pisani et al., 2015; Nadathur and Hotchkiss, 2015). Questo
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mina la possibilita di utilizzare i vuoti come sonde cosmologiche.

L’obiettivo primario di questo lavoro di tesi & di colmare il divario
tra le predizioni teoriche e le distribuzioni misurate di vuoti cosmici. A
tal fine, abbiamo sviluppato un algoritmo in grado di identificare i vuoti
nelle distribuzioni simulate di traccianti, in modo da renderlo consistente
con la teoria. Abbiamo riconsiderato il modello attualmente accettato
di SvdW, indagando sulle possibilita offerte da un suo recente migliora-
mento (il cosiddetto modello Vdn, Jennings et al., 2013). Comparando
i cataloghi di vuoti ottenuti dall’applicazione del nostro algoritmo con
una raccolta di simulazioni che differiscono in risoluzione, dimensione
totale e cosmologia, abbiamo validato il modello Vdn, scoprendo che &
affidabile su un largo intervallo di raggi, a tutti i redshift considerati e
per tutte le cosmologie prese in esame.

Abbiamo quindi esteso la nostra discussione a casi piu realistici, cer-
cando una funzione di dimensioni in grado di fornire predizioni affid-
abili sui vuoti identificati nelle distribuzioni di traccianti affetti da bias.
Abbiamo dimostrato che, applicare semplicemente la stessa procedura
utilizzata nel caso di traccianti non affetti da bias ad una distribuzione
simulata di aloni, non fornisce buoni risultati. Questo suggerisce che il
modello Vdn richieda di essere rielaborato per poter trattare con campi-
oni affetti da bias. Per questo, abbiamo vagliato due possibili estensioni
alternative del modello, trovando che esistono due relazioni di scala: sia
il raggio dei vuoti trovati nella distribuzione di traccianti non affetti da
bias, che il contrasto in densita della materia oscura contenuta nei vuoti
tracciati dagli aloni sono entrambi dipendenti dal raggio del vuoto negli
aloni associato. Abbiamo infine utiliziamo queste scoperte per svilup-
pare un modello semi-analitico che ha dato risultati promettenti.

vi



Introduction

One fundamental step in our understanding of the Universe was made possible
by Einstein’s General Theory of Relativity, since the deriving theory of gravity
provides the mathematical structure of modern cosmological models. Our current
understanding of cosmology is based on a set of assumptions none of which are
seriously challenged by current data. At the very base of all these assumptions
stands the Cosmological Principle, that is actually the sum of two assumptions,
the first is isotropy, that is the property of presenting the same characteristics
independently of the line of sight chosen by the observer. With the observation of
the Universe in different directions it is possible to prove this property which, at
the present time, was always confirmed. The latter assumption of the Cosmological
Principle is homogeneity, that requires that we are not in a special place in the
Universe. This statement is not as simple to test. When it is taken singularly, it is
called Copernican Principle.

Furthermore, it is also implicitly assumed that photons are conserved. This
is encoded in the FEtherington relation which states that in a cosmological theory
based on the Einstein’s theory of gravity, distance measures are unique and it is then
possible to link angular diameter distances to luminosity distances. This assumption
is verified only in the case of photons traveling along unique, null geodesics.

These are the pillars on which standard cosmology is built. Thanks to these as-
sumptions a wide range of models have been proposed since Einstein’s Cosmological
Considerations (Einstein, 1917), which together with the early work of Friedmann
(1922) and Hubble’s discovery of the expansion of the Universe (Hubble, 1929),
depicted an accepted scenario. The exact definition of the Standard Cosmological
Model improves with time following the progress of experiments in measuring the
cosmological parameters and along with the attainment of a better understanding of
physics. Nevertheless, most of cosmologists agree on a fundamental picture, the so-
called Big Bang scenario, which describes the Universe as a system evolving from
a highly compressed state existing around 10'° years ago. Besides the observed
isotropic expansion, which may suggest that in earlier epochs the Universe was in
a more compact configuration, this hypothesis is supported by two fundamental
arguments. The first is the need of a compelling explanation for the production of
the observed element abundances which, in the Big Bang model, is naturally solved
in the primordial nucleosynthesis model, which predicts a distribution of elements
pleasantly close to that actually measured. The other crucial argument rises from
the thermal evolution implied by the Big Bang scenario. At some point a primor-
dial fluid of several components decouples from radiation and from this moment
on the mean free path of photons becomes infinite. A resulting black body fossil
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radiation should be observed isotropically distributed in the present Universe. This
radiation was actually observed in the microwave wavelength, at the black body
temperature of approximatelly 3 K, by Penzias and Wilson (1965), resulting in the
ultimate success of the Big Bang model. A wide range of information on both the
primordial Universe and its geometry is encoded in this Cosmic Microwave Back-
ground (CMB) and a great scientific effort has been dedicated to its study in the
last decades. Furthermore, the observed thermal anysotropies on the CMB spatial
distribution are extremely small, which is another relevant proof in favor of the
cosmological principle.

There is a set of fundamental ingredients which are necessary to define a cosmo-
logical model, first of all the Einstein’s Field Equations, relating the geometry of the
Universe with its matter and energy content. Their solution led to the Friedmann-
Robertson-Walker metric which encodes the Cosmological Principle

Throughout the 20th century it became widely accepted that our Universe is
not only made of components visible thanks to their interaction with photons, but
also of an actually dominant amount of exotic and mysterious components which
are still not completely understood. It is proved with observations of a wide range
of phenomena (see e.g. Bertone et al., 2005) that matter is overwhelmed by a
non-barionic fraction which now apparently interacts only through gravity with
the rest of the Universe, the so-called Cold Dark Matter (CDM) (Zwicky, 1933,
1937). Moreover, in the late 1990s, a tension between the model predictions and the
measured galaxy correlation on large scale was discovered (Maddox et al., 1990).
Thanks to high redshift Supernovae distance measurements, the accelerated rate
of expansion of the Universe was finally observed (Perlmutter et al., 1999; Riess
et al., 1998; Schmidt et al., 1998). Several theories try to explain this unexpected
behaviour both introducing the effect of some kind of Dark Energy or by a modified
theory of gravity.

The currently accepted cosmological model is called flat-A CDM. It is defined by
six main parameters and on the assumption of flatness. The energy content of the
Universe is dominated by a cosmological constant, A, and by CDM. The current
density distribution is the result of initial Gaussian adiabatic fluctuations seeded in
an inflational period of fierce accelerated expansion.

Despite its notable success in describing many cosmological data sets, the Stan-
dard Cosmological Model leaves many questions unanswered. They span from the
comprehension of the physics of inflation to the possible presence of relativistic
species at the decoupling epoch, beyond the known photons and neutrinos. More-
over it is still not certain what the mass of neutrinos might be, nor whether the
primordial helium abundance is consisten with the Big Bang nucleosynthesis pre-
dictions and if the initial fluctuations were actually adiabatic. Last but not least,
the nature of dark matter and dark energy is still poorly understood.

The structures observed in the present Universe are formed as a result of the
gravitational collapse of the initial perturbations in the density field. On the large
scale their occurence drammatically depends not only on the action of gravity itself
but on the background evolution too, namely on the same characteristics of the
Universe that outline a cosmological model. Almost all viable existing theories
for structure formation are hierarchical: the matter distribution evolves through a
sequence of ever larger structures. Hierarchical scenarios of structure formation are
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successful in explaining the evolution of gravitationally bound virialized haloes and,
in particular, the excursion set approach provides a useful framework to evaluate
their formation histories. This approach was originally proposed by Bond et al.
(1991) as a re-formulation of the earlier Press and Schechter (1974) work on the
prediction of the dark matter halo statistical distribution. It provides an analytic
approximation for the distribution of halo masses, merger rates and formation times,
and it can be extended to provide estimates of the mass distribution in randomly
chosen positions in space. One of the key assumptions of this approach is inherited
from the original work of Press and Schechter (1974): the initial perturbations
evolve into virialized objects with a spherical collapse and their distribution can be
predicted by a halo mass function. If one considers the large scale structure (LSS)
of the Universe, both in the redshift surveys and in the numerical simulations, a
common feature is the presence of filaments and sheets of matter. They represent a
distinctly non-virialized distribution of matter for which gravitational contraction
of initially unspherical density peaks has only been accomplished along one or two
dimensions. Several modifications of the halo mass function have been proposed
(Sheth et al., 2001; Sheth and Tormen, 2002) to account for ellipsoidal collapse and
thus to better model the actual matter distribution in the Universe.

Cosmic voids occupy a significant fraction of the Universe volume. They are
large underdense regions where matter is evacuated and then squeezed in between
their boundaries, as a result of the repulsing effect of gravity. Figure 1 illustates how
cosmic voids appear as a major component in the galaxy distribution. They have
been identified in all the wide angle surveys ever obtained (see e.g. Colless et al.,
2003a; Tegmark et al., 2004; Micheletti et al., 2014). While galaxy clusters encap-
sulate most of the mass in the Universe, voids are a dominant component of the
total volume over the megaparsec-scale. For their nature, voids are only mildly non-
linear objects, since while evolving they encounter a crucial physical limit: matter
density cannot be less than zero. This results in the minimum possible density con-
trast achievable by a region, § = —1. Furthermore, conversely to what happens to
overdensities, the evolution of voids removes the eventual unsphericity of the initial
density perturbation (Icke, 1984). These properties suggest that the employment of
a simplified spherical expansion model may be more accurate in describing the void
formation and evolution than it is in the description of overdensities (Blumenthal
et al., 1992).

Cosmic voids have gathered in the last decade a large popularity as cosmological
tools. With typical sizes over the tens of megaparsec they are between the largest
observable structures in the Universe. For this reason they are particularly suited
in bringing information about several hot topics. They are indeed extreme objects,
meaning that they generate from the shortest wavelengths of the matter perturba-
tion power spectrum. Moreover, their underdense nature makes them suitable for
a wide range of dark energy measurements.

The excursion set model has been applied to the study of underdensities, de-
veloping a theoretical model to predict the size distribution of cosmic voids (Sheth
and van de Weygaert, 2004). It is based on the assumption that cosmic voids are
nearly spherical regions which have gone through shell-crossing, i.e. where the inner
more underdense matter shells inside voids have reached the outer as a result of the
differential outward acceleration they experience. Nevertheless, this model lacks of
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Figure 1: Two samples of galazies obtained from the VIMOS Public Extragalactic Redshift Survey

(VIPERS) at redshift 0.5 < z < 0.9. In both the shown slices spherical cosmic voids are obtained

as mazximal spheres embedding a fized level of density and are shown in red. The grey points

are galaxies detected as isolated and galaxies outside the sample redshift range. The scales show
comoving distance in Mpc and the corresponding redshift. Figure from Micheletti et al. (2014).



INTRODUCTION xi

a complete validation, since it has been proven to systematically underpredict the
number of voids actually measured both in surveys and simulations. Jennings et al.
(2013) have proposed a modification of the model and demonstrated that it may
better predict the actual size distribution of cosmic voids.

The aim of this thesis work is to obtain a reliable method for the analysis of the
distribution of cosmic voids with an eye to the possible future employments. We
search for a valid theoretical model capable of predicting the void size distribution
in simulated but realistic catalogues of mass tracers.

Our work is organized as follows: In Chapter 1 we give a general introduction
to the cosmological framework. In Chapter 2 the theory of non-linear evolution
is outlined, focusing on the spherical expansion of underdensities which leads to
the formation of cosmic voids. In Chapter 3 we present the main algorithms and
computational tools we used in our work and finally we describe the algorithm we
have built to find spherical non-overlapped voids. Chapter 4 is dedicated to the
validation of our fiducial model, trying out its reliability for void abundances in a
set of N-body simulations with different conditions. While in the previous Chapter
we make use of unbiased tracers in Chapter 5 we extend our discussion to more
realistics cases, searching for a void size function capable of making predictions for
voids identified in the distributions of biased tracers. In Chapter 6 we finally draw
out our conclusions and give some hints on the possible prosecution of our work.



Chapter 1

The cosmological framework

The growth of the primordial quantum fluctuations in the gravitational potential
leads to the observed Large Scale Structure (LSS) of the Universe. As a result,
studying the structures which populate the Universe should give information about
the Universe as a whole, its energy content and the processes which dictated its
evolution from the primordial stages to what is observed today. Since on sufficiently
large scales the predominant interaction is gravity, a cosmological model should be
described in terms of Albert Einstein’s theory of General Relativity (GR, Einstein,
1915).

In the context of GR, gravity is encoded in the geometry of space-time, which
is described by a metric tensor, g,,. The minimum separation between two events
in space-time, (¢,x1,z2,x3) and (¥, 2], 2%, 24), is given by

ds? = g dzt dz” = goo dt? + 2 go; da* dt + Jij dz’ da? | (1.1)

where goo dt? is the time term, 9ij da® da’ the spatial term and 2 gg; d2* dt the mixed
term.

The space-time metric is connected with the energy-momentum tensor, 7},
which decribes the matter and energy content of the Universe, by the FEinstein’s

Field Equation of GR:

1 &G
Rm, — §gMVR = CTTIW , (1.2)

where G' is the gravitational constant and c is the light speed. R, and R are the
Ricci Tensor and Scalar, respectively, defined from the Riemann Tensor RKW:

ov )

R, = RZ

R=R)=9¢""R,, .

The left-hand side of equation (1.2) is the Finstein’s Tensor, G, = Ry, — %gw,R,
which returns information about the space-time metric.

Equation (1.2) states that the matter and energy content of the Universe deter-
mine its geometry. In the general Big-Bang model the different energy components
are considered as perfect fluids, with an energy-momentum tensor

T;w = PG + (p + pCQ)UuUV ) (13)
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where p is the pressure, pc? is the energy density and uy are the components of the
4-velocity.

All the models developed in modern cosmology are based on the previous equations
and on a fundamental assumption, the Cosmological Principle(CP), which states
that on sufficiently large scales the Universe is both isotropic and homogeneous.
As a result of the growth of the initial perturbations, with time passing this scale
grows. Nowadays the CP is respected on scales over some hundreds of megaparsecs.
The CP basically means that there are neither preferential directions nor positions
in the Universe.

The metric tensor can be expressed in a simple form which encodes the CP, as
we will discuss in the next Section.

1.1 The Friedmann-Robertson-Walker metric

Under the hypotesis of homogeneity and isotropy stated in the CP, it is possible
to define a universal time so that, at each moment, the spatial 3D metric di? =
9ij da?da’ (where i,j = 1,2,3), is the same in each position in space. To do that,
the mixed terms in eq. (1.1) have to be null, meaning that the go; components of
the metric tensor have to be equal to zero. This leads to the general form

ds® = 2 dt* — g;jda’ da? = (cdt)® — dI?. (1.4)

Any point in space-time is labelled with a set of spatial coordinates x; (i =
1,2,3), called comoving coordinates, which are the coordinates at rest with the
Universe’ expansion. In the same way, it is possible to define the proper time, t, as
the time measured by a clock at rest with the Universe’ expansion. To determine
gij we have to find a 3-space metric which follows the requirements of homogeneity
and isotropy of the CP.

The 3-dimensional Rienmann tensor R;jx; determines the curvature of a 3-space
while the scalar product of its contraction R;; = R, j (the Ricci curvature tensor),
with the 3-space metric, g;;, gives the scalar curvature R. With the CP, R;ju
do not depend on the derivatives of the metric g;;, while the scalar R has to be
constant. For the simmetry properties of the deriving form of the Rienmann tensor,
it is possible to define the most general metric of the form (1.4) embedding the CP,
which is the maximally symmetric Friedmann-Robertson- Walker metric:

dr?

1 — kr2

ds? = (c dt)® — a?(t) +72(sin® 0dg® + d6?) | (1.5)

where k is the curvature parameter and a(t) is the expansion (or scale) factor,
which is a function of time and determines the overall scale of the spatial part of
the metric.

Let us consider a free particle at rest in the origin of the comoving coordinates
system at some time. Because of the absence of a preferential direction, no accel-
eration can be induced to a particle which moves along a geodesic. Thanks to the
required homogeneity, each world line ' = const is a geodesic.
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In a universe where the metric (1.5) is valid, the spatial hypersurface curva-
tures can be either positive, zero or negative, depending on the value of k. This
parameter can be either (i) k = +1 (closed universe) which means the universe
has a positive Gaussian curvature 1/r? and the geometry is hyperspherical (pseudo-
Euclidean), (i) x = 0 (flat universe), the space has an infinite curvature radius and
the usual Cartesian geometry is valid (Euclidean), and (7ii) kK = —1 (open universe),
the universe has a negative Gaussian curvature, leading to a hyperbolic geometry
(pseudo-Euclidean). For the flat k = 0 space the homogeneity and isotropy are
obvious properties, as we have a familiar Euclidean 3D space.

The k = +1 space is closed, meaning that its volume is finite, as its geometry is
analogous to that of a sphere in a 3-dimensional space, and its set of boundaries is
empty. Introducing a new coordinate defined as

q sin~1r (for k = +1)
-
X =F(r):= / =1 (for k = 0) , (1.6)
V1 — 2
HT sinh ™! r (for kK = —1)

it is possible to re-write the spatial part of the metric (1.5) in terms of (x, 6, ¢):

di? = a?[dx® + f2(x)(d6? +sin? 0 d¢?)] , (1.7)
where
sin (for k = +1)
FO) = q x (for k= 0) (1.8)

sinh x (for k = —1)

For k = +1, equation (1.7) represents a 3-dimensional sphere of radius a, embedded
in a 4-dimensional pseudo-Euclidean space:

2 2 2 2 2
$0+ﬂf1+x2+x3:(l s

where (z9, 21,22, 23) are the Cartesian coordinates. It is also possible to define a
set of angular coordinates on the sphere using the relations

Tg = a siny
r1 = a cosxsinfsin¢
To = a cos y sinf cos ¢

T3 = a cosx cosf
so that the line element on the sphere
dL? = dzd + daf + dai + da?
becomes

dL? =a? [dx2 + sin? x(d#? 4 sin? 0 d¢2)] )

sphere

which is identical to the (1.7) with x = +1. The space of the k = 1 metric is
completely covered, at a fixed time, by the range of angles

0<x<m , 0<0<7m , 0<¢<2m,
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and, as already said, it has a finite volume:

27 g T 2T T T
V:/ d¢/ cw/ dyg = a® d¢>/ sin9d9/ sin? y dy = 27%a® .
0 0 0 0 0 0

The surface of this volume can be parameterized in terms of ¥,
S = dma®sin?y |

and varies as x changes in time. Firstly it increases, it reaches a maximum value at
X = /2 and then it decreases. In such a space, S(x) is systematically larger than
in a Euclidean space, the sum of the internal angles of a triangle is larger than .

Analogues equations for the kK = —1 space can be obtained by substituting all
the trigonometric functions with the respective hyperbolic functions. In this case
the space is open and infinite and its properties are more like that of a Euclidean
space. The sum of the angles of a triangle is less than 7 and S(x) is systematically
smaller than in the Euclidean space.

1.1.1 The Hubble Law and the reddening of distant objects

With a FRW metric, the proper distance, dp,, between two events is

1—&r

dpy = /OT Ldr,& = a(t)F(r) (1.10)

and depends on time through the scale parameter a(t). It is also possible to define
a comoving distance

de := dpr(to) = a(to)F(r) = apF(r) , (1.11)

which is the value of the proper distance at the present time, ¢ = t3. The two
measures are related by the equation

t
dpr = @dc . (1.12)
ao
To see how fast two points drift apart, as a consequence of the Universe expan-
sion, let us do the derivative of equation (1.10) with respect to time:
d F(r) ~

F(r)+a(t) T a(t)F(r)+a(t)F(r) ,

_ddy  d

v = —la(t)F(r)]

~da(t)
dt  dt N

dt

where F = 0, so that it becomes
v=—"=dp = H(t)dy , (1.13)

which is the well known Hubble Law, where we have defined the Hubble Parameter
H(t) = a/a. This parameter measures the isotropic expansion velocity and has the
same value for the whole Universe at a given cosmic time. The global motion of
objects in the Universe with respect to each other is called Hubble Flow. It has to be
noticed that H(t) is measured in s~! and, by taking the oversimplified assumption
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that for all its history the Universe has expanded with the same rate, its inverse is
a rough estimate of the time passed from the beginning of the expansion.

Since on large scales, objects are affected by this expansion, their motion will
result in a reddening of their observed spectrum. Formally, this reddening is due
to the expansion of the electromagnetic wavelength with the space in which it is
embedded. Let us consider once again the FRW metric in polar coordinates, eq.
(1.5), with d¢ = df = 0. Massless particles have ds? = 0 by definition. Photons
move along null geodesic with the expansion of the Universe. If a photon is emitted
from a point with comoving coordinates (r,0,0), at some (earlier) time ¢, and it is
observed at time tg, integrating the metric along the path we have

/ttofwcg:/wa:: Fr). (1.14)

e

When a second photon emitted from the source at t, = t. + dt, reaches the observer
at t{, = to + dto, given that F(r) does not change because comoving coordinates
have been assumed, eq. (1.14) can be written

/% A piy (1.15)

t a(t)

If 6t and, therefore, 0ty are small, the equivalence between the two equations (1.14)
and (1.15) implies that dtg/ag = dty/a(ty) = dt/a(t). This affects the frequencies
of the emitted and received light which depend on 6ty and §t., respectively. In
particular vea(t.) = vpag or, equivalently,

a(t) _ ao
Ae Mo
from which
142= 0 (1.16)
=0 .

In the last equation, we have defined a new variable which is more directly ob-
servable than the expansion parameter a. This variable is called redshift and is
usually implemented in equations to account for the expansion of the Universe. It
is defineded as
)\0 - )\e
Ae

Using the same line of thought for a particle instead of a photon, it is possible

to demonstrate that the Hubble law is naturally predicted by the FRW metric.

