Network approaches for the analysis of resting state fMRI data

Corte Coi, Claudio (2016) Network approaches for the analysis of resting state fMRI data. [Laurea magistrale], Università di Bologna, Corso di Studio in Fisica [LM-DM270]
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 3.0 (CC BY-NC-ND 3.0)

Download (7MB) | Anteprima

Abstract

Negli ultimi anni la teoria dei network è stata applicata agli ambiti più diversi, mostrando proprietà caratterizzanti tutti i network reali. In questo lavoro abbiamo applicato gli strumenti della teoria dei network a dati cerebrali ottenuti tramite MRI funzionale “resting”, provenienti da due esperimenti. I dati di fMRI sono particolarmente adatti ad essere studiati tramite reti complesse, poiché in un esperimento si ottengono tipicamente più di centomila serie temporali per ogni individuo, da più di 100 valori ciascuna. I dati cerebrali negli umani sono molto variabili e ogni operazione di acquisizione dati, così come ogni passo della costruzione del network, richiede particolare attenzione. Per ottenere un network dai dati grezzi, ogni passo nel preprocessamento è stato effettuato tramite software appositi, e anche con nuovi metodi da noi implementati. Il primo set di dati analizzati è stato usato come riferimento per la caratterizzazione delle proprietà del network, in particolare delle misure di centralità, dal momento che pochi studi a riguardo sono stati condotti finora. Alcune delle misure usate indicano valori di centralità significativi, quando confrontati con un modello nullo. Questo comportamento `e stato investigato anche a istanti di tempo diversi, usando un approccio sliding window, applicando un test statistico basato su un modello nullo pi`u complesso. Il secondo set di dati analizzato riguarda individui in quattro diversi stati di riposo, da un livello di completa coscienza a uno di profonda incoscienza. E' stato quindi investigato il potere che queste misure di centralità hanno nel discriminare tra diversi stati, risultando essere dei potenziali bio-marcatori di stati di coscienza. E’ stato riscontrato inoltre che non tutte le misure hanno lo stesso potere discriminante. Secondo i lavori a noi noti, questo `e il primo studio che caratterizza differenze tra stati di coscienza nel cervello di individui sani per mezzo della teoria dei network.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Corte Coi, Claudio
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum E: Fisica applicata
Ordinamento Cds
DM270
Parole chiave
Complex networks, resting state fMRI, centrality measures
Data di discussione della Tesi
22 Luglio 2016
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^