
 

 

ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA 

 

 

Scuola di Scienze 

Corso di Laurea Magistrale in Fisica 

 

 

 

Morphological characterization 

of ZnS thin films for photovoltaic 

applications 

 

 

 

 

 

 
Relatore:                                                              Presentata da:  

Prof.ssa Daniela Cavalcoli                          Alberto Bartolucci 
 

Correlatore: 

Dott.ssa Martina Perani 

 
Anno accademico 2014/2015 

Sessione III 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I 

 

 

Contents 

 

Abstract  1 

 

Introduction  3 

 

1   Introduction to photovoltaics  7 

     1.1   Renewable sources: a global energy solution L .  .  .  .  .  .  .  .  .  .  .  .  .    7 

     1.2   Present status and perspectives of photovoltaicsL.  .  .  .  .  .  .  .  .  .  .  .  13 

     1.3   The physics of a solar cell O.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14 

             1.3.1   The solar spectrum O.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  14 

             1.3.2   I-V characteristic and main definitions of a solar cellL  .  .  .  .  . 16 

             1.3.3   Homojunction and heterojunctions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20 

             1.3.4   The Shockley-Queisser limit L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   21 

             1.3.5   Surface passivation . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  24 

     1.4   Solar cells generationsO.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  27 

 

2   Zinc Sulfide State of the Art       31 

     2.1   Main characteristics O.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  31 

             2.1.1   Crystal structureL  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  32 

             2.1.2   Optical properties  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   32 

             2.1.3   Dielectric properties .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34 

     2.2   Applications in photovoltaics L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  35 

 

3   Materials and Methods       37 

     3.1   Materials  ..  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37 

     3.2   Methods    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40 

             3.2.1   Atomic Force Microscopy O.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40 

             3.2.2   Experimental setup   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41 

             3.2.3   AFM modes of operationL.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46 

             3.2.4   Image processing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52 

             3.2.5   Image analysis    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   56 

             3.2.6   Dips analysis L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61 

             3.2.7   Sheet resistance measurementO .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  64



II  CONTENTS 

 

             3.2.8   EFM – KPFM characterization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  66 

 

4   Experimental Results       69 

     4.1   Morphological characterization L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  69 

             4.1.1   ZnS morphology L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 70 

             4.1.2   ZnO morphologyO.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  74 

     4.2   Presence and density of dips  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 75 

             4.2.1   Choice of zsegm O.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   75 

             4.2.2   Dip analysis resultsL.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   80 

     4.3   Structural and grain properties  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    82 

             4.3.1   50 W – ZnS_35L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  83 

             4.3.2   75 W – ZnS_36L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86 

             4.3.3   125 W – ZnS_60 L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   89 

             4.3.4   150 W – ZnS_53 L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  92 

             4.3.5   Choice of segmentation parameters  L.  .  .  .  .  .  .  .  .  .  .  .  .  . 95 

             4.3.6   Sputtering power dependence of the results O.  .  .  .  .  .  .  .  .  . 97 

     4.4   Comparison with ZnO   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99 

             4.4.1   ZnO – Structural and grain analyses results .  .  .  .  .  .  .  .  .  .  . 99 

             4.4.2   Results comparison and discussion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102 

     4.5   Electrostatic characterization results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103 

             4.5.1   EFM surface topographyO.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  103 

             4.5.2   Sheet resistance result  L.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  105  

             4.5.3   ZnS – Al contact potential differenceL  .  .  .  .  .  .  .  .  .  .  .  .  .  105 

     4.6   DiscussionL .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107 

 

Conclusions  109 

 

Acknowledgements  113 

 

Bibliography  115



 

1 

 

 

Abstract 

 
     Le celle solari a film sottile rappresentano una delle alternative più promettenti per 

un abbattimento dei costi che incentivi significativamente la produzione di impianti 

fotovoltaici nel prossimo futuro. In questo contesto, la ricerca di nuovi materiali non 

tossici e più economici per la passivazione delle superfici, necessaria per aumentare 

l’efficienza delle celle, è di fondamentale importanza.  

     L’obiettivo di questa tesi è effettuare uno studio approfondito sulle caratteristiche 

morfologiche ed elettrostatiche di film sottili di ZnS, le cui interessanti proprietà 

trovano applicazione in svariati ambiti tecnologici, tra i quali dispositivi fotovoltaici ed 

optoelettronici. Si tratta di un materiale innovativo, le cui proprietà fisiche, nonostante 

le varie recenti applicazioni, sono state ancora poco studiate. 

     I film sottili di ZnS analizzati sono stati cresciuti tramite polverizzazione catodica a 

tensione continua (DC sputtering) a diversa potenza per studiare le connessioni tra 

condizioni di deposizione e caratteristiche strutturali, le quali determinano le proprietà 

di questi materiali nel contesto di applicazioni tecnologiche. 