1.1.2 Friedmann Equations

Without making any assumption on the geometry of the Universe, we apply the
FRW metric (1.5) in the field equations (1.2). Out of the 16 equations of the
system only two are independent. These are the evolution equations for a(t) and
describe the dynamic evolution of the Universe:

4
EL:—WG<p+ if)a, (1.17)
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a? + ke? = 8?WGpa2 , (1.18)

where a dot indicates a derivation with respect to the cosmic time t. Equation
(1.17) and (1.18) are the First and the Second Friedmann Equations, respectively.
Each of these two equations can be recovered from the other one by applying
the adiabatic condition,
dUd = —p dV

where U is the internal energy of the Universe. As long as the Universe is considered
as a closed system, it expands and evolves without losing energy. So this latter
equation means that the Universe expands adiabatically. It can be rewritten in the
following equivalent forms:

d(pc?a®) = —pda® (1.19)
) d
pa’ = P [af)’(pc2 +p)] (1.20)
. p\a
3 = ]—=0 1.21
p+ <p+ 02> . (1.21)

The density, p, in these equations has to be considered as the sum of all the densities
of the components of the Universe.

1.1.3 Friedmann Models

The Friedmann Equations (1.17) and (1.18) define a set of cosmological models
which have been studied and improved for almost a century since their first proposal
(Friedmann, 1922). In universes where eq. (1.17) is valid, the evolution cannot be
static (@ = 0) unless

p= —3% , (1.22)
which implies that either density or pressure must be negative. If this is not the
case, then the Universe will eventually collapse under its own self-gravity. Since
Einstein was firmly convinced that the Universe must be static, he modified the eq.
(1.2) by introducing the cosmological constant A:

1 887G
RNV - ig'UVR - Ag/U/ = CTTMV . (123)

With an appropriate choice of A, one can obtain a static, even though unstable,
cosmological model.

When Hubble finaly discovered the expansion of the Universe, Einstein regretted
the introduction of this constant but, at the end of the 20th century, A-models
made a come back as a result of the discovery of the accelerated expansion of the
Universe (Perlmutter et al., 1999; Riess et al., 1998; Schmidt et al., 1998). The
cosmological constant acts as a “repulsive force” which counteracts the attractive
pull of gravity. The scientific community now believes that the introduction of A in
eq. (1.17) is a valid method to account for the observed cosmic acceleration. This
acceleration is still not well understood, as it does not exist a fully consistent and
natural explanation for its origin, and it is generally labelled as the resulting effect
of some kind of Dark Energy.
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To solve eq.s (1.17) and (1.18), that depend on three parameters, a(t), p and p, it
is necessary to introduce an equation of state for the fluid composing the Universe.
The mean free path of a particle is smaller than the typical scale of macro-physics
phenomena which involve structure formation and evolution in the Universe. It is
then acceptable to adopt the perfect fluid approximation when studying cosmology.
The equation of state of such a fluid can be expressed by the general form

p = wpc? (1.24)

where w is defined so that the sound speed is

1/2
= (‘”’) _ o
op)g

This operative definition also sets the Zel’dovich range 0 < w < 1 in which w is
physically acceptable!. Different components have different values of w. The “ordi-
nary” components can be divided into two families, relativistic and non-relativistic.
The equation of state of a non-degenerate ultrarelativistic fluid in thermal equilib-
rium has w = 1/3. Even though a fluid with a similar equation of state is usually
referred to as a radiative fluid, it can be used to describe relativistic particles of
any form (e.g. photons, neutrinos). On the other hand, w = 0 is used to represent
any material whose contribution to pressure can be neglected (i.e. dust). This is a
good approximation to the behaviour of any form of non-relativistic fluid, such as
ordinary matter. For what concerns A, by analogy to the other fluids and following
eq. (1.23), it is defined to behave as a perfect fluid with w = —1.

Therefore the total energy-momentum tensor of eq. (1.2) is given by the sum of
all the components with different state equation:

T = ZT,SQ .

Combining eq.s (1.19) and (1.24), the following dependence, which describes
how the densities of the different components vary through cosmic time, can be

derived:
o o a 30T o (1 4 z)730+w) (1.25)
As a result of eq. (1.25) we can assert that, in different cosmic epochs, different

components have prevailed over the others.
Eq. (1.18) can be re-written to derive the curvature of the assumed FRW metric

S5 (2).

a 2
0= () = e .2

is called the critical density and expresses the density a Friedmann Universe must
have to be flat (v = 0). It can be used to define the dimensionless density parameter

where

Qt) = ppc ((tt)) ; (1.28)

!Nevertheless, physically significant cases with w < 0 exist (e.g. during inflation).
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where the density p can be either that of a single component (£2,,) or of the sum of
all of them (7). In a flat universe Qr = 1, while in open or closed universes it is
< 1 or > 1, respectively.

From the condition of adiabatic expansion one can derive the evolution of the
density parameter of each component, keeping in mind that the equation of state
parameter w has to vary accordingly:

Q(2) = Qouw(1 + 220 (1.29)

Equation (1.29) also justifies the need to constrain the values of cosmological pa-
rameters at present time. All of our models are obtained as approximations around
the point in space-time where more information is available: the present time. As
long as an evolving model is assumed, the time is relevant, while for the Copernican
principle the position in space is not.

It is useful to re-write the Second Friedmann Equation in terms of 2, H and z,
which are more representative parameters of the observable universe. Eq. (1.16) and
the definitions in eq.s (1.28) and (1.13) can be combined with eq. (1.18), becoming

H?(z) = H3(1 + 2)* [1 = Q0w + Y Qow, (14 2) (1.30)

where H(z) = a/a is the Hubble parameter at a generic time ¢, >, Qg = Qr is
the sum of all the i-th components, labelled with their value of w;, and where the
subscript 0 indicates the measure of the parameter at z = 0. The quantity 1 — Qp
is then a measure of curvature.

Let us now consider eq. (1.17) instead, and re-write it by applying the eq. (1.2).
It becomes

4
a= —%Gp(l +3w)a . (1.31)

This last equation implies that, if w fits in the Zel’dovich interval, d has always been
less than zero and so the graph of a(t) is concave. While the existence of the Hubble
Law implies that H(z) is positive, eq. (1.30) states that a(t) grows monotonically.
All these considerations allow us to say that in a Friedmann Universe, at a certain
finite time in the past (zgp > 0) a(zpp) must have been equal to zero. At this
point a singularity both in density and in the Hubble parameter may exist in all the
models of the Universe filled with fluids having —% < w < 1. The scale factor of
the Universe vanishes, while the density and the expansion speed diverge, leading
to the BB scenario.

Note that the expansion of the universe emerging from the BB model is a result
of the initial conditions describing a homogeneus and isotropic Friedmann Universe,
and it is not due to pressure, which here acts to decelerate the expansion (Coles
and Lucchin, 2002).

1.1.4 Flat VS Curved Universes

It has already been demonstrated that at different cosmic epochs different com-
ponents prevail over the others. It is then possible to roughly approximate our
Universe as if it was made only by one component as long as it is studied in periods
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far from equivalences. The general solution for a mono-component fluid in a flat
universe (29 = 1) is called Einstein-de Sitter Model (EdS). In this model the eq.
(1.30) reduces to

3(14w)

H(z) = Hy(14+2)" 2 . (1.32)

Some useful dependencies derived by applying the EAS model are reported in Ta-
ble 1.1 in the general case and in two particular cases, a dust universe and a perfect
radiative fluid.

General w=0 w=1/3

alt) = a(E) T alt) < a(t)

2
t=1to(1+2)30F )  toc(1+2)7%2 toc(1+2)72

_ 2 -1 _ 2 _ 1
H(t)_mt H(t) =% H(t) = 5
_ 2 1 _ 2 1
to = sty @ to = 377, to = 51,
1 1 _1 1 3 1

pP= 6mG(14+w)? t2 P = &G 12 P = 337G 12

Table 1.1: Dependencies of the EdS model in three different cases: general case, dust uni-
verse (w = 0), radiative fluid (w =1/3).

In the general case we have Qg # 1 but, at high redshift, the term (1—g) inside
parentheses in eq. (1.30) is negligible with respect to the other term, which grows
faster with increasing redshift. If we define the critical value z* so that

11— Q| = Qo(1 4 2%)1+3 (1.33)

inside the interval z > z*, eq. (1.30) will reduce to

3(1+w)

H(z) = Hov/Q(142) "5

which differs from eq. (1.32) by only a factor /€. A curved universe will then
behave as an EdS universe until z > z*, meaning that it is acceptable to consider
the young universe as flat. For the range of values of €}y suggested by present data,
this approximation is valid up to z =~ 10.

1.2 The Standard Cosmological Model

As it has already been said, mono-component models are acceptable approximations
but, in order to have a more realistic representation of the Universe, all of its
components must be taken into account. The flat-A CDM cosmological model takes
its name from the assumed flat geometry and its major components at z = 0,
namely the cosmological constant and a dust component called Cold Dark Matter
(CDM). It is supported by a set of observable cosmological parameters which are
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constrained by constantly improving experiments. Our Universe is composed by a
radiative fluid together with different forms of dark matter (DM) and energy (DE).

The radiative fluid component is made up by all the particles that are relativistic
at a given time. At z = 0 they are basically photons and possibly neutrinos, but
their contribution is negligible. The density parameter of photons can be estimated
by measuring the energy density of the CMB, which gives us Qg , ~ 107°.

The matter component is divided in baryonic (i.e. the “ordinary” matter) and
non-baryonic (i.e. DM). The first interacts with photons and is then observable,
while the latter only interacts via gravity, making its direct observation impossible
with standard methods based on the emission of light. Even though we cannot
see it directly there is strong evidence of its existence, e.g. by the gravitational
anomalies found in galaxy clusters. In a brief publication Ostriker (1999) reported
the importance of “an extraordinarily prescient paper” by Fritz Zwicky published
in October of 1937 (Zwicky, 1937) in which the bases of our current believes on
matter were founded. The ideas of Zwicky were based on a set of observations of
the Coma cluster started 4 years before (Zwicky, 1933) and considerations on the
virial theorem. He had already noticed the existence of a discrepancy in the mass
of the cluster estimated using luminosities and the measured velocity dispersion of
the galaxies which make up the cluster. He found that the mass-to-light ratio of the
system was two orders of magnitude greater than that of the solar neighborhood and
concluded that, if his results were to be confirmed both by more data on velocity
dispersions and by other means?, “dark matter is present in a much greater density
than luminous matter”.

Since Zwicky’s discoveries and later works, from the 1970s a lot has been done
to understand the nature of this elusive component of our Universe. The distribu-
tion of DM has been studied from the scale of galaxies, through the study of the
rotation curves of disk galaxies and of the velocity dispersion of elliptical galax-
ies, to the larger cosmological scales, in the CMB’s spectrum. All these data have
confirmed the existence of a ruling component in the matter distribution which is
nothing like what we are used to. A large zoology of possible explanations and
candidates for DM has been proposed so far. Even though the majority of the
scientific community accepts that it should be made of weakly interacting massive
particles (WIMPs) within the Standard Cosmological Model, other explanations
involve both modifications of the theory of gravitation or exotic particles. For a
(almost) complete review of what is currently known about DM one may refer to
Bertone et al. (2005) and Kuhlen et al. (2012).

From the early 1990s, a tension in the model of flat matter-dominated Universe
came out when measuring galaxy correlations on large scales (Maddox et al., 1990),
leading to a revived interest for the cosmological constant A, initially proposed by
Einstein at the dawn of modern cosmology. This culminated with the discovery of
the accelerated expansion at the end of the decade, which led to the need of a modi-
fication in the cosmological models through the introduction of the DE component.
Despite the refinements under which the standard ACDM model has gone during
all the 21st century and the remarkable success it achieved, its theoretical roots

2He also suggested some other experiments which could have been done to confirm his theories,
such as gravitational lensing studies. In his paper of 1933 he also used the term “Cold Dark Matter”
for the very first time (dunkle [kalte] matter).
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are yet poorly defined (Baldi, 2012b, and references therein). The mostly accepted
explanation (i.e. the cosmological constant) is not an explanation, and supposes
the existence of a physical mechanism not yet discovered capable of causing the
observed acceleration, but a wide range of alternatives has been proposed.

In a Friedmann Universe with FRW metric (1.5) Einstein’s field equations are
written as in eq. (1.23). If we consider T, = 0, eq. (1.23) describes the empty
space, and so A # 0 is a measure of the energy of vacuum which acts as a repulsive
force, counteracting that of gravity. Eq. (1.23) can be re-written to resemble eq.
(1.2) if we enclose the energy of vacuum in the energy-momentum tensor eq. (1.3)
is then re-written as

T =P + (p + pc2)uuu,, + Ag/u/ = _ﬁgwf + (ﬁ + ﬁC2)uuul/ ) (1'34)

where p = p+ pp and p = p + pp with

Act Ac?
= — d = . 1.35
P o d opai=om (1.35)
In the flat-ACDM model, A is a true constant and the equation of state then leads
to w = —1. From eq. (1.29) it is possible to see that, while matter (w = 0)

and radiation (w = 1/3) have densities that evolve with redshift, respectively as
o (142)3 and as (1+2)%, and since the energy density of DE is constant throughout
the whole expansion history of the Universe (eq. (1.35)), QA (w = —1) only depends
by the critical density evolution, thus by the evolution of the scale factor.

Let us now define a decelleration parameter,

gty = Al _ 1 (1.36)

which expresses a dimensionless measure of the second derivative of the scale factor
a(t).

In a mono-component matter Universe with w = 0 and p = 0, the First Fried-
mann Equation with definition (1.29) leads to ¢ = Q,s/2, which implies that ¢ > 0
independently of time. In such a Universe the expansion is decelerated, that is not
compatible with present observations. Introducing the cosmological constant in the
First Friedmann Equation one obtains a multi-component model with

Q
i = —aHQTM +aH%Qy |

where Qp = é\ﬁz Using the definition (1.36), it becomes:

has to be satisfied. With the currently accepted values of the two parameters
Qpr ~ 0.3 and Qp ~ 0.7, it results that ¢ ~ —0.55.
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Our Universe is approximately flat (Qp; + Q &~ 1), as also confirmed by recent
measurements, but the evolution of the scale parameter cannot be that described
previously. In the earlier moments of its evolution, each universe evolves as EdS
(@ < 0) but, because of the observed later time acceleration (@ > 0), the graph has
to present a flex where d(zf) = 0. This change in the behaviour of the model is
found to occur at zy ~ 0.68.

Using eq. (1.29), if we impose Qps(z¢q) = Qa(2¢q) wWe can obtain the redshift
of equivalence, zeq ~ 0.33. Since this result implies that the A-component’s con-
tribution became relevant only at recent times, it is refered to as the Coincidence
Problem.

1.3 Jeans Theory and Expanding Universes

The anisotropies in the CMB are a fossil of the density perturbations in the cosmic
fluid at the time of recombination. From the amplitude of the fluctuations in the
temperature power spectrum it is possible to derive the amplitude

for primordial perturbations, where T is the mean black body temperature of the
CMB. However, if one considers what is observed in the present Universe in terms
of galaxies and clusters at megaparsec scales, and in terms of voids, filaments and
sheets on scales over 10 Mpc, the Universe appears to be quite inhomogeneous and
shows the charachteristics of a highly non-linear evolution. In the largest surveys
it is however possible to recover the homogeneity on scales over hundreds of Mpc,
and fluctuations arrange around amplitudes of approximately 107

The non-linear structure of the Universe is a consequence of gravitational in-
stability, which makes the small initial perturbations grow. Matter is attracted by
overdense regions and evacuated from underdense ones, thus amplifying already ex-
isting inhomogeneities. This process is analytically described by the Jeans theory
which makes use of the Newtonian theory of gravity to find solutions which aim
at the description of how fast an initial perturbation has to grow to reproduce the
inhomogeneities observed today. The results derived in this theory are applicable
only to non-relativistic matter on scales not exceeding the Hubble horizon (i.e. the
sphere causally connected with an observer). The Hubble horizon is defined as

Ry = a(t)/t ;(if; , (1.37)

where time tgp = 0 is the instant when the expansion started. On scales larger
than the horizon, gravity is the only interaction which plays a role, but it has to be
treated by means of a fully relativistic theory. On the other hand, at sub-horizon
scales, the Jeans theory provides a reliable theory of perturbations in an expanding
Universe. We will first present the general arguments of this theory in the simplyfied
case of a static Universe, even though it is known that this is not the case, and then
we extend the solutions to an expanding Universe.
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1.3.1 Instability in a Static Universe

We assume a homogeneous and isotropic background with constant, time-independent
matter density, p(x,t) = const, in a static non-expanding Universe®. Let us consider
the following system of hydrodinamic equations in adiabatic conditions:

0

875 +V-(pv)=0 mass conservation (1.38a)

ov 1 .
57 +(v:-V)v=—=-Vp-Vo Euler equation (1.38b)

P

V20 = 47Gp Poisson equation (1.38¢)
p=p(p,S)=p(p) equation of state (1.38d)
% =0 adiabatic condition (1.38¢)

where v is the velocity vector of a fluid element, ® the gravitational potential, p the
pressure and S the entropy. Eq.s (1.38) are solved for a background (B) solution

pB = const pB = const

®p = const v=0.

Introducing a small perturbation § A, where A is one of the five variables of the sys-
tem, then substituting this term in the system (1.38), one obtains the hydrodinamic
system for a fluctuation in the density field. If we define the adimensional density
fluctuation

5(x, 1) = 22050 (1.40)

PB

and require it to be small, § < 1, the system (1.38) can be linearized. The solving
equation for density is a differential equation of d(x,t) which, in the Fourier space,
has the form

o + (k2c2 — 4nGpp)o =0 , (1.41)

where k = |k|, 5k = 0x(t) is the Fourier transform of §(x,t), ¢2 := (9p/dp)s is the
sound speed and a dot denotes a derivative with respect to time ¢. Eq. (1.41) has
two independent solutions dx o exp(+iw(k)t), where

w(k) = Vk?>c2 — 4nGpp . (1.42)

The behaviour of these adiabatic perturbations depends crucially on the sign of the
expression under the square root in (1.42). Defining the Jeans length,

2T T 1/2
AJi= — =¢Cs| =—— , 1.43
TS <GPB) (143

as the scale corresponding to w(ky) = 0, the perturbation propagates as a sound
wave when A < A; with a phase velocity c,, = w/k. This velocity tends to the
sound speed in the limit k£ > k; or, equivalently, for small scales A < A .

3Even though the assumption of matter at rest causes an inconsistency in the Poisson equation,
as it would require a null gravitational field, it will be automatically solved by the introduction of
an expansion factor.
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On the other hand, for very large scales, gravity dominates and the fluctuation
grows rapidly as an exponential. This represents the phenomenon of the Jeans
instability: small density fluctuations evolve according to their scale and, if they
can grow, they do it exponentially.

1.3.2 Instability in an Expanding Universe

In an expanding homogeneous and isotropic Universe, the background density is a
function of time, pp = pp(t), and the velocities are not null but obey the Hubble law,
vp = H(t)x. Substituting these expressions into (1.38a) one obtains the equation

pB+3H(t)pp =0, (1.44)

which states that the total mass of non-relativistic matter is conserved. Introducing
a fluctuation in equations (1.38) and accounting for a double component velocity,
u := x = H(t)x+v, where the first term accounts for the Hubble flow and the second
describes the peculiar velocity of the fluid, it is possible to recover the solution for
every Fourier mode § = 0y (t) exp(ikx):

519 + 2H(t)5k + (k‘2cg - 47TGpB)5k =0. (1.45)

The last equation is the dispersion relation, where the term 2H (t)dk represents the
Hubble friction, while k?c26;, accounts for the characteristic velocity field of the
fluid, both these terms oppose to the growth of fluctuations.

The eq. (1.45) is a second-order differential equation for d(x,t) with growing
and decaying mode solutions:

5(x,t) = A(x)D(t) + B(x)D_(t) , (1.46)

where A and B are functions of the comoving coordinate and Dy and D_ are
functions of the time coordinate. A growing solution of eq. (1.45) has scale bigger
than the Jeans scale (expressed in physical units)

o ma_ [
J k‘J s GPB’

and depends on the cosmological model through H(t).
We can rewrite the eq. (1.45) for ¢ as an equation for the growth factor

.. . 3
D +2H(2)D — EQm,Oﬂgu +2°D=0,

where the time dependence has been substituted with a dependency on redshift.
If we apply the dependencies in Table 1.1 for an EdS Universe with €, = 1, the
growing and decaying solutions are

Dy (t) o t¥? x a(t)

and
D_(t) xt ' x a3,
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respectively.

A more complicated algebraic expression for D, (¢) in the case of Q,, < 1,
Qp = 0 is given in Peebles (1980).

For a flat Universe with a cosmological constant, the solution to the differential
equation can be written in integral form

H(z) /°° dz'(1 4 2) U“’ dz/(1 +z')]l ?
z 0

D+(2) = =5 H3(2) H3(2)

where the factor in brackets makes the normalization Dy =1 at z = 0.

For other equations of state of DE, or for more components (curvature, radia-
tion), no general integral expression exists, and the differential equation must be
solved directly.

To a good approximation, dln D, /dIna =~ Q%3 implying D, o a while Q,, ~ 1
and a slowing of growth as €2, falls below unity.

If we assume that density fluctuations appear at some very early time, then at
a much later time we care only about the growing mode D, (¢), which we can just
call D(t). Thus
D(t)
D(t;)
As long as § < 1, density fluctuations simply “grow in place” in comoving coordi-
nates.

d(x,t) =0(x,t;)

(1.47)

1.3.3 Primordial Density Fluctuations

The theory developed in the previous Section applies to a single Fourier mode of
the density field §(x,t) = D4 (t)d(x). In a realistic representation of the growth
of structures a superposition of waves has to be considered. We model the density
field as a superposition of Fourier modes with different amplitudes. This approach
requires a statistical description of the initial perturbations and implies that any
comparison between theory and observations will also have to be statistical.

