Near Real-Time Detection Of Pipe Bursts in Water Distribution Systems

Buroni, Giovanni (2016) Near Real-Time Detection Of Pipe Bursts in Water Distribution Systems. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria per l'ambiente e il territorio [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Buroni, Giovanni
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Earth resources engineering
Ordinamento Cds
DM270
Parole chiave
near real-time detection,pipe bursts,artificial neural network,water distributions systems
Data di discussione della Tesi
15 Luglio 2016
URI

Altri metadati

Gestione del documento: Visualizza il documento

^