     Lo studio delle proprietà morfologiche alla nanoscala è stato condotto mediante 

acquisizione di mappe con microscopia a forza atomica (AFM). Uno dei fattori 

associati alla qualità dei film è il profilo superficiale, per questa ragione è stata 

dapprima effettuata un’analisi dei buchi (dips) in funzione della potenza di sputtering, 

al fine di individuare il campione con la minore densità di dips in vista di applicazioni 

fotovoltaiche.  

     I parametri associati alla struttura superficiale, quali la rugosità superficiale, la 

lunghezza di correlazione laterale e l’esponente di Hurst, sono stati determinati tramite 

un’analisi statistica delle immagini. I parametri associati ai grani presenti sulla 

superficie, quali numero e dimensione, sono stati ricavati attraverso un processo di 

segmentazione delle immagini. Le stesse misure sono state svolte su due campioni di 

ZnO per comparare i risultati dei due composti. 

     L’analisi elettrostatica è stata condotta sul campione che ha mostrato la minor 

rugosità e densità di dips tra quelli analizzati, ed è stata effettuata tramite acquisizione 

di mappe di potenziale di contatto alla nanoscala con tecnica Electrostatic Force 

Microscopy (EFM). Un’ulteriore misura con tecnica Kelvin Probe Force Microscopy 

(KPFM) ha permesso di valutare la differenza di potenziale tra layers di Al depositati 

sulla superficie del campione e ZnS, corrispondente alla differenza tra la funzione 
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lavoro di Al e l’affinità elettronica di ZnS. Infine è stata misurata la resistenza elettrica 

di ZnS con metodo a quattro punte. 

     Dai risultati morfologici si è ottenuto che la potenza di sputtering influenza 

significativamente la struttura superficiale, ma senza una proporzionalità lineare. I 

campioni mostrano una rugosità che varia in modo non lineare tra 0.79 e 3.44 nm e una 

lunghezza di correlazione in un range da 10.8 a 34 nm. La densità dei grani è risultata 

variare tra 1100 e 1600 µm-2, con un raggio medio equivalente dei singoli grani che 

varia tra 12 e 16 nm. I valori ottenuti per i campioni di ZnO mostrano una rugosità 

molto più elevata e una minor densità di grani.  

     Per la maggior parte dei campioni analizzati, la lunghezza di correlazione è risultata 

maggiore rispetto al raggio medio dei grani, da cui si è evinto un processo di clustering 

degli stessi. Tuttavia si è osservato che ciò non vale per il campione depositato a una 

potenza di 75 W, il quale inoltre esibisce la minor rugosità e la minor densità di dips. 

Da ciò si è concluso che potenze di sputtering troppo grandi o troppo piccole in fase di 

deposizione promuovono il fenomeno di clustering dei grani, di conseguenza 

aumentandone le dimensioni e incrementando la rugosità superficiale del film. La 

presenza di grani più grandi risulta correlata ad un maggior numero di dips. Al 

contrario, superfici composte da grani più piccoli e numerosi risultano avere una 

minore densità di dips, presentando dunque un profilo superficiale più regolare e con 

minor rugosità.  

     Dall’analisi elettrostatica è emersa una corrispondenza diretta tra la morfologia 

superficiale e il potenziale di contatto, da cui si è dedotto che la densità di carica locale 

tende ad accumularsi maggiormente in regioni concave. La differenza di potenziale di 

contatto misurata tra i layers di Al e ZnS è risultata un ordine di grandezza inferiore 

rispetto ai valori noti da letteratura. Ciò potrebbe essere dovuto alla presenza di stati 

superficiali indotti dalla formazione di ossidi, sperimentalmente già osservati da studi 

recenti, che portano a sottostimare la differenza di potenziale reale. Infine, si è ottenuta 

un limite inferiore per la resistenza elettrica di ZnS di 7 GΩ, andando a confermare le 

proprietà dielettriche del materiale. 
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Introduction 

 
     ‘The growing threat of climate change define the contours of this century more 

dramatically than any other’. This words, said by the US president Barack Obama at 

the United Nations Framework Conference on Climate Change (UNFCCC) in Paris, in 

November 2015, define well what many people believe to be among the biggest 

challenges for human kind in the 21st century. The first challenge is that nowadays the 

energy consumption strongly depends on fossil fuels like oil, coal and gas. Fossil fuels 

are not a sustainable energy resource, in the sense that they are not refilled by the nature. 

More important, by burning fossil fuels the production of greenhouse gases like carbon 

dioxide (CO2) is promoted 1. According to a major part of the scientific community, 

the additional CO2 created by human activities is stored in oceans and atmosphere, 

leading to heavy climate changes that if not stopped could cause catastrophic scenarios 

in the next future. A second challenge is to supply the global energy demand that is 

rapidly growing with the increase of the world population, which some studies predict 

to reach 9 billion around 2040 in contrast to the 7 billion people living on the planet 

today. Especially, the living standard is rapidly increasing in developing countries like 

China and India, where more than a third of the world’s population is living, according 

to the data from US Energy Information Administration (EIA) 2.  