The spatial Fourier transform of §(x) is

5(k) = (2;)3 / dBx~*Xgx (1.48)

We can define the power spectrum of the density field as the variance of the ampli-
tudes at a given value of k:

(5(k)5*(K)) = (2m)? (k)6 (k — K/ | (1.49)

where 5g’) is the 3-dimensional Dirac delta function. In definition (1.49) the CP is
expressed by P(k) = P(k). The power spectrum is related via a Fourier transform
to its analogous quantity in the real space, the correlation function, &(r), of 0(x):

£(r) = (271r)3 / d®k P(k)e*> (1.50)

where £(r) is defined by
(6(x)0(x)) = &(Ix —x|) = &(x) =&(r) (1.51)
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with r representing the distance.

The shape of the initial fluctuation spectrum is assumed to be imprinted in
the Universe at some arbitrarily early time. Since the accepted inflation scenario
states that the seeds of today’s structures are generated by stochastic quantum
fluctuations in a scalar field (i.e. the inflaton), the initial P(k) should produce a
power-law form

P(k) = Ak™ (1.52)

where the spectral index is generally assumed to be close to unity, n = 1 (Zeldovich,
1972). While the shape of the power spectrum may be fixed by these considerations,
the amplitude is not and the gap should be plugged with observations. Nowadays
the most reliable measure of A is obtained from the temperature fluctuations in the
Cosmic Microwave Background (CMB).

In the real space the assumption of stochastical generation of fluctuations implies
their amplitudes have a Gaussian distribution. Although the mean value of the
perturbation §(x) = § across the statistical ensemble is identically zero by definition,
its mean square value, i.e. its variance o2, is not. It is possible to show that

= (16(x)°) = > _(Ix/*) Z%, (1.53)

k

where the average is taken over an ensemble of realisations of volume V,,. The
quantity 0 is related to the power spectrum by 67 = P(k). If we take the limit
Vi, — oo and assume that the density field fulfils the CP, we find

In eq. (1.54) the variance o2 is defined for each point in space. The measure
of 02 requires the reconstruction of the density field, which is far from trivial. In
fact, especially in today’s Universe, the observable mass tracers are not distributed
smoothly across space.

Instead of using a punctual variance, it is convenient to describe the fluctuation
field as a function of some resolution scale R. Let (M) be the mean mass found
inside a spherical volume of radius R, then we can define a density fluctuation from
discrete tracers as

M — (M)
oM = —F7— (1.55)
(M)
With this definition, and with that of eq. (1.53) we obtain the mass variance
M — (M))?
o3y = (33 = AL UD)F) <M<>2 Jy (1.56)

which is the convolution of the punctual variance with a window function W, since
Im(x) =6(x) @W(x,R) . (1.57)

From the last two equations, it is possible to render the dependency on the power
spectrum in the definition of mass variance, passing in the limit expressed by eq.
(1.54),
ol = 1/ k(P (k))W?(k, R) , (1.58)
(2m)3
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where W is the Fourier-trasform of the window function and which, as it must be,
is a function of R and therefore of M.

The meaning of the window function is in the implications of such an expression.
Since the higher values of k tend to be averaged out within the window volume,
0]2\/[ is dominated by perturbation components with wavelength A ~ k~! > R. The
Zel’dovich spectrum (1.52) is a growing function of k, so waves with much larger A

contribute only a small amount.

1.3.4 Non-Linear Evolution

When the density contrast of the perturbations approaches unity (§ =~ 1), the linear
theory approximation cannot be applied anymore, since its basic assumption fades.
It is then necessary to abandon the small-perturbations approximation and develop
a non-linear theory for the evolution of anisotropies.

The formation of the cosmic web, consisting of haloes, voids, filaments and
walls, is a natural outcome of the gravitational instability of these anisotropies.
This scenario is favoured by an overwhelming body of observational and theoretical
evidences.

After the linear regime breaks down, when § becomes comparable to unity, a
quasi-linear (or weakly non-linear) regime sets in. During this regime, even though
the density contrast may remain less than unity, the perturbations distribution
function starts to evolve into a non-Gaussian shape. The power spectrum changes
by virtue of a complicated cross-talk between different wave-modes.

For this kind of problems, analytical methods for special cases are available, but
a general solution is gained using numerical N-body experiments, which allow the
anlysis of strongly non-linear regimes. Since a physical limit for the underdensity
level is set at § = —1, voids always evolve as quasi-linear structures. We will
present in Chapter 2 the theoretical basis for the statistical prediction of the void
distribution, through an analytical solution of their non-linear evolution. We will
then present in Chapter 3 how do N-body simulations work and which are the
methods used in this work to verify that the predictions of the suggested model are
correct.

Moreover, further into the non linear regime, bound structures form. The bary-
onic content in these objects eventually becomes important and the simple treat-
ment presented in the previous Sections is no longer correct. The spatial distribution
of galaxies may be very different from the distribution of the DM, even on large
scales, as a result of hydrodynamical effects, star formation, heating and cooling
of gas. It is both possible to develop semi-analytical models based on empirically
derived relations to address this problem, or simply to assume that the point-like
distribution of haloes, galaxies or clusters, n(r) = ), 5533) (r — r;), bears a simple
functional relationship to the underlying d(r). It is generally believed that relative
fluctuations in the object number counts and matter density fluctuations are pro-
portional to each other, at least within sufficiently large volumes. This is expressed
by a linear biasing prescription:

: (1.59)
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where b is what is usually called the (linear) bias parameter. With such an ansatz,
the linear theory can be used on large scales to relate galaxy clustering statistics
to those of the underlying density fluctuations, e.g. Ugmy = b20]2\/[. We will get a
deeper insight into these issues in Section 2.4.



Chapter 2

Cosmic Voids in the large scale
structure

The cosmic web, consisting of haloes, voids, filaments and walls, is well predicted
by the CDM model (e.g. Bond et al., 1998) and confirmed by large galaxy surveys
(e.g. de Lapparent et al., 1986; Colless et al., 2003b; Alam et al., 2015; Guzzo and
The Vipers Team, 2013). Voids emerge out of the density troughs in the primordial
Gaussian field of density fluctuations. They have been shown to have a great poten-
tial for constraining DE and testing theories of gravity via several measurements.
These measurements include: distance measurements via the Alcock-Paczynski Test
(Ryden, 1995; Lavaux and Wandelt, 2012; Sutter et al., 2014b), weak gravitational
lensing of voids (Krause et al., 2013; Melchior et al., 2014; Clampitt and Jain, 2015;
Gruen et al., 2016; Sanchez et al., 2016), the signal of the Integrated Sachs-Wolfe
(ISW) effect associated with voids (Sachs and Wolfe, 1967; Granett et al., 2008;
Nadathur et al., 2012; Ili¢ et al., 2013; Flender et al., 2013; Cai et al., 2014; Planck
Collaboration et al., 2014, 2015b; Aiola et al., 2015), void ellipticity as a probe for
the DE equation of state (Lavaux and Wandelt, 2010; Sutter et al., 2015a; Bos et al.,
2012; Li et al., 2012; Pisani et al., 2015), void abundances and profiles for testing
theories of gravity and cosmology (Li et al., 2012; Massara et al., 2015; Barreira
et al., 2015; Zivick et al., 2015; Cai et al., 2015; Lam et al., 2015; Clampitt et al.,
2013; Li et al., 2012), coupled DE (Pollina et al., 2016), the nature of DM (Yang
et al., 2015), baryon acoustic oscillations in void clustering (Kitaura et al., 2016),
and redshift-space distortions in voids (Hamaus et al., 2015).

Despite their popularity and great potential as a cosmologica tool, a gap of
knowledge between the evolution of individual voids through simulations and ob-
servations versus theory still persists. In particular, even though a statistical de-
scription of the void number density as a function of the size has been developed by
Sheth and van de Weygaert (2004), it has been proven with simulations to lack of
a validation (Nadathur and Hotchkiss, 2015; Sutter et al., 2012; Pisani et al., 2015;
Colberg et al., 2005).

Blumenthal et al. (1992) studied analytically the evolution of (isolated) spheri-
cally symmetric voids. Using N-body simulations (Section 3.2) they showed that ad-
jacent voids collide, producing thin walls and filaments as the matter between them
is squeezed. The peculiar velocities perpendicular to the void walls are mainly tan-
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gential motions which cause the evacuation of the separating thin wall, eventually
resulting in the merger of neighbouring voids.

The time-scale on which the internal substructure of a void is erased is ap-
proximately the same as that when the void itself approches non-linearity. As this
re-arrangement of structure progresses to ever larger scales, the same basic pro-
cess of collision, evacuation and merging repeats. N-body simulations with more
generic cosmological circumstances yelded similar results (van de Weygaert and van
Kampen, 1993).

In this Chapter we present the theoretical foundations that leads to the develop-
ment of a statistical model to predict voids distributions. Their study is approached
with a scheme similar to that of overdensities: starting from the spherical evolution
of perturbations in the primordial density field (Section 2.1), we present the ezcur-
sion sets formalism in Section 2.2 which leads to the desired statistical distribution
of voids in terms of their size (Section 2.3). We present both the “classical” Sheth
and van de Weygaert model (Sheth and van de Weygaert, 2004, hereafter SvdW)
and its modification to account for the peculiar characteristics of void evolution
developed by Jennings et al. (2013) (hereafter JLH). Our work will provide a vali-
dation of the latter model, demostrating its applicability to the matter distribution
predicted by classical cosmological models.

We will also present an insight on a possible extension of the JLH model to
situations where the density field is not traced by the DM distribution but by a
halo distribution in Section 2.4. This will provide a step forward the exploitation
of the void size function in real situations, such as the galaxy distribution provided
by large cosmological surveys.

2.1 Spherical evolution

As we have seen in Section 1.3, it is possible to define the evolution of a density
perturbation in a linear regime, until the density contrast within it is §(x,t) < 1.
Nevertheless, structures in the Universe are found with a wide range of degrees of
non-linearity.

An analytical solution for the non-linear evolution of an isolated spherically
symmetric perturbation exists. This case is the simplest non-trivial model for the
decoupling of an anysoptropy in the density field, from the general Hubble expansion
(see e.g. Peebles, 1980).

Let us consider a spherical top-hat perturbation modelled as a set of concentric
shells, perfectly uniform and without substructures. The radial distribution of the
density field inside the shell does not affect its evolution, which only depends on
the total energy of the perturbation.

At some initial time ¢;, the density contrast field in the Universe, §(x,t;), divides
its volume into several underdense, 6(x,t) < 0, and overdense, §(x,t) > 0, regions.
It is reasonable to expect that a sufficiently high overdensity will eventually decouple
from the Hubble flow and collapse. The net effect of gravity on an underdensity is
instead repulsive, causing the region to expand faster than the Hubble flow, which,
nevertheless, enhances this outward flow. The final result of this behaviour is the
evacuation of matter from the region.
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Thanks to the assumption of the CP it is reasonable to hypotize that each re-
gion in the Universe can be treated as an independent Friedmann Universe, until
it evolves adiabatically. If the only relevant interaction is gravity, in our Newto-
nian dissertation a top-hat perturbation satisfies the last hypothesis until the total
enclosed mass is conserved, i.e. until all the shells can be studied separately.

The initial density distribution of our model is

p(rti) = pp(ti) + 0p(ri, t;) = pp(t:)[1 + &:(r)] , (2.1)

where 0;(r) = 9;(r, t;) is the initial density contrast which has to be a function of r.
In our description it is convenient to use the proper radial coordinate r = a(t)|x],
where x is the comoving coordinate.
The motion of a thin shell of particles located at a distance r is governed by the
equation
d*r  GM _ 4nG

dtQ = — T2 = 3 pB(1+A)T‘, (22)
where 4
M= rip(1+A) (23)
A—?’/”a()?d (2.4)
l_rf’ ; i(r)rodr .

with r; the initial radius of the shell with enclosed mass M and A; is the average
value of §; within r; at time ¢;.
Eq.(2.2) is analogous to the First Friedmann Equation (1.17) for a monocom-

ponent Universe,

d%a A7 G
=T ra 2.5
a2 3 PB (2:5)
from the similarity of these two eq.s we can see that the perturbation evolves like a
Universe of a different mean density, but with the same initial expansion rate.

From eq. (2.2), the first integral of motion is

2 2
;(j:) —GTM = ;(j;) —$p3(1+A)r2:E, (2.6)
where F is a constant of integration, namely, the total energy of the perturbation.
The sign of E determines the fate of the given mass shell, whether it will eventually
decouple from the Hubble flow and collapse or expande forever. If & < 0 it follows
from eq.(2.6) that, as r increases 7 will eventually become zero and later negative,
implying a contraction and collapse. On the other hand, if £ > 0, then 7? will never
become zero and the shell will expand forever.

The evolution of a spherical over- or underdensity is entirely and solely deter-
mined by the effective over- or underdensity within the radius r of the shell and by
its peculiar velocity v, (Sheth and van de Weygaert, 2004).

Unsurprisingly, eq.(2.6) is analogous to the Second Friedmann Equation (1.18)

1/da\?® 4G , K
(== _ = R — 2.
2<dt) "G = - 2.7)
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which describes the expansion rate of the Universe. The constant K, as we have seen
in Section 1.1, is the curvature parameter which is K = —1 for an open Universe,
K =0 for a flat Universe and K = +1 for a closed Universe. Note that eq. (2.7) is
obtained from the First Friedmann Equation (1.17) applying the adiabatic condition
(1.20).

Given these similarities, we can procede as it is done to derive the parametric
solutions of the Friedmann equations for curved universes (see e.g. Peebles, 1980),
therefore the parametric solutions for a mass shell are

r = A(coshf —1) , t = B(sinh 6 —0) , E>0; (2.8a)
r=A(1l —cosf) , t = B(0 —sinb) , E<0; (2.8b)

with A and B two constants related by
A =GMB?* . (2.9)

The parameter 6 is the development angle, which parametrizes all the physical
relevant quantities relating to the mass shell.

The homogeneous background model is described by similar equations. Choos-
ing the expansion parameter a(t) = rp(t) so that it encloses the same mass M as
in eq.s (2.8), we have

rgp = Ap(coshn — 1), t = Bp(sinhn —1n) , K<0; (2.10a)
rg = Ap(1 —cosn) , t = Bp(n —sinn) , K>0; (2.10b)

with Ap and Bp two constants related by
A% = GMB3, . (2.11)

The solutions for the EdS case (or for the zero energy case) are that listed in
Table 1.1.

We can then calculate the mean density inside a shell by applying p = 3M/(47mr?)
and substituting with the dependencies in system (2.8) and in eq. (2.11), we obtain

3 (sinh( — ()2 oven
47 Gt? (cosh ¢ — 1)3 P
3 2
PNt =4 =35 critical (2.12)
3 (¢ —sin¢)?
losed
47Gt? (1 — cos ()3 close

which are valid for both the shell (in which case “open” means F > 0) and the
background Universe (where “open” means K > 0). In the most general form, the
density contrast of a perturbation in a monocomponent Universe can be obtained

from
4 A@ ) = LD J(0) (2.13)

PB (Tv t) f(77) ’




CHAPTER 2. COSMIC VOIDS IN THE LARGE SCALE STRUCTURE 23

where 0 and 7 are the development angles of the perturbation and of the background
Universe, respectively. The cosmic density function f(¢) is defined as

( (sinh¢ — ¢)?
(cosh¢— 13 P
F(O)=142/9 critical . (2.14)
\ g:::;?; closed

Moreover, the velocity of expansion or contraction of a spherical shell can be
written in terms of # and 7. Let us consider the peculiar velocity of a shell

vp(r,t) = v(r,t) — H(t)r(t) , (2.15)

where v(r, t) is the total velocity of the shell and H(¢) is the Hubble parameter of
the background Universe. We may define a general Hubble parameter Hg for an

unspecified shell,

7 ldr 1

H(t)=-=-_" == 2.16
(W="= =200, (2.16)
where we have defined the cosmic velocity function as

(sinh ((sinh ¢ — () over
(cosh ¢ —1)2 P
9(¢) =1 2/3 critical . (2.17)
sin ((¢ — sin()
m closed

The peculiar velocity of eq. (2.15) can then be rewritten as

9(0)
vp(r,t) = H(t)r(t) [ — ] . (2.18)
. g(n)

With eq. (2.13) and eq. (2.18) we obtained explicit expressions for the evolution
of a spherical perturbation in FRW backgrounds with no cosmological constant. In
the next sections we will focus to the case of a spherical perturbation evolving in
an EdS background Universe.

2.1.1 Overdensities

Consider the evolution of an initially overdense shell in a EdS Universe. Such a shell
will initially expand slower than the Hubble flow, until it gradually halts reaching a
maximum radius r,,. After this instant, t;,, it turns around and starts collapsing.
Since at turn-around the velocity of the shell is v(ry,,t,) = 0, for the closed case
eq. (2.17) gives a velocity

sin 6

v(r,t) = Hs(r,t) r(t) (2.19)

1 —cosf
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From the relation in eq. (2.19) we obtain that at turn-around 6, = 7, the resulting
density is then
14 A(rm, ta) = (37/4)? = 5.6 , (2.20)

which is highly non-linear and implies the shell has expanded by a factor of 5.61/3 ~
1.8 from what it was initially. The last relation suggests that the collapsing region
is nearly 6 times denser than the background Universe, at turn-around. This corre-
sponds to a density contrast of A ~ 4.6 which is already in the non-linear regime.

It is interesting to calculate the corresponding value of A in linear regime. For
a spherical overdensity with initial peculiar velocity v,(¢;) = 0 in an EdS Universe,
the evolution of the density contrast is given by both the growing (D4 o t2/ 3) and
decaying (D_ o t~!) mode

5= 6y (t) (t)m +o_ (k) (t> - (2.21)

t; t;

where 04 (¢;) are the growing (+) and decaying (—) fraction of the initial perturba-
tion ¢;. The combination in eq. (2.21) is necessary to satisfy the correct boundary
condition on the velocity: V; = 0 requires that 4 (¢;) = %(51-, where ¢; is the initial
density contrast (Coles and Lucchin, 2002).

It is reasonable to assume that the deaying mode will become negligible after a
short time. Then the remaining perturbation will then be just § ~ 64 (¢;). It then
follows that, in linear approximation, the turn-around density contrast is

3 /3r\?/3
a==— ~ 1.062 . 2.22
5 5<4> 06 (2.22)

Full collapse is instead associated with # = 27 and the linearly extrapolated initial
overdensity reaches the threshold collapse density contrast:

3 (3r\*/?

0 = R <2> ~ 1.686 . (2.23)
We will see in the next Sections the crucial importance of these two threshold values.
Nevertheless, even though a strictly gravitational description fixes the comoving
radius of the overdensity to zero (r(27) = 0), in reality the matter in the collapsing
object will eventually virialize. In fact, the more the radius shrinks, the less the
approximation of independently evolving shells is correct. Their interaction and
energy exchange during the collapse drives the overdensity towards an equilibrium
configuration. Therefore, it is usual to assume that the final size of a collapsed
spherical object is finite and equal to its virial radius.

This model, except for very special cases, is not to be trusted once the overden-
sity has stopped expanding and started the collapse. In fact the mass distribution
is strongly unstable against the development of non-radial motion, amplifing the
initial asymmetries (Lin et al., 1965; Peebles, 1980).

2.1.2 TUnderdensities

The evolution of underdense spherical regions is different from that of their over-
dense counterparts. The net outward directed peculiar acceleration is directly pro-
portional to the meam density contrast A(r,t) of the void. Since they are more
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underdense, the inner shells “feel” a stronger outward acceleration than the outer
shells.
In the case of an EAS model, 2 = 1, from eq. (2.13) the density deficit evolves

as
_ fo en(g) . 9 (Sinh9 — €)2
14+ A(r,t) = prdS(n) = 3 (cosh0_1F ° (2.24)

It is interesting to compare this result to the corresponding linear initial density
deficit A% (r, )

A, 1 3 2 3AL;
L ALy B OV N P A
AMr.t) = M) = 77 = 1+Z(5A+,Z+5A,Z) T (2.25)

where we keep only the growing solution Ay ;, since the decaying solution A_;
gradually fades.
The constants in eq. (2.8) are

A= 22 , (2.26)
3t
B= i (2.27)

where 7; and t; are the initial coordinates of the perturbation (Blumenthal et al.,
1992). Eq. (2.25), with eq.s (2.26) and (2.27) and considering the solutions from
Table 1.1, gives
3\%%3
AF@) = - (4) = (sinh ¢ — 9)2/3 . (2.28)

A direct consequence of the differential outward expansion within and around
the void and of the radial decrease of the expansion rate, is the accumulation of
shells near the boundary of the void. The density deficit A(r) of the void decreases
as a function of radius r, down to a minimum at the centre. Shells that were initially
close to the centre will ultimately catch up with the shells further outside, until they
eventually pass them. This marks the event of shell crossing.

For an ideal top-hat underdensity, this process also results in the formation of
an infinitely dense ridge in the outermost region of the void. From this moment on
the evolution of the void may be described by a self-similar outward moving shell
(Suto et al., 1984). Even though this extreme condition is verified only by ideally
steep underdensities, it is a reasonable approximation.

In spherically symmetric negative perturbations, shell crossing occurs as the
fluctuation becomes non-linear. The density grows on the edges where dp/p = 1
is reached before shell crossing. Nevertheless shell crossing defines a characteristic
time that defines the formation of the void at a non-linear level. The solutions in
eq. (2.8) represent a family of trajectories labeled by r; and parametrized by 6.
We can find out when and where shell crossing first occurs by differentiating the
parametrized solutions w.r.t. r and #, and requiring that dr and d¢ vanish:

Ay A [dr/r|
][] . .
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where A;; are functions of A; and 6 (Jennings et al., 2013). The homogeneous
system of linear equations (2.29) has non-zero solutions when det A = 0, thus the
shell crossing condition is

sinh 0. (sinh 0. — 05.) 8

e =5 (2.30)

Therefore shell crossing first happens at a development angle 6. ~ 3.49. Moreover
note that, from eq. (2.16) and from the relation (2.30), at shell crossing the void
has a precisely determined excess Hubble expansion rate: Hs. = (4/3)H (tsc).

Substituting ., we can now obtain all the relevant values to deal with voids.
First of all, the non-linear (NL) density contrast is given by eq. (2.13)

14+ 6NL(rt) ~0.21 . (2.31)

It follows that |ds.| ~ 0.8 < 1, which means that a void is only nearly non-linear.
This should not surprise, since there is a physical limit, (6p/p)iim = —1, to the un-
derdensity degree that a region can reach. An underdensity which evolved towards
shell crossing, has expanded by a factor (1 + 59ch)—1/3 =~ 1.72 w.r.t. its initial size.
Last but not least, from eq. (2.28) we obtain the linearly extrapolated under-

density of a void
0y &= —2.71 (2.32)

which is the underdense peer of the threshold found in eq. (2.23).

It has been demonstrated (Icke, 1984) that voids in the matter distribution are
likely to be roughly spherical, differently from collapsing objects, which are more
likely to evolve into filamentary or sheet-like structures. We have already said that
in the collapse the asphericities of a perturbation are magnified. Since the expansion
of a void can be adressed as the time reversal of the collapse of an overdensity, it
follows that in the underdense case initial asphericities are cancelled.

2.2 Excursion set formalism

With the hypothesis that, at initial time ¢;, the density fluctuations are small,
0 < 0 and are distributed as a Gaussian field, their value at some later time t > ¢;
is completely determined by the power spectrum of the fluctuations P(k,t).

The linear growth 6(x,t) = §;D(t)/D(to), with D(t) the growth factor found in
Section 1.3.2, is valid until the collapse, for overdensities, or until the shell cross-
ing, for underdensities. The linear thresholds found for the spherical model in the
previous sections are weakly dependent on the cosmological model, via the density
parameters €2, and Q4.

The statistical description of the distribution of structures in the Universe has
been developed, in the first place, to predict the distribution of collapsed objects
(Press and Schechter, 1974; Sheth and Tormen, 2002; Sheth et al., 2001; Lacey and
Cole, 1993), but was also extended to underdense regions (i.e. voids, Sheth and
van de Weygaert, 2004; Jennings et al., 2013). These approaches are based on the
excursion set formalism (Bond et al., 1991; Zentner, 2007).

Instead of considering a density fluctuation field é evolving in time towards
some critical static threshold, . or §,, we can move the time dependency to the
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threshold value, multipling all the expressions by D(ty)/D(t). We then have a
linear fluctuation field d(x) = d(x, o) rescaled to time ¢y and a critical threshold
Ocjo(t) = ¢y D(to)/D(t) that changes with time ¢.

The infinitesimal mass element in x belongs to a halo of mass M at time ¢ if
the linear fluctuation d¢(x, R), centred in x and filtered over a sphere of radius
R oc M'/3 is higher than the required threshold:

x € M <= §(x, R) > 5 (t) - (2.33)

Note that, since mass and radius depend on each other, the same arguments are
valid both for haloes and voids.

This dissertation is possible because the filtered density field d¢(x, R) is the
convolution of the punctual density field 6(x) with a window function W (x, R). A
Fourier decomposition of §¢(x, R) gives

) . ~ ky .
5¢(x, R) = # /0 ARK23 (k)W (kR) ~ # /O kRS (k) = 5;(x, ky) . (2.34)
where k¢ oc 1/R is the wave number associated to the filter scale R, an the hat over
a variable indicates its Fourier-trasformed value.
The value of ¢¢(x, R) is the sum of all the fluctuations with & < k. All the
waves with k 2 ky are removed by the filter. We also introduce the filtered mass
variance,

L[> X I
0% = %2/0 dkE*P(k)W?(kR) ~ 27r2/o dkk*P(k) = S(ky) , (2.35)
which is a monotonic growing function of k¢ in all the relevant cases. Each fluctua-
tion d; centred at some point x in real space and filtered on a scale corresponding
to a wave number kj, traces a path in the two-dimensional space (S(kys),d7(x,ky)).
Since S(kf — 0) — 0 and S(ky — o00) — o0, all the trajectories start from
(S,07) = (0,0), corresponding to a null fluctuation filtered on an infinitely large
scale. They will then move away from the origin. The movement of a fluctuation in
the space (5, d¢) depends on the matter distribution around x. Since the distribution
of over- or underdensities is Gaussian, each infinitesimal step is stocastic.
With a three-dimensional top-hat filter on k, the contributions of all the scales
k to d; are uncorrelated. The trajectories are then described by a Brownian motion
with diffusion equation
0Q 19*°Q
85 206:%7

(2.36)

where Q(ky, S) is the probability distribution function of the stocastic variable 5
for all the trajectories with a given o?(k¢) = S.

The general solution of eq. (2.36) for a free Brownian motion is a Gaussian
distribution:

1 &7
Q(dr,5) = \/WGXP<—2§> ) (2.37)

with an expected value ¢ and variance S. For a given value of S, eq. (2.37) counts
the number density of trajectories within the interval [df,d; + dd].
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The fundamental idea of the excursion set model is that, at any given time ¢, all
the trajectories starting from the origin, which pierce the barrier 6C‘U(t) for the first
time at some S coordinate, belong to haloes of mass M(S) (or, for underdensities,
to voids of size R(S)). This conversion between mass, size and variance is possible
thanks to eq. (2.35) and thanks to the dependencies ks oc 1/R oc M~1/3.

We want to find the smallest value of S where a trajectory crosses the barrier
d¢jv- This method allows us to count the number of structures which are defined by
a crossing of some barrier J,(t).

Let us consider some critical scale kg, corresponding to a variance S, at a given
time ty. There are three possible outcomes for the trajectories:

1. trajectories which have pierced the barrier at ky < ko and have not pierced it
back:

‘5f(k0)’ > |5c\v(t0)| )

2. trajectories which have pierced the barrier at k; < ko but have also pierced it
back at k:}, with kf < k} < ko:

|07 (ko) < [¢w(to)] A ks < ko such that [07(ky)| > [0cu(to)] 5

3. trajectories which never pierced the barrier:

107 (kp)l < 10cu(t)] VEp < ko .

We want to count type 3 trajectories. In this case eq. (2.37) gives all the
trajectories with [0 (ko)| < [d¢pv|(to). We have then to subtract from Q(dy,S) all
the trajectories which, at some smaller ky, have already pierced the barrier, i.e.
type 2 trajectories.

Since we have chosen a top-hat filter in the Fourier-space, and given that all the
stocastic Fourier-modes are independent of each other, a trajectory has the same
probability to move up or down in the §; coordinate, at each infinitesimal step. As a
consequence, for each type 2 trajectory a virtual equally probable trajectory exists.
It moves from a shifted origin (5,d7) = (0, 2d,,) and pierces the barrier in the same
point (5, d¢y()) of the real one. The virtual trajectory satisfies the same diffusion
eq. (2.36) and its solving probability distribution is equivalent to the probability
distribution of the real type 2 trajectory:

Q1(5f7 S|5c|v(t))

(5f - 2(Sclv(t))2:| ’ (2.39)

1
S

where 07 — 26, (t) is the Gaussian distribution expected value. The probability of
type 3 trajectories can then be expressed as

Q2(05, 5101 (1)) Aoy = [Q(dy, S) — Qu(0y, S1deju ()] Aoy

— \/%151/2{6}@(_;52) — exp [—W]} - (2.39)

Eq. (2.39) is the exact solution of the diffusion eq. for stocastic trajectories with
an absorbing barrier (Chandrasekhar, 1943).
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Of all the possible trajectories, the type 3 fraction is given by the cumulative

probability:
e (t)
Po(S,00) = [ Qaldy. 518 (1) dby (2.40)
—0o0

Therefore, the complementary probability P, = 1— P, gives all the trajectories that,
at a certain time t have already pierced the barrier.

In the overdense case, P» is the number fraction of fluid elements that at a certain
time ¢ belong to haloes of mass M (< S). This is the definition of cumulative mass
function:

P(< S,t) = Py(S,6.(1)) . (2.41)

2.2.1 Press-Schechter halo mass function and exstension

The Press-Schechter (PS) halo mass function was firstly proposed by Press and
Schechter (1974) but its reformulation using the excursion set formalism was made
later by Bond et al. (1991). It measures the probability that a certain fluid element
in x at time ¢ belongs to a halo of mass M. It can be obtained differentiating, w.r.t.
S, the probability distribution of trajectories which pierced the barrier for the first
time at ¢ in some S coordinate:

S.6 0 1" 0,5, 815.()) 6 09 45 2.42
(1) =~ ,S10:(1)) oy = — 22 dgy .
ps00) =35 [ sy =- [ SR @)
where we have moved the derivative inside the integral. We can then substitute the
derivation w.r.t. S with a derivation w.r.t. §¢ by applying eq. (2.36)

1[5 52 Q5 10 Q, de(t)

p(S,6:(t)) = —2/ 0,7 doy = X1 (2.43)

Differentiating eq. (2.39) we obtain

0 QQ . 1 5f 5]2” 5f - 250(t) (5f - 26c\v(t))2
R

Since this function is zero in the limit to —oo, in eq. (2.43) only the term in d.()
survives:

A0S 10@e*M 1 26.(1) 52(t)
pS ) = g = 55| = exp[— ! ]
2 5.(t S2(t
B \/;83(/2) eXp{_ zg)] ' (2.45)

This last equation gives the mass fraction in haloes with variance S. To obtain the
mass fraction in haloes of mass M we have to change variable with the probability
conservation law:

dy

2.46
2 (2.46)

p(z)dr =p(y)dy = p(x) =p(y)
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so that

df(M) df(s)|ds
dM ~ ds ‘dM '

In our case we use

)

dS|_S|dmmS| 2S|dlno
dM| M|dlnM| M|dlnM

to obtain the mass fraction in haloes of mass M:

g (2)" 50|,

™

P {— 2;52&2[)] . (2.47)

Multiplying the last expression by a factor p/M, where p is the matter density
of the Universe, we obtain the PS mass function:

dn(M) _df(M)p  (2\"? po 6.(t) | dIng
dM — dM M_<> Wa(kf)'dlnM

s

N [_ d2(t)
202 (ky)

] . (2.48)

where we implicitly assume that the number of haloes inside a given volume is
conserved when we move from the linear description of the excursion set model to
the abundance of the real collapsed non-linear objects,

dn(M) N dTLL(ML)
dM —  dMp

Since we made the hypothesis that, while it collapses, the total mass in each halo
is conserved, M = M7, this assumption should be correct.

The excursion set model not only gives the number density of haloes at some
epoch but can also be used to study the merger history of haloes and to derive other
characteristics (Lacey and Cole, 1993, 1994): these results are often described as
Press Schechter extended model.

Each trajectory in the (5, d.) space describes the merger history of a particle at
some coordinate x. The generic ¢ is replaced with d.(t) o< 6.(to)D(t)/D(0), so that
each different value of the §. coordinate defines a different collapse time. Hierarchical
clustering describes the growth of haloes as the result of a series of mergers. In an
excursion set description, this process corresponds to follow a trajectory from large
values of S and d. back towards the origin.

While we go back in time, the threshold decreases. Type 2 trajectories imply
a horizontal jump in the (S,d.) space, towards the first crossing on the left. In
a hierarchical clustering description, these jumps are interpreted as the result of
merger events.

To describe a halo with mass M; at time t1, and mass M, at time ¢y, with
to > t1, we select all the trajectories which pass through both points (S1,d.(t1))
and (S2,d.(t2)). This request is obtained by requiring that the trajectories start in
(S2,0.(t2)) instead of the origin (0,0). The probability distribution is then obtained
substituting S — (S1 — S2) and 0.(t) — (dc(t1) — 0c(t2)) in eq. (2.45):

_ _ 2
P(S1,8c(t1)|S2, 0. (t2)) = \(/5%?5)1 _505(;)23)/)2 exp —(50(;(1;1 _505(;2)) . (249)
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As we have done to obtain the PS mass function, we multiply by a factor
dS1/dM; and require number conservation. This leads to the Conditional Mass

Function
2\'2 p | dInoy |o2(5e(t1) — So(t2)) (Se(tr) — Be(ta))?
M M. _ “ N 1\Y% c _ \Yc c
n(My, 0| Mz, t2) (71’) MZ|dInMy| (0?2 —02)3/2 P 2(02 — 02)
(2.50)

which gives the number of haloes of mass M; embedded in bigger haloes of mass
Ms.

2.3 Void size function

The spherical top-hat model provides a complete description of the non-linear evo-
lution of a spherically symmetric density perturbation. One of the main features
of this model is that the evolution does not depends on the initial size or enclosed
mass of the region, but only on the amplitude of the initial top-hat density contrast.

We have described how the statistical distribution of collapsed DM haloes is
analytically predicted, i.e. the PS mass function and its extension to the study of
hierarchical clustering.

The counterpart of this description for underdensities has been firstly proposed
by SvdW. Even though their model has proven to be inadequate to describe the
real distribution of voids, its basic assumptions are reasonable.

The first difference between a halo based description of the statistics of the
LSS and the voidness oriented one is in the variable used to characterize struc-
tures. While in the first case we used mass M, in the latter we prefer the size R.
Nevertheless, since M o R3, the two approaches are equivalent.

SvdW argue that, if a description of the cosmic spatial structure has to be
based on the idealization of spherical symmetry, low-density regions are the objects
of choice. A succesful representation of the void size statistics has to take into
account two main processes. First, a void emerges as a mature well-defined entity
through a bottom-up assembly of smaller underdensities. Secondly, the void may
interact with its surroundings, participating to the continuing process of hierarchical
structure formation.

To take into account these requests in the description, let us first consider the
evolution of an isolated void. The most basic and universal properties of evolving
spherical voids are their expansion (van de Weygaert and van Kampen, 1993), in
contrast with their overdense peers which tend to collapse, and the evacuation of
mass. Moreover they have a super-Hubble velocity field which causes a suppression
in structure growth. Other properties which have already been presented in Sec-
tion 2.1.1 are the formation of a boundary ridge and, last but most importantly,
shell crossing.

In all our description we will define voids as underdense, spherical, non-overlapped
regions, which have gone through shell crossing. We will then search for all the tra-
jectories in the usual (S,d¢) space which have pierced the negative barrier ¢, =
—2.71 (eq. 2.32). To obtain the PS mass function we counted all the trajectories
that pierced the barrier d. and considered them as belonging to haloes of mass
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M(S), where S is the minimum variance at which the barrier is pierced. Ignor-
ing all the other crossing of the barrier allows us to avoid double counting haloes
(cloud-in-cloud process).

For their extension and natural tendency to embed other structures, other pro-
cesses are to be taken into account. To address this nature, the void size function
has to depends on two barriers instead of only one, the shell crossing level 6, and
the collapse density J.. Here follows the main processes that have to be considered:

e Cloud-in-cloud, it is the same as for haloes: When a trajectory pierces the d,
barrier more than once, only the crossing with the smallest value of §. has to
be considered.

e Cloud-in-void: when a trajectory first crosses the §, barrier and then crosses
the . one, it means that a clump may form in a region that is destined to
become a void.

e Void-in-void: the formation of a large void by the merger of smaller voids.
These is the underdense counterpart of the PS extended formalism presented
at the end of Section 2.2.1. These trajectories have to be counted only once,
and represent voids of size R(S), where S is the smallest variance where the
trajectory crosses 0.

e Void-in-cloud: this is the main difference between haloes and voids. If a
random walk first crosses d. and then crosses J, on a smaller scale, then the
smaller void is contained within a larger collapsed region. Since the larger
region has collapsed, the smaller void within it no longer exists, so it should
not be counted.

In summary, what distinguishes voids from collapsed objects is that, whereas it
may be possible to have a cluster within a void, it does not make physical sense to
have a void within a cluster. The excursion set approach allows one to account for
this.

From eq. (2.45) the differential fraction of random walks which have firstly

crossed a barrier of constant height §, in S = o2 is:

CAAS) S [T6 [ 4
fme=qms =% 45 = wanp[_zaJ’ (251)

which is related to the corresponding differential probability distribution by p(S,d¢) =
02 fin . Instead of focusing on the enclosed mass, we define the variance o2 in terms
of the size of the considered region:

1
o?(R) = S(R) = 2/ dkE*P (k)W (k, R)|* . (2.52)
w
The distribution fi,, then gives the excursion set approach’s approximation for the
fraction of volume that is occupied by voids.
In order to find the probability that a certain region of scale o(R) = S will
eventually become a void, we have to subtract to the first crossing distribution of
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the barrier d, (p(S,dy)), the subset of trajectories that had crossed . before ever
reaching ¢,,

S
(S, 0y, dc) = p(S, dy) —/ p(S, dy|s, 0c) ds (2.53)
0

where p(S,dy|s,0.) = p(S — s,0. — 0y) is obtained from eq. (2.49) with S; = S,
Sy = 8, 6c(t1) = 6, and 6.(t2) = d.. While searching for the first crossing of the
barrier prevents double countings caused by the void-in-void process, subtracting
the second term on the r.h.s. of eq. (2.53) avoids counting errors due to the void-
in-cloud process. It has been demonstrated by SvdW that eq. (2.53) leads to

[ee]
fino(o) =2 ZjW:EQ sin(jnD) exp

. N2
[—W;)} : (2.54)
j=1
where
—7|5v‘ and .’E_EO'
o 6c+|6fu| N |5’U| ‘

In their derivation of this law, SvdW also demostrate that all the random walks
cross d. at some point, indicating that all mass is associated with gravitationally
bound haloes. In contrast, only a fraction fypq = d./(dc — dy) of all random walks
cross &, without first having crossed &, i.e. only a fraction f,,;q of the mass is
associated with voids.

Since the infinite series in eq. (2.54) is cumbersome to work with, it is useful to
have a sufficiently accurate closed form expression. A reasonable approximation is

given by
2 16 57
\/7 M exp (— U2> z < 0.276
T o 20
fino(o) ~ A : (2.55)
9 (jmz)?
2 Z]TFIE2 sin(j7D) exp [— 5 ] x > 0.276

j=1

which was proposed by Jennings et al. (2013) and is accurate at the 0.2% level or
better across the domain of validity.

2.3.1 Sheth and van de Weygaert model

By the same reasoning as applied to haloes, the SvdW formula for the abundance
of voids in linear theory is given by

dIno ™  fine(o)d Ino™!
dlnry,  V(ry) dlnrg

dnp, 14

dInry, - Mfmg(tf)

(2.56)

with the subscript L indicating values derived in linear theory and where we express
the number density in terms of the linear theory radius of the void rp.

In the spherical evolution model, the actual void expands from its linear radius.
At some epoch of shell crossing p, ~ 0.21pp (eq. 2.31). We have already seen
that this means that the radius expands by a factor (r/ry) ~ 1.72. In the SvdW
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model the idea relies on equating a number density derived from linear theory to
the number density of non-linear voids:

dn dng,

= ) 2.57
dlnr dlnrg rL=r/1.72 ( )

This results in a shift of the linear model towards larger scales, without any change
in amplitude (Figure 2.1). The simple shift on the scale axis means that the total

— model = linear
: : — model = SvdW
L N N g — model = Vdn

log(dn/dinr) [(h/Mpc)® ]
A

10 100
r [Mpc/h]

Figure 2.1: Void size function for three different models. The black line represents the linear
theory result (eq. (2.56)). The red line is the SudW model (eq. (2.57)). The blue line is the Vdn
model (eq. (2.60)).

comoving number of voids is conserved while they grow (n = ny). This assumption
may not be valid, expecially for large voids, given their natural tendency to expand
and overlap.

One last remark about the dependency on two thresholds. While the lower
threshold is set by the event of shell crossing, there is more freedom in the choice of
the overdensity threshold, since we are not sure if a void embedded in an overdensity
(void-in-cloud process) should be considered definitively crushed out of existence
when the overdensity turns around or after it virializes. To rule out this uncertainty
we let the upper threshold vary between the turnaround threshold and the collapse
one: 1.06 < §, < 1.69. Looking at Figure 2.1, it is possible to appreciate that this
uncertainty only affects the smaller voids. We will see in the next Chapters that
these scales are only marginally sampled by simulations.
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2.3.2 Volume conserving model (Vdn)

A more physical approach to address the evolution of voids through an excursion
set approach is to give up on the assumption of isolated spherical expansion, which
leads to the total number conservation hypothesis. This request was acceptable for
haloes, since they tend to evolve towards a localized geometry. Unfortunately for
voids this is not the case. As a result of their natural tendency to expand, overlap
and merge, the total number may not be conserved, with the larger voids more
affected than the smaller ones.

In particular, the cumulative volume fraction in voids larger than some value R
is

F(R) = /R h %V(r) ddl:r | (2.58)

In the SvdW this integral has values greater than unity for radii of interest (Fig-
ure 2.2), which is unphysical.

2.0 - -
: : — model = linear

— model = SvdW

— model = Vdn

L5 o) e e .
Sagb ST N — S — |

osl S S 4

0.1 - — 100
r [Mpc/h]

Figure 2.2: Cumulative void size function. The different curves give the fraction of volume occupied
by voids, as it is predicted by different models: the black line illustrates the linear theory prediction,
the red line the SvdW model and the blue line the Vdn model.

Jennings et al. (2013) suggest a simple fix to this unphysicality. They argue
that the volume fraction and shape of the abundance function, rather then the total
number of voids, should be fixed during the expansion. If we use eq. (2.58) to define
the volume fraction in linear theory, it is conserved if the non-linear abundance

satisfies
V(r)dn=V(rg) dnL‘rL(r) . (2.59)
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The abundance of voids varies while they expand from 7 to r as a result of the
fusion between neighbouring smaller voids into larger ones. The non-linear theory
abundance then becomes

dn V(ry) dngp dlnrg

= 2.
dlnr  V(r) dlnry dlnr ’ (2:60)

which gives the so-called Vdn Model. Its abundance prediction is shown in Fig-
ure 2.1, while its the cumulative volume fraction is shown in Figure 2.2. Note that
the volume fraction does not reach unity, as requested.

If the mapping r(ry) is that resulting from linear theory (i.e. » = 1.72ry) then
the dlnrz/dlnr term in eq. (2.60) is unity. As a consequence, the impact of moving
from linear to non-linear theory is a shift in both the scale r and the amplitude of
dn/dlnr. The shape of the distribution does not vary. The ratio V(rr)/V(r) in
eq. (2.60) shows that the Vdn model predicts a factor of 1.723 ~ 5 less voids than
the SvdW model at all radii.

The first goal of this work is to validate the Vdn model, thus demonstrating the
efficiency of the spherical model for underdensities.

2.4 Halo bias

All our previous dissertation was based on the evolution of density fluctuations in
the density field. The most relevant part of mass in the Universe is DM, baryons
only have a minor role. This is particularly true when we consider the growth of
structures. Since baryons decouple from radiation later than DM, it is the develop-
ment of gravitational potential wells and peaks, resulting from the aggregation or
evacuation of DM, that drives the later evolution of baryons.

Nevertheless, DM is (still) not directly observable since it only interacts weakly
with ordinary matter. What we do observe with galaxy surveys is the baryon com-
ponent’s radiation. Baryons naturally gather up into the potential wells generated
by haloes, which result from the gravitational aggregation of DM. This means that
their emission traces the position of DM.

If we want voids to become efficient tools to investigate cosmological models, we
have to first develop a theory capable of compare theoretical results with observa-
tions.

In the voids statistical distribution context, the first step to reach such an objec-
tive is to develop a model of void size function able to describe the size distribution
of voids when the density field is traced by DM haloes.

In the theory developed in the previous Sections we considered voids which form
in the DM density field, as a result of spherical expansion of primordial underden-
sities. Both the halo and the galaxy population, though, trace the underlying DM
density field in a biased way. In particular, the halo distribution trace a biased
number density field n;, which may be used to define the halo voids distribution.
Nevertheless, a comparison between voids in the DM and halo distributions should
account for the halo biasing relation.

A result of the underdensity of voids and of their super-Hubble expansion rate
is that the mass of haloes which form within them is generally smaller. Moreover,
even though we will not work with galaxy models, we underline that the galaxy
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luminosities are generally smaller inside voids, without significantly changing the
ranking of galaxy luminosity (Benson et al., 2003).

Jennings et al. (2013) also compare their model with the halo voids distribution
in simulation. They apply the same searching criteria to a halo distribution without
finding an agreement with the Vdn model, suggesting there may not always be a
one to one correspondence between voids traced by haloes and voids in the DM
density field.

Furlanetto and Piran (2006) propose a scale dependent modification of the bar-
rier 9, = —2.71 fixed by shell crossing. They argue that, since the population of
haloes is dependent on the environment, voids in the DM and in the DM-haloes
density fields may not share the same underdensity degree.

They demonstrate that the larger the void in the DM distribution, the less
biased it is in the DM-halo distribution. To adress this issue, let us now consider
the halo population inside voids. It is reasonable to assume that within voids haloes
are formed by the exact same processes as outside them. This means that we can
make use of the PS formalism to model their distribution.

If we address haloes in voids as sub-structures of larger evolved perturbations,
the conditional mass function (eq. 2.50) gives

o2(6, — 6,) (60 — 60)*
(02 = 02)3/2 [2(02 ),

dIno
d Inmy,

2p
np(mauldy, Ry) = ;mUQ
h

} . (261)

where my, is the halo mass, J, the linearized underdensity threshold fixed by shell
crossing, o(my,) is the mass variance of the halo and o, (M,), with M, o R2, the
mass variance of a spherical void with radius R, and density p, = (1 + §Y¥)p from
eq. (2.31), if the mean density of the Universe is p.

Eq. (2.63) then gives the total number of haloes which form within a void of
mean density p,. Note that we cannot use the medium density of the Universe here,
since it would overpredict haloes by a factor (1 + 6)X). This equation is defined
only for values of 02(M,) < o2(my,). The physical reason is simple: since M, fixes
the total amount of matter available within the void, no haloes with mj > M, can
develop.

The total comoving number density of haloes, with mass larger than some M1,
within a void is therefore given by the cumulative value of the mass function (2.63)

o0

15, (Mumin| v, Ry) :/ dmpnp(mp|oy, Ry) - (2.62)
Mmin
Thus, the ratio between nj, (Mmin|dy, Ry) and the total comoving number density
of haloes in the Universe, should give a measure of how biased tracers sample the
density field within the void. We can therefore obtain an expression for the scale
dependent underdensity threshold for voids traced by the DM-halo distribution
(Furlanetto and Piran, 2006):

nz(mmznwva R’L})

L+ 60 (M, 00, Ry) = (14 65'F) , (2.63)

which depends on the mass resolution of the sample m,,;, and on the void scale R,,.
The value 9, is, again, fixed by shell crossing.
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Methods

In this chapter we will describe the procedure used to obtain the results presented
later in this work. We make use of already existing Open Source softwares, which
we expanded to develop a procedure aimed mainly at the search for spherical not-
overlapped voids.

This chapter is organized as follows: in Section 3.1 we present the CosmoBolog-
nalib (Marulli et al., 2016) and the main numerical methods used in this work; in
Section 3.2 we discuss the characteristics of the cosmological simulations used in
this work; the void finding algorithms used to obtain void centres is described in
Section 3.3. In Section 3.4 we describe an algorithm we have developed to obtain
catalogues of underdense regions which are coherent with the theoretical definition
of voids given in the previous Chapter.

3.1 CosmoBolognaLib: C++ libraries for cosmological
calculations

The CosmoBolognaLib (hereafter CBL) is a large set of Open Source C++ numeri-
cal libraries for cosmological calculations. CBL is a living project aimed at defining
a common numerical environment for cosmological investigations of the large scale
structure of the Universe. This software is particularly suited to handle with cata-
logues of astronomical objects, both real and simulated. A large set of processing
and analyzing functions is also implemented in the software. Thanks mainly to the
adopted object-oriented programming technique, the CBL is flexible enough to be
extended to other cases, in particular to handle astronomical objects, such as voids,
for wich the software was not specifically designed.

In particular, we have upgraded the CBL to handle with catalogues of voids
obtained with the two most popular public void finders, operation made possible
by the implementation of a specific class of objects specifically designed to store
relevant properties of voids (class cosmobl: :Void'). The upload of all the developed
functions is still not finished but will soon be completed.

Lcosmobl is the global namespace of the CBL.

38
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3.2 N-body simulations

A N-body simulation is, in general, a numerical simulation of a dynamical system
of particles.In cosmology, the interest in N-body simulations is related to the study
of the large scale structure formation and evolution. Thanks to the possibility of
setting the cosmology-defining parameters as the user wish, N-body simulations are
foundamental benchmarks for theoretical results.

As anticipated in Section 1.3.4, the main advantage in using a N-body simulation
is that it allows to study the non-linear regimes of perturbation growth without the
necessary simplifications adopted to reach analytical solutions.

In the most simple N-body simulations, only gravitational effects are taken into
account. An N-body problem can be summarized by the general system

Z*GMZ 2”]

i#£]
dv, _ F; , (3.1)
dt — M;
dx;, _ .
dt — Vi

where F; is the i-th component of the force, the M; are the particle masses, x; are
the comoving coordinates of the i-th particle and v; its velocity, r;; is the distance
between particle ¢ and j, 7;; the corresponding versor. Basically the system (3.1)
is equivalent to (1.38). The Euler equation of motion can be re-written as

dV, 1 Fi
7 2 V,:—¥V¢* = ZmJ’XZ_XJ‘S = (3.2)
1,571

where a is the scale factor, G the gravitational constant and a dot indicates a
derivation w.r.t. time. The Poisson equation with the Second Friedmann Equation
becomes

V3¢ = 4rGp(t)a’s = gﬂgﬂog : (3.3)
where p is the medium non-relativistic matter density of the Universe, § the local
density contrast, Hy is the Hubble parameter and 2y the non-relativistic matter
density parameter.

A N-body code consists in the numerical integration through discretized time
steps, t. The algorithm is divided in two main sections that are reiterated for each
time step. The first section calculates the total gravitational force, F;, acting on
each particle at some given instant t. Afterwards, the numerical integration of the
equation of motion begins and the new positions, Xt+6t, and velocities, Vf"“st, are
obtained for each particle. At each cycle the time is updated, t = t 4+ dt. The choice
of dt is not completely arbitrary but has to follow a suitable criterion. From the
set of possible time steps that satisfy the requirements the largest one is chosen.
There is a wide number of possible criteria to choose which can be suitable for
different aproaches, nevertheless they can be divided into three main categories:
(i) total energy conservation; (ii) convergence of final positions and velocities and
(#i3) reproducibility of the initial conditions (Bagla and Padmanabhan, 1997). The
outputs of such an algorithm consist of a set of snapshots of the particles positions.
Each snapshot contains data about some istant in the time evolution of the system
of particles.
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In cosmological simulations, the periodic boundary conditions and a very large
number of particles are the key considerations in developing the detailed algorithm
for a N-body code. Of two main N-body code components, the integration of the
equation of motion is a process of order O(N,), where N, is the total number of
particles, while the calculation of force depends on the used method. There is a
large variety of techniques, which differ in CPU efficiency, implementation simplicity,
mass and spatial resolution, to compute the gravitational field. These techniques
are:

e Particle-Particle (PP): the force acting on the i-th particle is given by the
direct summation of all the forces generated by all other particles in the sim-
ulation. Since the number of operations required is proportional to Ng, this
class of methods is the most time consuming, but also the most accurate,
because the force is computed for each particle.

e Particle Mesh (PM): the Poisson equation is solved in the Fourier domain and
the potential /force is computed on a fixed grid. All the relevant quantities
(e.g. the density field or the force itself) are interpolated in a grid in order
to move the particles. Even though this may be the fastest of the possible
methods, its resolution is limited by the smothing scale of the grid.

e Particle-Particle Particle Mesh (P3M): this scheme enhances the resolution
of a PM method by adding a short-range direct-summation force to the force
interpolated on the mesh inside a sphere of fixed radius R around each particle
(Efstathiou et al., 1985). The number of operations added by this correction is
proportional to Npn(R), where n(R) is the average number of particles within

R.

e Tree code: the simulation volume is divided in a hierarchical tree of sub-
regions. Each of them is characterized by the centre of mass and the mass of
all the hosted particles. Since the force from particles in distant regions is ap-
proximated by the force from the centre of mass for particles in that region, the
number of operations required for calculating the force acting on each particle
is reduced. Resolution is reached by continuing the subdivision of cells until,
on the lowest level of the tree, in each cell is included at most one particle.
The total number of required operations is proportional to NpIn(Lpog/lmin),
where Ly, is the side length of the box and [,,;, the smallest inter-particle
separation for a given particle distribution.

All of these methods have advantages and disadvantages.
In the following we present our set of cosmological simulations obtained through
N-body algorithms.

3.2.1 The set of cosmological simulations

The simulations used in this work have been obtained with a GADGET-2 based code
(see e.g. Springel, 2005; Baldi, 2012a, and references therein). The main structure
of GADGET-2 is that of a Tree code where gravitational interactions are computed
with a hierarchical tree multipole expansion. In this work we have not considered
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the hydrodynamical interactions between particles, but only their gravitational in-
teraction.

We use a set of simulations with different resolutions, cosmological parameters
and sizes to work both with dark matter particles and haloes. The general char-
acteristics of the used simulations are reported in Table 3.1, togheter with the box

Table 3.1: Our set of cosmological simulations with relevant physical quantities. The first
letter in the name indicates the cosmological model, the second is for the side length of the
bozr ([rluge = 1Gpc, [LJarge = 500 Mpc, [mledium = 256 Mpc, [s]mall = 128 Mpc, [t]iny
= 64 Mpc) while the third letter is for the spatial resolution (in terms of m.p.s., which is
measured in Mpc: [Ljow = 2, [mledium = 1, [nligh = 0.5, [v]ery high = 0.25).

name Lpox N, m.p.s. mass Cosmology
[Mpc/h] [Mpc/h]  [10" M /h]

Ll 500 2563 =~ 2.00 56.06 ACDM
Lsm 128 1283 1.00 7.52
Lmm 256 2563 1.00 7.52
Lsh 128 2563 0.50 0.94
Ltv 64 2563 0.25 0.12
Lhm 1000 2-10243 1.00 5.84
1.17

Emm 256 2563 1.00 7.52 EdS

Omm 256 2567 1.00 7.52 Open

size of each simulation and the number of included particles, we list the spatial
resolution in terms of the medium particle distance (m.p.s.),

v\ /3
m.p.s. = <N> ,

and the mass resolution. The “Cosmology” column refers to the chosen set of
cosmological parameters, which are listed in Table 3.2.

Table 3.2: The different sets of adopted cosmological parameters: ho =
Hy/100km s~! Mpc_3 with Hy the Hubble parameter at redshift zero; Qcpay, Qb and
Qp the present day density parameters of CDM, baryons and cosmological constant,
respectively; As and ng are the scalar amplitude and the spectral index of the initial power
spectrum, respectively.

ho Qcpmny D Qp As s
ACDM 0.7 0.226  0.0451 0.7289 2.194-107° 0.96
EdS 0.7 0.95 0.05 0.0  6.408-10"1° 0.96

Open 0.6731 0.226 0.0451 0.0 7.6648 1077  0.96

By means of a FoF algorithm, we obtained a set of halo catalogues from the Lhm
simulation box, that will be used and described in Chapter 5.
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3.3 Void Finders

There is not general concordance in the definition of voids. Indeed, many different
techniques have been proposed and applied over the years (see Colberg et al., 2008,
for a cross-comparison of different void finders).

Void finders can be classified in three broad classes, depending on the type of
criterion adopted (Lavaux and Wandelt, 2010). The first class is based on a density
criterion and defines voids as regions empty of tracers or with local density well
below the mean (e.g. El-Ad and Piran, 1997; Hoyle and Vogeley, 2002). Tracers
(typically galaxies) are divided in two classes: wall tracers and field tracers: while
the first lie in strongly overdense regions the latter in “mildly underdense” regions.
The separation between the two depends on an ad hoc parameter which specifies
the local density of tracers. Voids are then regions empty of wall tracers.

The second class uses geometric criteria and identifies voids as geometrical struc-
tures like spherical cells or polyedra (e.g. Platen et al., 2007; Neyrinck, 2008; Sutter
et al., 2015b). In particular void finders belonging to this class look for particu-
lar features in the continuous three-dimensional distribution of matter. It is then
necessary to reconstruct the density field from the sampling tracers distribution.
Local minima in the density field are then used to reconstruct the void distribution.
Further in this Section we will explain in more detail this technique, which is the
one adopted in this thesis.

The third class is that of finders based on dynamical criteria in which galaxies
are considered as test particles of cosmic velocity field as well as tracers of the
underlying mass distribution (e.g. Hahn et al., 2007; Lavaux and Wandelt, 2010;
Elyiv et al., 2015).

The first two classes identify voids from tracers’ Eulerian positions. This strategy
has disadvantages especially when using sparse samples of objects as mass tracers
of the density field. On the first place, when galaxies are used as mass tracers,
some biasing prescription has to be adopted to specify the relation between the
galaxy and the mass density field. This has been demonstrated to play a significant
role when using voids to distinguish different cosmological scenarios, in particular
different theories of gravity or couplings in the dark sector, as these models might
feature a non-standard evolution of the halo bias (Pollina et al., 2016). Moreover
the Eulerian nature of these methods is prone to significant shot noise which grows
rapidly as the resolution of tracers decreases. This is arguably the most relevant
problem as, to make matters worse, voids are naturally underdense and so even
more affected. Nevertheless, methods of the second class are largely the most used
and at least a couple of open source functioning codes are available.

The methods of the third class are less affected by shot noise, as they can be
defined in Lagrangian coordinates, and are found to ease a theoretical interpretation
(Lavaux and Wandelt, 2010; Elyiv et al., 2015). However the voids selected cannot
be directly compared with those obtained by the other methods.

In our work we need a method which is able to select objects in simulations as
similar as possible to the given theoretical definition of a void used in the theoretical
formalism presented in Section 2.3 (i.e. an underdensity which is evolved through
shell-crossing). We mainly work with DM particles as tracers, which are less sparse
than haloes or galaxies, making them less affected by shot noise. For the first part
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of the work we do not have particular reasons to do things the hard way, so we
make use of an already available void finder of the second class?.

VIDE, the Void IDentification and Examination Toolkit (Sutter et al., 2015b),
is an open source Python/C++ code for finding cosmic voids in galaxy redshift
surveys and N-body simulations, charachterizing their properties, and providing a
platform for more detailed analysis. At its core, VIDE uses a substantially enhanced
version of ZOBOV (ZOnes Bordering On Voidness), a popular publicly available
code (Neyrinck, 2008) that finds density depressions in a set of points, without any
free parameters or assumptions about shape. Conceptually a ZOBOV void is simply
a density minimum with a depression around it. The density field is estimated using
a Voronoi Tesselation technique (hereafter VT, see van de Weygaert and Schaap,
2007, for a review). VT divides space into cells around each particle, with each cell
defined as the region which is closer to a certain particle than to any other. The
numerical density field is then defined in each i-th particle position as the inverse
of the corresponding cell’s volume: n(i) = 1/V (7).

The density minima are found as the cells whose density is lower than the density
of every other adjacent cell, which are then linked to this minima to construct zones.
This step is made for both the sake of calculus speed and information compression.
Nevertheless these zones can conceivably be called voids.

Finally, zones are joined together in voids with a watershed method similar to
that applied by Platen et al. (2007). With the watershed concept a void is defined
with analogy to a catchment basin in the density field. For each zone the “water
level” is set to the minimum density of the field and then gradually raised until a
density maximum is encountered, virtually causing water to overflow into another
basin. If this maximum is below a certain fraction of the average density of tracers
then the two zones are considered substructures of the same void, else they will
be considered as two separate voids. The choice of the discriminating density is
a free parameter, which can be selected by the user. These procedure leads to
a dependencies’ tree of zones which is stored in three output files: two files are
binaries containing the used tracer coordinates and zone adjacencies, while the
third file contains the output void catalogue.

For our work the main advantages in using VIDE, instead of running directly
ZOBOV, are in terms of functionality in pre-processing. In fact VIDE offers the
possibility of working both with DM particles and haloes, and it can also randomly
subsample the input catalogues. The outputs of VIDE include all the original
outputs of the ZOBOV algorithm and add a series of post-processed catalogues,
with a set of additional information on the level of voids in the dependencies’ tree.

3.4 From centres to spherical non-overlapped voids

As we are searching for voids which have gone through shell crossing, we have to
proceed with an accurate post-processing of the catalogues provided by the void
finder. The aim is to obtain a catalogue of voids which are as close as possible to
the spherical underdensities gone through shell crossing, described in Section 2.1.

2Nevertheless we will work also with sparse tracers and so further investigations using a more
suitable void finder would be a desirable future development of this work.
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In fact, most of the studies carried on void sizes statistics lack of coherence between
the voids investigated and the theoretical model applied.

In particular, we wish to make a direct comparison to the predictions of the
excursion set formalism which assumes that these underdense regions are non-
overlapping spheres of a given underdensity corresponding to a region at the moment
of shell crossing. The moment of shell crossing, as pointed out in Section 2.1.2, is
the key feature which defines a nonlinear void in the matter distribution today.

The catalogues provided by ZOBOV and VIDE retain information about the
voids’ centres position, their statistical relevance, radius and core density. In these
catalogues all the voids and subvoids found by the algorithm are stored, without
restrictions on the shape, on possible overlappings or on density. Since these objects
are merely underdense regions and then do not fall into our definition of voids, we
have implemented an algorithm which overcomes the inconsistency between the
voids found in simulated tracers distributions and the theoretical definition of voids
given in Section 2.1.2. The algorithm is organized as follows:

e we clean the catalogue provided by the void finder in order to speed up the
search and prune not relevant objects;

e we rescale the void size according to the shell crossing threshold and to the
sphericity requirement;

e we erase all the overlapping objects on the basis of a “larger priority” criterion.

The outline of this method has been firstly presented in JLH to be applied to
ZOBOV catalogues. We have extended to work with all void catalogues which list
the void centre position, its central density (i.e. the value of the density within
the inner region of the void) and the embedded density contrast. We extend their
approach to VIDE catalogues for reasons that will be clearified in this Section.

In the rest of this Section we first present a quick discussion on how to define
the centre of a void, we then proceed in the detailed description of the algorithm.

3.4.1 Void centres

While there is a general agreement on the theoretical definition of a void, this is
not the case when it comes to simulations or surveys. The existence of several
alternative definitions of void centre reflects this uncertainty.

Especially when tracers are sparse, the void centre definition is crucial to the
estimate of the central void density and, thus, to the efficiency of our cleaning
algorithm. Moreover Elyiv et al. (2015) suggest that this is an issue also in the
reconstruction of the density profile which, even though not explicitly treated in
this work, is obtained for each void by the rescaling algorithm that will be described
later.

The void centre saved in the ZOBOV output text file is defined as the position
of the least dense particle of the zone found by the VT. We call this centre the
core particle centre, rc. We argue that such a definition, based on the position of a
tracer, is not the most reasonable choice in our case. We want to characterize the
inner region of the void which, by definition, has to be the less dense. While this
might not be a problem when the density field is well sampled, it becomes an issue
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when we deal with sparse samples, such as the DM halo distribution. In fact, we
treat all the tracers as particles of the same mass m, which depends on the mean
density of matter, p,,. It is set by the critical density of the Universe, p., and by
the matter density parameter €2,,:

Since M depends on the total number of tracers, N, and on the total volume of the
simulation, V', the sparser the sample the greater the mass traced by each particle.

In JLH only DM distributions with m.p.s. smaller than 2 Mpc are taken into
account, so the centre definition does not interfere with the results. Nevertheless,
we do consider the halo distribution, so rg may not always be the most convenient
choice. When dealing with sparse samples, we prefer to use the volume weighted
centre of the void, as it is defined by the VIDE algorithm:

XY
N
YLV

where N is the total number of particles embedded in the void, x; their coordi-
nates and V; the volume of the corresponding Voronoi Cell. This centre does not
necessarily coincide with the position of a tracer.

We have verified that in the DM distribution our results are not sensitive to a
swap between ro and ry in the void centre definition. We will then use ro when
possible (i.e. when we have tracers with m.p.s. smaller than 2 Mpc) since the
algorithm is simpler to implement and the results can be directly compared with
that of JLH. In other cases (i.e. for sparse samples, such as halo catalogues) we will
use the volume weighted centre ry .

ry =

)

3.4.2 The cleaning algorithm

As already mentioned, we follow the procedure described by JLH to clean up the
output catalogues of ZOBOV and VIDE. We have implemented a sorting algorithm
that rejects voids according to their statistical relevance. The statistical relevance
of a void is measured in terms of its density contrast, defined as the ratio between
the central value and the maximum value of the radial density profile. ZOBOV
outputs are already ordered following this criterion, so this step is not applied.

We then apply two cutting criteria:

e the central density should be less than (1 + o, N ) P, since we are searching
voids that have a maximum embedded density equal to (14 6,V%)7 (see eq.
2.31);

e the effective radius of the void should belong to the interval [ryin, Fmaz]. This
step allows us to prune the catalogue from spurious small voids and from the
first output in the ZOBOV text file which is a void which takes up the entire
simulation®. The lower limit, 7,5, is chosen as a multiple of the m.p.s. while
the upper limit, 7,4z, 1S a fraction of the box size.

3This object is also documented by Neyrinck in the original ZOBOV paper who suggests to
manually remove it.
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It has to be noted that there are no particular restrictions to follow when selecting
the limits of the accepted radii interval. It is reasonable to select an interval which
has some multiple of the m.p.s. as a lower limit and some fraction of the maximum
size of the simulation box as an upper limit. This free choice, however, may cause an
“over-cutting” of the catalogue. In fact, the biggest voids in the results are sensible
to the upper limit of the interval.

Since ZOBOV finds voids by blending a set of adjacent zones with a hierarchy
where the most underdense zone defines the void central region and the others are
considered sub-voids, the former is only listed once in the catalogue while the others
are provided as offspring of the larger structure. If the cutting algorithm rejects the
parent void, moving lower in the catalogue it will eventually reconsider all the zones
except the deepest one. We implemented in the code the possibility to save this
deepest zone if the void where it is embedded got pruned by the selection criteria.
Of course this zone is saved only if it satisfies itself the cutting criteria. One should
refer to the original JLH paper for more details.

Even though the centre definition problem is mentioned in JLH too, we think
they underestimate the effect it may cause on the cleaning algorithm. In fact, as
they use a set of N-body simulations with low m.p.s., the results are obviously not
affected by this choice. This statement fades when dealing with sparse samples.

The density associated to the core particle may be too high and not represen-
tative of the true central density of a void, resulting in erasing from the catalogue
more candidates than necessary. For sparse samples we then use the central density
given by VIDE, namely the density of a spherical region centred in ry and with
radius 0.25 Ry .

3.4.3 The rescaling algorithm

Our rescaling algorithm makes large use of the CBL, especially to deal with cata-
logues and with the tracers’ distribution. The cleaned catalogue of voids is stored
in a object of the class Catalogue. We have implemented a new class of objects
(cosmobl: :Void) which allows direct access to a set of defining properties of voids
(e.g. comoving coordinates, radius, statistical relevance, central density).

We can divide the procedure in two main parts: the former produces the proper
rescaling while the latter checks for overlappings and eventually rejects unsuitable
voids.

The rescaling procedure extracts one by one the voids in the cleaned catalogue
and then procedes as follows:

e It firstly generates a chain-mesh (class cosmobl::ChainMesh, Marulli et al.,
2016) which allows to quickly search objects in the tracers distribution. This
is done by dividing the simulation into cubic cells and then considering only
tracers which belong to a set of cells close to the void center. The maximum
distance considered is set as some multiple K of the effective radius provided
by ZOBOV R.s;. This section provides a list of particles of the simulation at
a maximum distance K - Reyyr

e [t reconstructs the density profile of the spherical region centred in the void
centre and with radius K - Rcyy, tracer by tracer. The largest radius which
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encloses a density (1+6)1)p is selected as the new rescaled radius of the i-th
void.

e When all the voids in the catalogue have been rescaled, a new catalogue with
the updated radii is saved.

This part of the algorithm provides a set of voids that are spherical and enclose the
shell crossing density, as requested by the spherical evolution model. Moreover they
do represent the first crossing of the underdensity, threshold barrier §,, as requested
by the excursion set model, since the maximum scale which encloses the requested
density is selected as new radius.

Overlapping objects are then removed by scanning the catalogue of rescaled
voids. A chain-mesh of the voids centres is constructed around each void, with a
maximum distance given by the largest radius found by the rescaling algorithm.
When two void centres are closer than the sum of the associated radii, the less
underdense is rejected.

When all the voids have been scanned, the final catalogue is saved.
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Vdn model validation

The homogeneous and isotropic solutions of Einstein equations of the General Rel-
ativity (1.2) lead, in the last decades, to the development of the Standard Cosmo-
logical Model. According to this model, primordial fluctuations in the density field
gradually evolve into today’s structures (Section 2.1).

Cosmic voids represent a promising cosmological probes for a wide range of
phenomena (see the introduction of Chapter 2). While the statistical distribution
of galaxy clusters as a function of mass and redshift, is commonly used to derive
cosmological constraints, a similar approach with voids is hard to apply. Indeed the
generally accepted SvdW model fails in reproducing the number density of voids
detected in cosmological simulations. Since voids found in simulations are usually
under-predicted by the SvdW model, previous works could only fit the observed
distributions of voids with a SvdW size function in very relaxed conditions (i.e.
letting the lower value of the threshold ¢, free). This undermines the possibility of
using voids as cosmological probes.

In their paper, JLH suggested that the Vdn model is capable of reproducing the
voids size distribution in N-body simulations. This requires a selection of objects
which are compatible with the spherical evolution theory.

In this Chapter we apply our algorithm to the snapshots of the set of N-body
simulations descibed in Table 3.1, and show the results. We compare the results
with both the Vdn and the SvdW models, for different cosmological scenarios and at
different redshifts (Section 4.1). In Section 4.2 we extend the results obtained for a
narrow range of radii to a broader interval. The results confirm that the Vdn model
reproduces the data, but the resolution of the used tracers plays an important role
(Section 4.3). In Section 4.4 we discuss the general predictions of the model when
the cosmological parameters are varied.

4.1 Void size function in different cosmologies

In the previous Chapter, we outlined a procedure that should not depend on the
cosmological model and that, in principle, should map the void distribution in
cosmological N-body simulations. In particular, we want to test if the distribution
of spherical non-overlapping voids, found with the void finder we have implemented
(Section 3.4), is well predicted by the Vdn-model.

48
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To this end we fix a reference simulation for different cosmological models to try
out our machinery, namely the Lmm for a ACDM model, the Emm for the EAS model
and the Omm for the Open model (see Table 3.1 for the simulation characteristics
and Table 3.2 for the cosmological parameters).

In this first part of our analysis, we test the predictions of both the Vdn and
SvdW model. While we fix the underdensity threshold at the level defined by the
shell-crossing condition (i.e. 0% = —0.79 and 6, = —2.71 as in eq.s (2.32) and
(2.31), respectively), we let the overdensity threshold, d., vary in the interval in-
cluded between 1.06 (i.e. the turn-around linear density contrast for a spherical
perturbation) and 1.69 (i.e. the linear density of a collapsing spherical perturba-
tion). This is done to account for the discrepancies in the small radii region of
the size function, which may be caused by having considered un-correlated steps in
the excursion-set model (Jennings et al., 2013). In fact, Paranjape et al. (2012b)
provide an extension of the excursion set double-threshold approach, with a better
treatment of the void-in-cloud process. They argue that, to model the process of
void squeezing, resulting from the collapse of larger overdense perturbations where
a small void may be enclosed, the correlation between the steps of each random
walk has to be taken into account.

Nevertheless, only the smaller scales are interested by these problematics (Paran-
jape et al., 2012a), and we do not account for the cited modification of the model,
leaving it as a future development of our work.

We start showing the results for the ACDM model at increasing redshifts, z = 0,
z=0.5, z=1and z = 1.5, in Figures from 4.1 to 4.4 respectively.

We have divided the radial coordinate in equispaced logarithmic bins. In the
top panel we show the differential void size function, defined as the number of voids
with radius included in each logarithmic radial bin per unit of comoving volume
and divided by the logarithmic extent of the bin. We cut the distribution measured
in the simulation at twice the m.p.s. of the given simulation box (i.e. 2 Mpc/h).

We have overplotted the predictions of the two models: the Vdn model (black
region) and the SvdW model (red region). The extension of the shaded region
derives from the uncertainty on the definition of the overdensity threshold.

To highlight the difference between the theoretical models and the measured
distribution we also show in the two lower panels the logarithmic difference between
the simulation data and the two models. As we can see, the SvdW model (central
panel) systematically overpredicts the total number of voids at all the scales, while
the Vdn model (bottom panel) gives a better prediction of the distribution. Note
that the scale on the y-axis of the two lower panels in all the Figures are different.

Since voids are wide, underdense, unlocalized regions, they particularly suffer
limitations in the spatial resolution of the sample. At scales comparable to the
spatial resolution of the simulation, voids are not well represented by the tracers
sampling of the underlying density field. This causes a decreasing trend on the
number counts, which can be guessed at the smallest scales in the shown plots, in
spite of the applied cut.

At large scales, instead, the measurements are limited by the simulation box
extension. Since neither VIDE nor our algorithm authomatically account for the
periodical conditions of the N-body simulation, the largest peripheral objects of the
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Figure 4.1: Top panel: Number density of voids at z = 0 in the Lmm simulation boz. Central panel:
difference between the logarithmic values of the number counts and the SudW model. Bottom panel:
same as central panel but w.r.t. the Vdn model.
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Figure 4.2: Same as Figure 4.1 at redshift z = 0.5.
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Figure 4.4: Same as Figure 4.1 at redshift z = 1.5.
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simulation box may trespass on the boundaries of the box. Given the periodicity of
the simulation box, what goes out of the box at one side, re-enters it at the other
side. As a consequence of their widespread nature, outer voids are divided in smaller
voids next to the boundaries of the simulation box. Contrary to the limits at small
radii which cannot be overcome without increasing the resolution of the sample,
this inaccuracy in the void counts at large radii can be faced with an upgrade of
the void finding algorithm.

Considered this issue we can conclude that the Vdn model optimally predicts
the data at all redshifts. Nevertheless at the higher redshift considered (Figure 4.4)
we note a decrease in the number of voids w.r.t. the number predicted at large radii
by the Vdn model. We reserve the study of this point to a future investigation.

For what concerns the time evolution of the void size function, the density of
larger voids decreases with increasing redshift. On the other hand, the smaller
scales are less affected. This suggests that the evolution of voids in ACDM mod-
els is already advanced at high redshift. The Vdn model well predicts this behaviour.

To extend our results to different cosmologies, we apply the same procedure just
described for the ACDM model to other two scenarios.

We apply our algorithm and obtain the void distributions for the Emm simula-
tion box (see Table 3.1). We show our results in Figures from 4.5 to 4.8 for the same
redshift values considered in the ACDM model. Even though in this case the void

.
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Figure 4.5: Top panel: Number density of voids at z = 0 in the Emm simulation box. Central panel:
difference between the logarithmic values of the number counts and the SvdW model. Bottom panel:
same as central panel but w.r.t. the Vdn model.
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Figure 4.7: Same as Figure 4.5 at redshift z = 1.
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Figure 4.8: Same as Figure 4.5 at redshift z = 1.5.

counts seem to be on average slightly overpredicted by the Vdn model, its predic-
tions are largely better than the SvdW model which, once again, completely fails
at predicting the size distribution at all redshift. We can notice the systematical
decreasing trend in the counts at small radii which, in the EdS case, are marginally
included in the grey reliability range of values. Furthermore, also the behaviour at
large radii w.r.t. the model is again similar to that of the ACDM model, including
the peculiar deficiency at the largest redshift.

Also in this case the redshift evolution of the size distribution is acceptably re-
produced by the Vdn model. We again notice how the largest voids in the catalogue
shrink from small to high redshift.
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The last cosmological model we examine is an Open model with parameters
provided in Table 3.2. Figures from 4.9 to 4.12 show the void counts and void size
function models for the same set of redshift values considered before.

We notice that the general increase in the void density at large radii is, for
this particular cosmological model, more emphasised. Nevertheless, an open model
typically is more evolved than a flat model, such as the other two models inspected.
Given that an underdense region receives a burst in its outward acceleration from
the general expansion of the background Universe, this shall result in broader voids.

We hypothesize that the Vdn model’s under-prediction of the measurements,
for this particular cosmology, is not physical but once again an effect of not having
considered the boundaries’ periodicity of the simulation boxes.

Svdw
Vdn
v v Omm (]

log(dn/dlnr) [(h/Mpc)® ]

A SvdW

r [Mpc/h]

Figure 4.9: Top panel: Number density of voids at z = 0 in the Omm simulation boxz. Central panel:
difference between the logarithmic values of the number counts and the SudW model. Bottom panel:
same as central panel but w.r.t. the Vdn model.
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Figure 4.11: Same as Figure 4.9 at redshift z = 1.
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4.2 Extending the model validation over a larger range
of radii

We have established that, for standard cosmologies, the Vdn model predicts the void
size distribution over a considerable range of redshifts. Nevertheless we only have
shown measurements in a limited radii range. Extending these limits is desirable
for several reasons, first of all to strengthen our results but also because at different
values of the redshift the theoretical relation depends differently on the defining
parameters.

For now let us just note that a different behaviour at varying radii is expected
by the analytical form of the theoretical model of eq. (2.54), which is indeed ap-
proximated in eq. (2.55) by a piecewise function (the dependence on the radii is
implicitly contained in o< o = o(r)). Furthermore, we have already had the pos-
sibility to appreciate how the model behaves as a consequence of the modification
of the overdensity threshold d.. In all the figures shown, only the small scales are
affected by such a variation in one of the parameters. We will examine deeper the
parameter dependence of the Vdn model in the last Section of this Chapter.

We have already described how the reliability of the data depends both on
the m.p.s. of the simulation at small scales, and on the simulation box size at
large scales. The only possibility of mapping the statistical distribution of voids
in simulations over a broader range of radii is to obtain void catalogues in several
simulation boxes, with different m.p.s. and sizes.

Ideally we would obtain only one large simulation with a great number of parti-
cles. This would provide a test bench with a small m.p.s., reliable up to the largest
scales. However, given the extremely long computing time and the great amount of
memory required!, such a simulation is not simple to be obtained.

Nevertheless a similar result can be obtained with a set of catalogues covering
a larger range of sizes and resolutions. We then fix the ACDM cosmological model
as our test bench and run our algorithm for all the simulation boxes of Table 3.1
(except the Lhm box), with box side length from 64 Mpc/h to 500 Mpc/h and with
m.p.s. from 0.25 Mpc/h to 2 Mpc/h.

In Figure 4.13 we have superimposed the results coming from all the simulation
boxes. Having established the generally better reliability of the Vdn model w.r.t.
the SvdW model, we only show the logarithmic differences w.r.t. the Vdn model.
It is possible to notice how the new results do actually cover a wider range. For
comparative purposes we also show the void distribution measured for the Lmm
simulation box (blue dots).

At small radii we extend our measurements from the resolution limit of the Lmm
box (2 Mpc/h) to that of the Ltv box (green dots, 0.5 Mpc/h). Having mapped
the void size distribution at smaller radii, we can observe how the decreasing trend
of the blue points, at radii smaller than approximately 3.5 Mpc/h, is not present
in the simulation boxes with smaller m.p.s., as we were expecting. Nevertheless it
appears again around 3 times the m.p.s. of each simulation.

Furthermore, at large radii we extend the mapping from 15 Mpc/h to 20 Mpc/h.

!Each particle is described by three coordinates which can be stored as float numbers. Since
each float requires at least 4 bytes, a simulation, like the Lhm, with approximately two billions
particles requires at least 24 Gigabytes of memory to store all the data.
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Figure 4.13: Top panel: differential void size distribution for all the simulation boxes considered,
compared with the Vdn model (grey shaded region) and the SvdW model (red shaded region). Bottom
panel: logarithmic difference between the simulated measurements of void size distribution and the
Vdn model. The results for four different values of redshift are shown.
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Nonetheless, the void distribution of the L11 simulation box (magenta dots) shows
a stronger increasing trend than the others, w.r.t. the Vdn model which underesti-
mates the counts. This discreapancy might be a side effect due to the large m.p.s.
of the L11 box, which has the smallest resolution between our set of simulations.

We encountered similar difficulties at the very beginning of our research work,
when we were analysing the large Lhm simulation box. Since it was necessary to
sub-sample the particle distribution to overcome the already exposed computational
issues, the resulting sample had smaller resolution and was not well predicted by the
model. The development of smaller samples, with higher resolution, let us bypass
these difficulties.

Nevertheless, these problematics deserve more investigations, that will be ad-
dressed in the following Section.

4.3 Problems related to resolution and subsampling

In previous works (Sutter et al., 2014a; Pisani et al., 2015; Nadathur and Hotchkiss,
2015) the voids distribution has been studied by subsampling the DM particles to
match a number density of tracers comparable to that expected for tracers like
galaxies in future surveys. None of them find agreement between the SvdW model
and simulated data, unless the underdensity threshold, d,, was considered as a free
parameter to be fitted. This results in a threshold which is approximately between
—0.45 and —0.5 when tracers are subsampled to match an average number density
of n=4-10"3 (h/Mpc)3.

Doubts concerning the application of a subsampling procedure when searching
voids with a VT method have been raised by Achitouv et al. (2015). They argue
that the procedure of JLH may be correct, since it searches for spherical under-
densities similar to the theoretical definition of voids, but it may suffer from the
un-sphericities generated by the voids evolution.

Nevertheless the authors concentrate only on the density field mapping by the
VT algorithm with void finders such as ZOBOV or VIDE. Their point is that, since
voids should be separeted by thin ridges, the subsampling of the tracers may result
in a loss of individuality. We object that they do not consider the natural tendency
of underdensities to become more spherical while they evolve (Icke, 1984) which is
instead considered by the excursion set model.

Furthermore, even if unspherical voids formed, our void finder should suffer less
from this issue. In fact, it finds all the largest spheres that do not overlap and fit
inside an underdense region. Nonetheless, the problems with the L11 simulation
box encountered in the previous Section, and that only sketched out with the Lhm
box, together with the exposed arguments raised by other authors, push towards
the necessity of testing the actual effect of subsampling.

At this goal, we analyse two simulation boxes with the same side length (128
Mpc/h) but different resolutions: the Lsm simulation box, whith m.p.s.= 1 Mpc/h,
and the Lsh simulation box, whith m.p.s.= 0.5 Mpc/h. The Lsh has been already
proven to be well represented by the Vdn model. On the other hand the Lsm has
the same resolution of the Lmm, which is also well represented by the Vdn model.
We can then randomly subsample the Lsh to match the same number density of the
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Lsm:
nlLsh = 88 N[psh = NLsm ,
where n/ , is the number density of subsampled tracers in the Lsh box, which

multiplied by a subsampling factor, ss, has to match npsy,. The results for the
number density of voids are shown for different redshifts in Figure 4.14. What can
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Figure 4.14: Comparison at four values of redshift between the void size distribution in the Lsh
simulation, with a subsampling of ss = 0.125, and the void size distribution of the full sample Lsm
simulation bozx. The two shaded regions illustrate the predictions of the SvdW model (red) and of
the Vdn model (black).

be noted is that the two data distributions are almost perfectly overlapped at all
scales and redshifts, with minimal deviations only at very low and very large values.
We conclude that the subsampling of tracers does not directly cause a deterioration
in the data, if a sufficiently high resolution is maintained.

We have already shown that the data from the simulation box with the low-
est resolution (L11) tend to be underpredicted by the Vdn model at the largest
radii. Such a behaviour could be corrected by assuming a higher value of the
threshold 4, as done by the cited authors, since, in the interested range, the model
mainly depends on the §, value. However, in our theoretical approximation we
want the threshold to be fixed, since it is this parameter that more than any other
distinguishes what should be defined as “void” by merely underdense regions (Sec-
tion 2.1.2).

Given that also a full sample may encounter an overcrowding of large voids when
its resolution is not high enough, we conclude that the most relevant property of a
sample when dealing with voids is its spatial resolution.
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We show the effect of diminishing the resolution of the sample by subsampling
the Lsh simulation box to match the number density of DM particles in the L11
box. The results are shown in Figure 4.15 for all redshifts.

' ' '
[ Ul B

log(dn/dinr) [(h/Mpc)® ]

'
~

'
o]

1
N

Vdn ; ;
Lshss = 0.0156 i [\ N
Ll ss = 1.0 1 \

log(dn/dlnr) [(h/Mpc)* ]

g iO 15
r [Mpc/h] 7 [Mpc/h]

Figure 4.15: Comparison at four values of redshift between the void size distribution in the L1l
simulation, with a subsampling of ss = 0.0156, and the void size distribution of the full sample Lsm
stmulation box. The two shaded regions illustrate the prediction of the SvdW model (red) and of
the Vdn model (black).

The blue dots, representing the voids distribution in the subsampled Lsh, are un-
derpredicted by the Vdn model while the SvdW tends to get closer. This behaviour
is similar to what happens to the L11 taken full sample.

It has been advocated (Achitouv et al., 2015; Nadathur and Hotchkiss, 2015)
that VT void finders may be incompatible with the theoretical models exposed in
Section 2.3, since they rely on different definitions of voids (i.e. while the theory
defines voids dynamically, as objects which have gone through shell-crossing, void
finders only search for underdensities). Nonetheless, we are confident that our
procedure overcomes this incosistency, thanks to the requirements of sphericity,
no-overlap and shell-crossing fixed density contrast.

Subsampling the tracers does not deteriorate the data obtained if a sufficiently
high resolution is maintained (Figure 4.14). Conversely, if the subsampling is too
extreme, the resolution of the sample becomes too low and the Vdn model does
not predict the void distribution anymore (Figure 4.15). We conclude that the not
correct prediction of the void counts measured in some simulated samples is an
effect of the the low resolution rather than the subsampling (as argued by some
authors). Tracing the density field with sparse samples may in fact result in the
accidental merger between adjacent voids which generates larger voids. This is
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not in conflict with the theoretical model of void size function since the excursion
set theory for voids does in fact consider the effect of mergers between voids in
an exactly identical way as the PS formalism accounts for the hierarchical merger
history of haloes. Nevertheless the systematical growth in the counts of large voids
for under-resoluted samples damages the possibility of obtaining faithful predictions
with the theoretical Vdn model. We have however proven that with a m.p.s. of
at least 1 Mpc/h the Vdn model succeeds in predicting the size distribution of
voids for different redshifts and without particular preferencies for the cosmological
parameters of the used simulated samples.

4.4 Cosmological dependencies of the model

The promising results of the previous Sections push toward the conclusion that
the theoretical Vdn model successfully predicts the void size distribution. We are
therefore interested in how a variation of the cosmological parameters may modify
the predictions of the model. As examples, in this Section we compare the model’s
behaviour in different scenarios by simply varying the value of some parameters,
namely 7, g and wp. Since we have already commented how the model evolves
in time in Section 4.1, we fix the redshift value at z = 0, and let only the other
parameters vary.

In the first place, we examine how the model is affected by a variation in the
matter content of the Universe. Figure 4.16 illustrates the resulting differential
VSEF.

We assume flatness (i.e. total density parameter r = 1) and let the matter
density parameter ), vary, together with the dark energy density parameter, so
that Q4 = 1 — Qpy. All the other cosmological parameters are fixed at the values
of the ACDM cosmology in Table 3.2, which we assume as a fiducial model. In the
lower box we show the logarithmic differences between the different models and the
fiducial one.

We note that for cosmologies with a higher mass content the density of small
voids decreases, while the number of large voids increases. This should not surprise
since the larger is the matter density parameter, the quicker the overdensities col-
lapse into haloes. Because of the void-in-cloud process, this results in the crushing
of small voids. On the other hand, since the underdense regions are faster evacuated
by matter, which preferentially flows into the collapsing haloes, the voids which sur-
vive the void-in-cloud process are systematically larger as a result of the enhanced
merger rate between adjacent underdensities.

This result is also highlighted by the cumulative volume fraction in voids, F(r),
(Figure 4.17), which measures the fraction of the Universe volume occupied by
voids with radii larger than a given value r. The Vdn model requires that the total
volume fraction shall be a conserved quantity and effectively, all the models reach
out a constant value approximately around the 38% of the total volume. Models
with a higher matter content however reach this value at larger radii w.r.t. the
others, suggesting that small voids do not play a significant role.

We have also considered how the theoretical model is affected by the variation
of the matter fluctuations power spectrum normalisation, as expressed in terms of
r.m.s. of the mass variance on scales of 8 Mpc/h in the present Universe, og. Given
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Figure 4.16: Predictions of the Vdn model with varying matter content of the Universe under the
assumption of flatness. The black line represents our fiducial model (ACDM in Table 3.2). In the
top panel the differential Void Size Function is shown. In the bottom panel we plot the differences
between the logarithmic values of the curves w.r.t. the fiducial model (Qa = 0.2711).
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Figure 4.17: Volume fraction occupied by voids with varying matter content of the Universe under
the assumption of flatness. The black line represents our fiducial model (ACDM in Table 3.2).
In the top panel the cumulative volume fraction in voids (eq. (2.58)). In the bottom panel the
difference between the curves w.r.t. the fiducial model (Qun = 0.2711) is shown.
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their extremely large scale, cosmic voids cover the smallest wavelengths of the power
spectrum and should then provide useful constraints on its amplitude in the region
where it approaches the self-similarly evolved part. The local abundance of voids
should then deliver an essential cosmological information, since consistency with
this constraint is one of the most important tests a model can pass.

In Figure 4.18 we show the curves obtained varying og in a range between 0.6
and 1. We notice that they are expecially sensitive at the higher values of the radii.
In the lower box we stress the logarithmic differences between the set of models and
the fiducial model. The intersection of the curves marks approximately the point
where the void-in-cloud process becomes relevant (i.e. approximately 2 Mpc/h in
such a ACDM model). It is then clear that, to put constraints on the value of og
using the cosmic voids distribution, it requires a catalogue of the largest observable
voids (i.e. hopefully with radii larger the 10 Mpc/h).
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Figure 4.18: Same as Figure 4.16 for varying normalisation of the power spectrum of matter
fluctuations, os.

Lastly, we explore the effects on the void size function of a variation of the equa-
tion of state parameter of the DE component, wg. This parameter governs the rate
at which the DE energy density evolves and is required to be a smaller than —1/3
in order to induce an accelerated expansion. For a perfect, unchanging vacuum
energy, like the cosmological constant A, we must have wyg = —1, meaning that the
pressure is equal in amplitude and opposite in sign to the energy density. If the
real measure of wq is slightly different from this reference value, we would expect
extremely different scenarios for the future evolution of the Universe. Thus measur-
ing these possible deviations of the parameter wy is crucial for our understanding
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the nature of the DE component and the future evolution of our Universe.

In Figure 4.19 we illustrate how the predictions of the Vdn model vary as a
function of wy. The lower panel stresses the difference between the models, showing
that the size function of voids is more sensitive to an increase of wy w.r.t. the
reference value (black curve). Note that varying by a factor of two towards smaller
values of wy (blue curve) has an effect comparable to a variation by a factor of 0.25
(red curve) towards larger values of wy.
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Figure 4.19: Same as Figure .16 for varying DE eq. of state parameter, wo.



Chapter 5

Voids in the halo distribution

Having proved the efficiency of the Vdn model for the void size function in the
DM particles, we focus now our research to a ACDM cosmology at redshift z = 0.
The ultimate goal of this part is to find a model capable of predicting the void
size distribution for real tracers of the underlying density field, such as galaxies or
clusters of galaxies.

As we have seen in the previous Chapter, a statistical study of voids in terms
of their size, first of all requires a sample of tracers with a sufficient resolution. In
the last decades the resolution and spatial extension of surveys grew considerably.
Voids can be identified in these surveys as regions of space containing fewer galaxies
than average.

Several void catalogues have been compiled with data from the Sloan Digital
Sky Survey (SDSS) Data Release 7 (DR7) (Pan et al., 2012; Sutter et al., 2012;
Ceccarelli et al., 2013; Nadathur and Hotchkiss, 2014), but the methods used to de-
fine and identify voids in the original galaxy distribution vary in each case. Recently
the DR11 and DR12 releases from the SDSS-IIT Baryon Oscillation Spectroscopic
Survey (BOSS) have covered much larger volumes of the Universe, spanning a larger
redshift range. Based on these data a large void catalogue, compiled by Nadathur
(2016), was made pubicly available. The vast majority of these catalogues are ob-
tained using the ZOBOV void finder or similar algorithms. In particular Nadathur
(2016) use the ZOBOV void finder regulated to not merge any adjacent zone (see
Section 3.3), thus retaining as much information as possible on the underlying topol-
ogy of the reconstructed density field.

In Table 5.1 we present an example of the main characteristics of the data-set
selected to compile some of the cited catalogues. For each of these samples we
show only the properties useful for our discussion. Note that all these samples have
mean number density (n) smaller than that of our N-body simulations with the
smallest resolution (compare with Table 3.1). Furthermore, all of these samples are
composed with tracers which are biased w.r.t. the DM density field. Since we found
that a minimum spatial resolution of m.p.s.~ 1 Mpc/h is necessary to apply safely
our method, it is clear that a generalization to the case of sparse and biased samples
is necessary.

In this Chapter we discuss some possible modifications to our fiducial model of
void size function, in order to apply it also to the case of biased tracers. In fact, it
has been observed (Benson et al., 2003) that voids found in the galaxy distribution

68
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Survey Magnitude limit Az (n) m.p.s.
(Mpc/h)~2  Mpc/h

SDSS DR7 M, < —18.90  [0.00,0.05] 2.4-1072 3.47
M, < —20.40  [0.00,0.10] 8.7-1073 4.86
M, < —21.35 0.00,0.15] 2.5-1073 7.37
M, < —22.05  [0.00,0.20] 5.1-107*  12.52

[ ]
[ |
000
M, < -21.20 [0.16,0.36] 9.4-107°  21.99
[ ]
[ ]
[ ]

M, < —21.80 [0.16,0.44] 2.6-107°  33.76
SDSS-IIT DR11 - 0.15,0.43] ~2-107* 17.10
(BOSS) - 0.43,0.70] 1.5-107*  18.71

Table 5.1: Some useful properties of the volume-limited samples used to compile the currently
available void catalogues. We show the magnitude limit for all the catalogues for which is
available. We also show the limiting redshifts Az. The average number density of galazies
(n) and the mean particle separation are showed in comoving units.

are systematically larger than DM voids. Moreover the size of voids shall increase
with the total mass of the tracers (Furlanetto and Piran, 2006). We make use of a
set of halo catalogues obtained by means of a FoF algorithm! applied to the N-body
simulation with volume 1 (Gpc/h)? (Lhm in Table 3.1).

The halo distribution mimics the distribution of biased tracers like galaxies
obtained from real observations. Our analysis aims at filling the gap between what
we can learn about voids from simulations and the actual voids identified in galaxy
samples.

We apply the VIDE algorithm to four halo mock catalogues at redshift z = 0.
These catalogues are obtained by cutting the original one at different minimum
masses. In Table 5.2 we show the properties of the set of catalogues to discuss the
role of bias. Since the tracers of the density field are in this case not only biased but
also extremely sparse, as anticipated in Section 3.4.1, we will use the barycentre of
the voids, ry, instead of the core particle centre, r¢, as centre of the voids.

To get an idea of how the internal structure of voids traced by haloes is designed,
in Section 5.1 we compare their stacked density profiles with the stacked profiles
of the underlying DM density field. This result leads to two possible approaches
which we examine in the following Section 5.2. With our analysis we find that
the halo-void radii are connected to the DM-void radii and to the underlying DM
density contrast by two different scaling relations (Section 5.3). By means of the
last of these two relations we develop a semi-analytical model for a halo-VSF in
Section 5.4.

'A Friend of Friend (FoF) algorithm defines haloes in a simulation by grouping all the DM
particles which are separated by a distance smaller than 8-mps, with /3 a free paramater (frequently
~ 0.2) and mps the mean particle separation. The resulting halo catalogue should only depend on
mps.
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catalogue  Mpin  begf Ny (n) mps
Mg/h (Mpc/h)~2  Mpc/h

no-cut 2.102 1.197 1582064 1.58-1073  8.58
low-cut 5-102 1.38 761577 7.62-10%*  10.95
mid-cut 1-10 1.583 394012 3.94-107* 13.64
high-cut 1-10 2771 25615 2.56-107°  33.92

Table 5.2: Characteristic quantities for our set of halo catalogues. We show the minimum
halo mass Mp,n, the effective bias of the sample besy, calculated with an internal function
of the CBL, the total number of haloes Ny, the mean numerical density (n) and the mean
particle separation mps.

5.1 Stacked Profiles

It is generally accepted that, in the standard ACDM cosmology, voids have a self-
similar internal structure, which do not depend on the tracer used to define them
(see e.g. Ricciardelli et al., 2013, 2014; Hamaus et al., 2014).

The self-similarity assures that the internal structure of voids can be charach-
terized by a single parameter: the void effective radius Rcyy. Despite the wide
range of values this parameter covers, it is possible to average the internal density
distribution to recover a common behaviour for voids with approximately the same
R, ff-

It has been noticed (Nadathur et al., 2015) that, to recover self-similarity, some
criteria have to be applied to the selection of objects to be classified as voids. Nev-
ertheless the most crucial role seems to be played by the cut on the minimum
density of the candidate, pp,n, which has to be sufficiently low (i.e. ppmin < 0.3 (p)).
Since such an underdensity degree is largely achieved by our default cleaning algo-
rithm, we are confident that the objects we select should behave in a self-similar
manner. Therefore, we apply our cleaning algorithm to the no-cut halo-void cata-
logue, obtaining a collection of approximately 7000 voids with VIDE-radii between
~ 9 Mpc/h and ~ 63 Mpc/h.

To reconstruct the density field for both the DM particles and haloes, we have to
implement an additional step in the code. In fact, the original Lhm simulation counts
approximately two billions particles. Since, we want to mantain the maximum
possible resolution of DM particles, we have to load all the particle positions of the
simulation snapshot, which is extremely expensive in terms of required memory.

We overcome this issue by dividing the simulation box into a mosaic of smaller
sub-boxes. Since voids are extended regions, even though their centres are found
in a sub-box, their edges may trespass on its boundaries. To prevent this eventual
incompleteness in the density mapping, we let the cubic tiles of the mosaic overlap
by 100 Mpc/h. Voids which belong to the overlapping region between two or more
sub-boxes are considered as belonging only to the sub-box where they are further
from the edges.

By means of this procedure, we store in binary files the position of each particle
and, separately, of each halo embedded in a spherical region of radius thrice the
VIDE-radius of the parent halo void. For each DM-density profile we also find the
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scale of the corresponding shell crossing radius, r.ss (i.e. the radius which embeds
a density p = 0.2 - (p)). This is the true radius of the considered void, since it
describes a spherical region gone through shell crossing.

To obtain the stacked profiles we divide our sample into four equally large groups
of voids with radii between 17 Mpc/h (i.e. twice the m.p.s. of the halo sample) and
61 Mpc/h. Since our definition of voids is based on a spherical approximation, and
on the requirement of shell-crossing, we compute the spherically-averaged density
profiles of all the voids included in each of these bins. The number density is
estimated within a series of logarithmically equispaced spherical shells centred in
the barycentre of each void

s%.

1 N n
n; = NZT (5.1)
§=0

where 7; is the mean density of voids included in the i-th bin, NV is the number of
voids in the i-th bin, nf is the density of the j-th void in the i-th bin and (n) is the
mean number density of the considered simulation. This is done for both the DM
particles and the haloes, expressing the tracers distance from the centre in terms of
reff- The results are shown in Figure 5.1.

T I T I T I T
[17 Mpc/h < Ry < 28 Mpc/h) [28 Mpc/h < Ry < 39 Mpc/h)

| |

r/reff r/reff

Figure 5.1: Stacked density profiles for the DM particles (black curves) and haloes (red curves).
The x-axis scale is the distance from the centre in terms of the shell-crossing effective radius reysy,
while the y-azis is the density in terms of the mean density of tracers. In each of the four boxes we
show the interval of radii of the averaged objects, in terms of the radius provided by the application
of VIDE to the halo catalogue.
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The error bars represent the scatter in the density profiles, whose general be-
haviour is to decrease approaching the shell-crossing effective radius in the DM
particle voids. Even though this results from our definition of voids, the smaller the
considered voids, the larger is the scatter in their profile immediately outside the
effective radius resr. The fluctuations in the halo-void density profiles are caused
by the low statistics in the inner region of voids, as a consequence of the larger
sparsity of the tracers. This behaviour is more relevant in larger voids, which are
less numerous than smaller voids.

As it is clearly shown in Figure 5.1, voids identified in the halo distribution
are systematically more underdense than voids in the DM particle distribution in
the inner regions. Nevertheless, voids in the halo distribution seem to generally
encompass voids in the DM distribution. This result demonstrates that, if we want
to predict the statistical distribution of voids with realistic tracers, it is necessary
to adapt the theoretical model.

5.2 Towards a model for the VSF in the halo distribu-
tion

From the stacked profiles found in the previous Section we can conclude that halo-
voids do not share the same radius of their DM particle-defined counterpart. More-
over, the void density profile traced in the halo distribution shows a density distri-
bution that, not only reaches smaller values in the inner regions, but is also shifted
to larger radii. Furthermore, the more we get closer to the void centre, the less are
the tracers and thus the density goes to zero.

To predict the void distribution as a function of size in the distribution of realistic
tracers, we have to re-elaborate the adopted formalism. To this end, we consider
two possible modifications which rely on two different criteria based on the matter
distribution within a void. Refering to the profiles in Figure 5.1, let us consider
the position in the DM particle density profile where the shell-crossing threshold is
reached, i.e.

By = (r/resp, p/p) = (1,0.2)

as our reference point. Ideally, we can either move downward along the y-axis from
P, until the halo density profile is reached, or we can move rightward along the
y-axis. With the first approach we are trying to find in the halo distribution the
boundaries of the DM void. Instead the second approach relies in the definition of
a halo void enclosing the DM void which has generated it.

The first approach, which relies on the definition of a tracer-dependent threshold
based on the formalism anticipated in Section 2.4, is exposed and commented in
Section 5.2.1. The second approach will be discussed in Section 5.2.2, but it will
also lead to the results presented in Sections 5.3 and 5.4.

5.2.1 The analytical tracer-dependent threshold

If we want to compare halo-voids to the predictions of the Vdn model we have
to detect in the halo distribution the same voids we detect in the DM particle
distribution. In fact, the Vdn model has been developed for the DM density field
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where the underdensity threshold is fixed by the shell-crossing condition. Therefore,
if we want to keep the value §, = —2.71 fixed in the model, we have to find the
corresponding value of the threshold in the case of biased tracers.

By means of the formalism exposed in Section 2.4, the threshold for haloes
depends on the ratio between the halo distribution inside a void with a given average
density w.r.t. the average halo distribution of the sample.

We recall eq. (2.63) here for convenience:

nﬁ (mmzn |6v , Rv)

&
(p)

where nf, (Mmin) and nf (Mmin|dy, Ry), are the cumulative halo mass function and
the conditional cumulative halo mass function, respectively.

Eq. (5.2) shows that a void with underdensity 6% in the DM distribution would
have a scale-dependent underdensity (5}]:’ L x R, in the halo distribution. We can
then calculate a coherent halo threshold for each catalogue in our set. The results
of this measure are reported in Figure 5.2 and show that the required threshold,
corresponding to the shell-crossing condition, gradually decreases when we cut the
catalogue at larger masses. We only show non-zero values, as at a total mass M, (R,)

=1+ 5}11\7L(mmin7 Oy, Rv) = (1 + 51])VL)

7 (5-2)

| — no-cut
- lowcwut | o
F| »—< mid-cut
L[| = high-cut : :
-8 1 | . . | . . o
8 10 20 50 100

R, [Mpc/h]

Figure 5.2: Density constrast p,/{p) = (1 + ) (eq. (5.2)) within halo-voids as a function of
radius. All curves assume &, = —2.71, and are referred to our halo catalogues, with the Mpin
shown in Table 5.2. Only the non-zero values are shown.

the function (5.2) is not defined (see Section 2.4).
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A relevant feature to note is that the scale-dependent threshold tends asymp-
totically towards a costant value at large radii, while it decreases at small radii. For
the no-cut haloes this value is approximately 5- 1073, which justifies the downward
shift of the density profiles in Figure 5.1.

Nonetheless, such small values mean that there is no hope of using this method to
identify voids in the halo distribution and thus comparing the halo-voids statistical
distribution with an unmodified Vdn model. In fact all the found values are at least
two orders of magnitudes smaller than the shell-crossing threshold.

A simple example can better explain our point. Let us consider a large void,
of 10 Mpc/h in radius, in the DM particle distribution. The no-cut catalogue is
contained in 1 (Gpc/h)3 volume and has a mean number density of approximately
(Nno-cut) ~ 0.0016 (Mpc/h)~3, meaning that the average expected underdensity
within the considered void in the halo distribution is

7,(10 Mpc/h) = (1 4 6;,(10 Mpc/h)) - (Nno-cut) = 107% (Mpc/h) ™2 .

Our spherical void has a volume of approximately 4 - 103 (Mpc/h)3 so we do not
have any chance of mapping its internal density in the halo distribution within such
a small radius.

5.2.2 Shell-crossing fixed threshold

The alternative to the definition of a tracer-dependent threshold is to fix the un-
derdensity threshold at some reasonably high value and search for the dependence
between the halo-void properties and the DM underlying void.

We choose to define the halo-void radius as the point where the mean enclosed
density is py, g = 0.21 - p, the same value found in eq. (2.31) and fixed by the
shell-crossing condition. We apply our algorithm, obtaining a catalogue of spherical
non-overlapping voids for each of the halo catalogues of Table 5.2. In Figure 5.3 we
show the number counts of voids found by means of this procedure. All the points
are showed, without applying any cut except that automatically applied by VIDE,
which does not consider objects smaller than the m.p.s. of the tracers’ distribution.

It is easy to appreciate how the total number of voids decreases as we search them
in more biased tracers. The decreasing behaviour when the m.p.s. is approached is
not physical but it is caused by the spatial resolution limit of the tracers used in
the analysis.

Since the low statistics may cause issues in the following part of this work, we
point out that in the high-cut void catalogue (magenta points in Figure 5.3) only
a total of 148 voids are found by our algorithm. This, once again, highlights how
crucial the resolution of the sample may be: voids traced by sparser samples are
systematically larger and thus their number decreases considerably. To highlight
the radial shift between the four distributions, in Figure 5.4 we have normalized the
number counts by the total number of objects. All the distributions have a similar
shape, even though the high-cut catalogue shows wide fluctuations.

The next step of our analysis is to obtain the stacked density profiles of voids in
all our halo-distributions. For each considered void-catalogue, we divide the voids in
four radial bins between the m.p.s. of the parent halo-catalogue and approximately
the radius of the largest void found inside it.
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Figure 5.3: Total number of halo-voids found by our algorithm as a function of radius. The error
bars show the Poisson error in the counts.
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Figure 5.4: Same as Figure 5.3 normalized to the total number of voids in the cleaned VIDE
catalogue.
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The stacking procedure applied is the same described in Section 5.1 and the
results are shown in Figures from 5.5 to 5.7 for no-cut, low-cut and mid-cut cata-
logues, respectively. We have superimposed the underlying DM-void density profiles
(black curves) found in the DM particles distribution to the halo density profiles
(red curves). To ease the comparison, both the profiles are shown in units of the
respective effective radius. We make sure to radially divide each catalogue in order
to include at least 50 objects in each bin.

The profiles obtained for the high-cut catalogue showed fluctuations of the
order of the average density, which affects our capability to analyse them. This is
an effect of the low number of voids which compose the catalogue. Since widening
the radial bins is not an option (e.g. if the averaged void profiles span a wider
range of radii the hypothesis of grouping “similar” objects fades) we decide from
here after to not consider this catalogue anymore.

1.4~ ' 11T
pq|
l2f T Sl

I 08w rrrrrrr
~ . .
2 0.6

0.4}
0.2H 44y

1.4

= 0.8

Ny
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0.2pt

Figure 5.5: Stacked density profile for the DM particles (black curves) and haloes of the no-cut
catalogue (red curves). The scale is in units of the effective radius defined in the two different
tracers distributions.

We notice that in the inner regions, r < r.yy the red profiles are similar or lower
than the black profiles, while in the outer regions, r > 7.y, they grow faster than
their counterpart. The red and black profiles systematically tend to rejoin at very
large radii (r > 37esy), as expected.



CHAPTER 5. VOIDS IN THE HALO DISTRIBUTION 7

14— L R UL IUUUIUSUUUTUUUUU VUSRS PP P
1.2} .

|11 00 Mpc < R, <17 00 Mpc : |17 00 Mpc < R, < 23. 00 Mpc

= 0.8
~

2 0.6
0.2 -4

1.4
1.2+

= 0.8

~

2 0.6
0.4
0.2

Figure 5.6: Same as Figure 5.5 for the low-cut catalogue.
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Figure 5.7: Same as Figure 5.5 for the mid-cut catalogue.
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5.3 Scaling relations

We search for dependencies between the characterizing quantities of the found halo-
voids and the underlying DM voids, in the set of catalogues built in the previous
Section. As it has already been said, voids can be completely characterized by their
radius, which is therefore the chosen quantity for the analysis we want to conduct.

We find two broad scaling relations which connect the halo-void radii found with
the method described in Section 5.2.2 with two relevant properties of the DM voids
in the DM density field: the DM void radii r.s; and the average DM density.

5.3.1 Halo-radius vs DM-radius

Having fixed the radius of each halo-void as the radius, Ry, of the sphere which
includes a density contrast equal to that predicted by the shell-crossing condition,
we find that a relation with the radius of the underlying DM void r.;y exists for
each inspected halo catalogue.

This is a linear relation in the logarithmic values of the radii of the form

log Ry = A+ BlogRpy (5.3)

with the error on the fit given by the root mean square of the residuals. Eq. (5.3)
implies that the effective radii in the two tracers are connected by a power law.

In Figures from 5.8 to 5.10 these relations for the three remaining catalogues
are shown. In each of these Figures the linear logarithmic relations are shown with
the corresponding values of the coefficients and with the relative errors. The circles
are the median values in each bin while the error bars show the positions of the first
and third quartiles.

To obtain the fit we consider voids in the same range of radii used to plot the
stacked profiles but we do not consider radial bins with less than 5 values.

As expected from our analysis of the stacked profiles, in all the considered cat-
alogues the halo-void radii are larger than their counterpart in the DM particle
distribution. Still, there is a clear trend which may justify further investigations in
this direction.

The coefficients in these relations (summarized in Table 5.3) show no particular
trend which may suggest a dependence on the effective bias of the halo catalogue
used to define them. Nevertheless, this may be a result of the large scatter of the
data.

Name A B error

no-cut —-0.97 1.16 0.0087
low-cut —0.45 0.62 0.0048
mid-cut —0.56 0.63 0.0051

Table 5.3: Best fit values of the Ry-Rpa relation’s coefficients (A and B in eq. (5.3))
found for the three different catalogues and the corresponding error obtained as the root
mean square of the residuals.

The large scatter of the found relations could possibly be a result of a not perfect
overlap between the centre of the voids traced by haloes and the underlying DM
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Figure 5.8: The relation between the effective radii obtained for voids in the halo distribution of the
no-cut catalogue (Ru) and the effective radii of the underlying DM voids in the DM distribution
(Rpum ). The points represent the median values while the error bars indicate the quartiles. We
show the best-fit logarithmic linear relation (solid line) between our measurements.
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Figure 5.9: Same as Figure 5.8 for the low-cut catalogue.
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Figure 5.10: Same as Figure 5.8 for the mid-cut catalogue.

void centre. We leave the analysis of this eventuality for future expansion of our
work.

5.3.2 Halo-radius VS DM-density

The second relation we find connects the halo-void radius Ry with the underlying
un-biased DM density contrast. Once again the relation found is linear in the
logarithmic values of the two quantities (see previous Section), resulting in a power-
law dependence of the kind

opm =C+ D log Ry (5.4)

where the coefficients depend on the bias of the chosen catalogue.

We show the results in Figures from 5.11 to 5.13 for catalogues no-cut, low-cut
and mid-cut, respectively.

The general trend is a decrease of the average encompassed density as the radius
grows. This result indicates that larger voids in the halo distribution encompass
deeper underdensities in the DM distribution.

We also note that the coefficients of these relations seem to vary in a self-
consistent way (Table 5.4). While the intercept of the relation generally decreases
with the effective bias of the sample, the slope is fixed at approximately —0.3.
Given the extremely limited number of considered occurrencies we cannot confirm
this behaviour and reserve further investigations for the future.
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Figure 5.11: Relation between the effective radii obtained for voids in the halo distribution of
the no-cut catalogue (Rp ) versus density contrast of the underlying DM distribution (Spar). The
triangles represent the median values while the error bars indicate the quartiles. We show the best-fit
relation (solid line) between our measures.
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Figure 5.12: Same as Figure 5.11 for the mid-cut catalogue.
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Figure 5.13: Same as Figure 5.11 for the low-cut catalogue.

Name C D error

no-cut 0.03 —0.30 8.847-10"°
low-cut 0.08 —0.29 3.983.107°
mid-cut 0.11 —-0.27 1.373-107*

Table 5.4: Best fit values of the Ry-6pa relation’s coefficients (C' and D in eq. (5.3)) and
corresponding error in the fit (root mean square of the residuals).
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5.4 Building a semi-analytical model for halo voids

The relation between Ry and §pps may be useful to define a semi-analytical model
for the void size function. In fact, with the Vdn model we can predict the statistical
distribution of voids in the DM density field but not in biased distributions. The
void distributions of the three examined catalogues are extremely underpredicted
by the Vdn model with a shell-crossing threshold of 5% = 0.21.

We argue that, to recover the agreement between the measured distribution and
the theoretical model some prescriptions have to be applied. We procede as follows:

1. From the scaling relation found in the previous Section (eq. (2.54)), we define
the mean DM density contrast enclosed in each halo void with a given size as
the halo scale-dependent underdensity threshold.

2. This varying threshold, found in the non-linear matter distribution, is linearly
extrapolated, applying the fit found by Bernardeau (1994),

6y = C[1— (6pm(Ry)) "€ = 6pa™(Ry) , (5.5)

where C = 1.594 and L specifies a linearized value. Eq. (5.5) is proven to
reproduce the linear evolution values of the density contrast with error bars
within an error of 0.2% up to § = —1 (Bernardeau, 1994; Jennings et al.,
2013).

3. We then replace the DM underdensity threshold 4, in the void size function
(eq. (2.54)), with the scale-dependent 6%,,(Ry) and then calculate the pre-
dictions of this modified Vdn model (red curve in Figures from 5.14 to 5.16).

4. We define a confidence range of values approximately around the new semi-
analytical model (shaded regions in Figures from 5.14 to 5.16). This is
achieved by repeating steps from 1 to 3 using point by point the fitted quartiles
values, instead of the fitting values of the density contrast.

We can now compare the void distribution in the catalogues obtained in Section 5.2.2
(black dots in Figures from 5.14 to 5.16) with the void size function semi-analytical
model obtained with the outlined procedure. In fact, since the void size function has
been derived for fluctuations in the un-biased DM density field, using the (linearly
extrapolated) DM density contrast of Section 5.3.2 is consistent with the theoretical
model. Note that all the Figures shown are cut at around twice the m.p.s. of the
halo distribution, at the small radii. Conversely, at large radii, we cut our results
at the upper limit of the reliability interval used to define the scaling relation. All
points included in this radial range are at least marginally included in the confidence
range of values (defined in point 4.).

In conclusion, our analysis portrays an uncharted but viable approach to the
statistical modelling of the halo void size distribution. Our results underline the
existence of a non-trivial dependence between the tracers used to define voids, their
sizes and the DM density contrast within them. The raised questions require fur-
ther investigations, such as examining their characteristics at varying redshift and
at varying cosmological parameters (with an analysis similar to that outlined in
Section 4.4).
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Figure 5.14: The size distribution of halo-voids in the no-cut catalogue is shown (black dots)
versus the semi-analytical model described in Section 5.4 (red curve). The coloured shaded region
indicates the confidence range of the model, and is the defined as the value of the Vdn model with
a density threshold given by the median (solid line) and the first and third quartiles (dashed lines)
used to fit the corresponding linear relation.
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Figure 5.15: Same as Figure 5.1/ for the low-cut catalogue.
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Figure 5.16: Same as Figure 5.1/ for the mid-cut catalogue.
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Chapter 6

Discussion and conclusions

In this Chapter we sum up the results gathered in our work, by highlighting the
relevance of the outlined picture, and then making an insight into some possible
future developments. We start the discussion recalling the cosmological context in
which our work sits, recovering the main open questions of the modern cosmological
framework. We then describe how cosmic voids could become, in the near future,
an important probe of cosmological theories. We depict how the results obtained
in this work could constitute an improvement of the already existing methods to
inspect the voids statistics. Finally, we provide some possible improvements for
the proposed line of work, with an eye on the possibilities that future surveys will
provide.

The currently accepted flat-A CDM Standard Cosmological Model (exposed in Sec-
tion 1.2) is based on the solution of the Einstein’s field equations under the con-
ditions of homogeneity and isotropy imposed by the assumption of the CP (Sec-
tion 1.1). It accounts for the existence of two major energy components, CDM
and DE, and for the flatness of the metric. This model is characterised by a set of
parameters that describe its energy content, the primordial density fluctuation dis-
tribution which seeded the today’s structures and the expansion rate of its overall
scale.

Despite the theoretical framework of the Standard Cosmological Model is well
outlined and generally accepted by the scientific community, there are still an
amount of unresolved issues. They span from the accuracy of the inflation hypoth-
esis, which at the first place determines the initial conditions of today’s structure
seeds, to the nature of the DM component. Moreover, the true cause of the accel-
erating expansion observed now is yet poorly understood. The introduction of a
cosmological constant term A in the Einstein’s equation, in fact, only accounts for
this trend without giving any other information on its physical meaning.

The Standard Model is characterised by a set of observable cosmological param-
eters which are constrained by constantly improving experiments. The appearance
of today’s large scale structure depends on the initial conditions and on the metric
and energy properties of the Universe. Thus, from the observable characteristics
of these structures it should be possible to put constraints on the cosmological
model’s defining parameters. The measurements of the matter fluctuations, w.r.t.
the prescripted homogeneity and isotropy, obtained from CMB anisotropies and
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wide galaxy redshift surveys are capable of probing the longer wavelengths (low
Fourier wavenumbers k) of the matter power spectrum (Section 1.3.3). The study
of the largest structure statistics, namely clusters and voids, is then a promising
probe of the mildly non-linear regime. The final goal is in fact to extract the under-
lying linear gravitational metric fluctuation field ® which characterizes the initial
conditions and the cosmic parameters that define its evolution.

Even though with the CMB probes of the density field it is possible to derive
the cosmic parameters with spectacular accuracy (e.g. Planck Collaboration et al.,
2015a), there are significant near-degeneracies among cosmological parameters such
as A and the curvature, which require other experiments, such as wide galaxy sur-
veys. In particular, voids emerge out of the density troughs on the primordial
Gaussian field of density fluctuations, and given their large scales (i.e. larger than
tens of Mpc), they are between the largest observable structure in the Universe, thus
with the lowest values of wave number k in the Fourier space. It is then possible to
use their statistics for a wide range of cosmological investigations. They have been
shown to have great potential for constraining DE and testing theories of gravity via
several measurements, which include geometrical tests, lensing measurements and
the check on the forecasts of theories of gravity and cosmology (see the introduction
of Chapter 2 and references therein).

Nevertheless voids are for their nature only mildly non-linear, since they are
physically limited to reach at most a density contrast of § = —1. This suggests that
their evolution should be easier to reconstruct than that of positive perturbations
which can reach extremely non-linear amplitudes. The spherical evolution approx-
imation (Section 2.1) should optimally describe the development of cosmic voids,
since the natural tendency of underdensities is to get more spherical as they evolve
(Icke, 1984). Cosmic voids evolve with an accelerated rate of expansion w.r.t. the
Hubble flow, until they reach shell-crossing, and then reconnect with the general
Universe expansion (Blumenthal et al., 1992).

Despite their recently-gathered popularity as cosmological tools, a gap of knowl-
edge between the evolution of individual voids through simulations and observations
versus theory still persists. In particular, the accepted statistical description of the
void number density as a function of their size (SvdW model, Sheth and van de
Weygaert, 2004) lacks of a complete validation.

The main goal of this thesis work was to cover this gap, both developing a co-
herent procedure to identify voids in simulated distribution, and reconsidering the
accepted model definition by inspecting the possibilities offered by a recently pro-
posed refinement (Vdn model, Jennings et al., 2013). The improvement of this
model is the inclusion of the natural tendency of voids to overlap and merge. This
is achieved by requiring that, in the transition from the linear theory prediction
to the non-linear actual situation, the total volume occupied by voids is conserved,
rather than their total number. Since their results are the only one promising in
terms of the possibilities they offer to actually attain cosmological constraints from
the size distribution of voids, we define the Vdn model as our fiducial model. Both
the Vdn model and the SvdW model depend on cosmological parameters and cosmic
time.

As a first step we developed and implemented an alternative to the existing
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public void finders (Section 3.4). We are confident that our algorithm better locates
objects which can be called “voids”, by means of the cited theoretical definition
which is based on the requirement of shell-crossing. The developed code makes
large use of the CBL library (Section 3.1) and is intended as a future expansion of
these public libraries’. Even though it can be upgraded, we find the void centre
definition of the existing public void finders an acceptable approximation and we use
this information to locate the central position of candidate underdensities in DM
N-body simulations. We then search for the largest spherical region embedding a
mean density contrast of 0.2 p, with p the mean density of the considered simulation,
and we finally make sure the found regions do not overlap. The condition on the
mean density ensures that the selected underdensities have actually passed through
shell crossing while the second condition guarantees the volume conservation.

Having established a procedure capable of building a reliable void catalogue, we
want to test if, when compared to models, the theoretical predictions are accurate.
We have used a set of N-body simulations with different characteristics in terms
of cosmological model, box size and resolution. For each of these simulations we
gathered the snapshots at four different cosmic times. In Section 4.1 we demostrate
that the Vdn model effectively predicts the distribution of cosmic voids in the DM
density field in an accurate way and is almost equally reliable for all the cosmolog-
ical models considered. We think that this result may help to better understand
the possibilities and limits offered by an excursion set model in predicting the size
function of cosmic voids. Even though refinements of the void finder are desirable,
doubts on the actual effectiveness of the existing model have been removed. Fur-
thermore, with our analysis we have shown that also the redshift dependency of
the Vdn model is trustworthy, even though these results are preliminary, we have
found an acceptable agreement with the model for all the redshifts and for all the
cosmological models considered.

Prompted by these results, we have fixed the fiducial cosmological model and
selected a set of simulations with varying resolutions and sizes as an additional test.
Applying our algorithm to this new set of data enlarges the scales over which the
model can be tested and validated. We find that the effectiveness of the model
in predicting the number of voids contained in a given volume fades when the
resolution of the catalogue is decreased. Nevertheless, as long as the tracers sample
has a resolution of at least 1 Mpc/h the counts of voids found are correctly predicted
by the Vdn model.

To complete our analysis, we have studied the effect of a variation in the defining
cosmological parameters in the Vdn model, with the purpose of roughly determining
if the model is actually sensitive to such a variation. Moreover, this gives us a hint on
what are the scales at which the model is more sensitive to a variation of parameters
and thus, provide prescriptions on its possible future applications to real data. The
general conclusion is that the most relevant change is caused by the total mass
contained in the Universe (parameterised by ;7). Nonetheless also a variation in
the power spectrum normalization seems to affect in a significant way the predicted
abundance of large voids.

Since the largest scales are preferentially interested by these variations in the

LA part of the code has already been integrated in the latest public version of CosmoBolognaLib.
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cosmological parameters, and considered the limitations which the total volume
covered by a certain sample puts on the precision of the statistics of large voids,
it is necessary to recover data from large surveys to obtain reliable constraints on
cosmology by the comparison with the studied model.

We believe that any more accurate consideration on the actual possibilities of the
model would be pointless without its validation in distributions of realistic matter
tracers. All our considerations have been made addressing only unbiased tracers
but, with the goal of obtaining a new reliable cosmological probe from the void size
function, validating its reliability on real matter tracers is a necessary development.
Cosmological surveys do in fact provide information on the observable galaxies in
the Universe, which populate the DM collapsed haloes. Both haloes and galaxies
are biased tracers of the underlying DM density field (Section 1.3.4). As a testing
ground for real galaxy redshift surveys, we study the void statistics in a halo mock
catalogue built by means of a FoF algorithm from a large simulation with side length
of 1 Gpc/h (Chapter 5).

Galaxy voids are predicted to present significant differencies from DM voids
(Furlanetto and Piran, 2006), taking into account biased tracers is then a crucial
step in the study of the statistical distribution of voids. The approaches explored
are two:

e The threshold to be used in our algorithm (Section 3.4) is fixed at the value
required by shell crossing for DM voids. We have considered a possible scale-
dependent modification of this value when dealing with biased tracers.

e We have conversely fixed the threshold at the shell-crossing value and re-
searched for the scaling relation between the radius of the halo voids found
by our algorithm and their embedded DM density contrast.

In the first of these approaches, we tested the predictions of the analytical scale
dependent threshold suggested by Furlanetto and Piran (2006). They propose a
threshold é7 which indirectly depends on the bias of the tracers and varies with
radius. Having obtained the void centres for a set of halo catalogues with different
levels of bias and then outlined the density profile in both the biased and the un-
biased tracers (haloes and DM particles respectively), we compared the degree of
underdensity in the inner regions with the theoretical scale-dependent threshold
dzr- We conclude that the derived extremely low values of 6 together with the low
resolution of the halo mock catalogues, especially in the inner regions of voids, do
not permit to use this approach.

Moving to the second possible approach, we fixed the threshold used to define
voids at the shell crossing level (6% = 0.21) independently of the used tracers.
We applied our void finder to build a set of spherical, non-overlapped halo void
catalogues for different values of the bias parameter. We then map the DM density
field within each void. This procedure allowed us to obtain two relevant pieces of
information about halo voids, DM voids and the underlying DM density field:

e there is an existing scaling relation between the radius of the halo-void and
that of the underlying DM void;

e the density contrast of DM scales with the radius of the halo void in which it
is embedded.
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The first of these findings allow us to confirm that halo voids do result from the
expansion of a shell crossing DM void.

We use the second result to define a semi-analytical model which predicts the
halo void size distribution. The Vdn model depends on a parameter which quantifies
the underdensity degree, d,. Since there is no particular reason for the reliability of
the model to depend on the chosen threshold, we use the found relation to build a
model for halo voids depending on the two fitting parameters of the relation. DM
voids are fitted by a Vdn model with a fixed value of §,, conversely our model for
halo voids has a varying threshold.

Comparing the defined semi-analytical model with the halo void catalogues pre-
viously obtained, we find that their void distribution is well reproduced. This test
is reliable for each of the three catalogues we have analysed. Therefore we conclude
that the probed procedure is actually valid, even though it requires refinements.

Similar scaling relations are present in each of the catalogues inspected, but the
values of their defining parameters seem not universal. We think that the scaling
relations may depend by the effective bias of the sample, but larger sets of simula-
tions are necessary to confirm this hypothesis.

Our current understanding of the found scaling relations is not accurate enough
to employ them in a real situation. We therefore intend to refine the data and the
deriving relations to improve our comprehension of their occurence. These are the
possible future developments of our work:

e to verify if it is possible to overcome the resolution issues outlined in Chapter 4
at both large and small scales. This would require larger simulations with
higher resolution and to consider a better treatment of the periodicity and
boundaries crossing of voids.

e We also hope to better mark the position of both DM void and halo void
centres, possibly considering their respective position in the same simulation.
We also plan to insert the possibility of a re-definition of the void centre in
order to better measure its position in particularly sparse samples, accounting
for the dinamical properties of voids. This is particularly desirable for biased
sparse tracers.

e We think that the discovery of the existence of the scaling relations found
in this work is a relevant improvement in our understanding of the statisti-
cal distribution of voids in biased samples. Thus, their dependence on bias
should be investigated. They have to be surely tested at varying redshift and
for different cosmological models. We are curious to inspect their eventual
dependence on the cosmological model at fixed bias of the tracers.

e Last but not least, a theoretical explanation of these scaling relations is de-
sirable.

In conclusion, all our results demonstrate that the voids size distribution could in
the future become a valid cosmological probe.
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