     Finding other sources of energy is of primary importance for both an environmental-

friendly consumption and to fill the gap due to the extra energy demand. From this 

point of view, the development of renewable resources is considered the best alternative 

to fossil fuels to supply energy in the next future. While all renewable resources will 

be important, only photovoltaics can provide this level of demand while releasing a low 

quantity of pollutants. In addition, photovoltaics has been one of the more active field 

of research in the last decades, with wide opportunities to improve the solar cells 

performances in order to obtain more energy while lowering material costs 3. 

     Different semiconductor materials with suitable optoelectronic properties have been 

found for photovoltaic applications. Silicon is the most commonly used active material 

for solar cells applications, with over the 85 % of the whole photovoltaic market 

dominated by crystalline silicon wafer technology. monocrystalline and polycrystalline 

silicon based solar cells have efficiencies approaching 20 - 25 %. However, despite 

new technologies that reduce the use of silicon exist, alternative materials and solutions 

are studied. This has led the photovoltaic industry to produce thin film solar cells 

consisting of cheaper materials and smaller thickness. The efficiencies reached by the 
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thin film solar cells result lower than silicon wafer cells, being of about 10 – 15 %. 

However, the ratio of efficiency to price makes these cells competitive in the 

photovoltaic market, with wider possibilities to improve the efficiency 3. Thin film 

solar cells are made by deposition of more thin layers on a rigid substrate, with the 

presence of passivating material layers in the front and rear surfaces to reduce the 

surface recombination of minority carriers, which is among the major causes of 

efficiency loss 4. 

     Many studies have already proved the crucial importance of the surface passivation, 

especially for thin film solar cells. Actually, the presence of passivating layers in thin 

film solar cells technology is essential for a significant efficiency increase, making the 

implement of an effective passivation method a near-term challenge in the PV industry. 

Among various suitable materials for surface passivation, Al2O3 has been observed to 

increase significantly the efficiency of several types of cells. Recent investigations have 

led attention on zinc sulfide (ZnS) as a suitable material to be used as passivating layer 

for thin film solar cells 5,6. The interesting properties of ZnS could be useful in various 

devices, covering a wide area of applications, among which can be included: 

antireflection coating for the solar cells, non-toxic buffer layer (compared to CdS layer 

in CIGS based thin film solar cells), wide energy gap material for electroluminescent 

and optoelectronic devices, photosynthetic coating and blue emitting laser diodes 7.  

     In this thesis, a morphological characterization of a series of ZnS thin layers at the 

nano-scale has been performed with Atomic Force Microscopy (AFM) technique to 

evaluate the main structural features. ZnS thin films deposited on a substrate by DC 

sputtering at different deposition conditions have been studied in the analysis, in order 

to measure how those conditions affects the morphological properties of the layers. The 

surface morphology has been investigated in order to perform a thorough 

characterization of the surface structure. In the framework of photovoltaic applications, 

a particular attention has been paid to structural properties related to the surface 

flatness, i.e. the roughness and density of dips. In addition, the electrical resistance has 

been measured by using a four-point probes method. Moreover, to get a 

characterization of the electrostatic profile at the surface, contact potential maps have 

been obtained by using Electrostatic Force Microscopy (EFM) and Kelvin Probe Force 

Microscopy (KPFM) techniques. 

     The contents of the thesis are the following: an overview on the field of 

photovoltaics, including the current status and future perspectives of technology, the 

working principles and the main definitions of a solar cell are described in Chapter 1. 

A description of the material studied, ZnS, with its structural, optical, electric 

properties, and the actual status of art for technological applications is reported in 

Chapter 2. The samples description and their properties are illustrated in the first 

section of Chapter 3. The second section of Chapter 3 is focused on the experimental 

setup used for all the measurements, the main features of AFM technique, the image 

processing method and the statistical analysis used to calculate the parameters.
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     The experimental results of all the measurements on different samples, with a 

comparison to another Zn compound (ZnO), the morphological AFM images 

performed and the parameters used during the analysis are reported and discussed. 

Finally, conclusions about the experimental results have been made.
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Chapter 1 

Introduction to Photovoltaics 
     In this chapter, an overview on the field of photovoltaics (PV), with its main 

motivations and applications, has been reported. In Section 1.1, the renewable energies, 

among which PV represents the most active field of research, are described. The actual 

status and prospects of PV technology are discussed in Section 1.2. The physics 

principles behind the solar cells, including the sunlight spectrum, the main circuital 

characteristics and definitions, the maximum theoretical limit for the efficiency and the 

surface passivation method, are illustrated in Section 1.3. Finally, a description of the 

three generations of solar cells with their basic schemes and efficiencies is reported in 

Section 1.4. 

 

 

1.1    Renewable sources: a global energy solution 

     The constant demographic and technological growth that occurred in the last 

decades has yielded to an enormous increase of the worldwide request of energy. The 

present global energy consumption per inhabitant has been calculated to be around 

6000 kWh per year 8. From the last century, the main sources of energy have been 

found in exploitation of oil and gas, namely the fossil fuels. With the development of 

the nuclear energy a new source was found, but the issues associated to radioactive 

waste have been matter of discussion for a long time, and they are still today. However, 

for the easiness and the reduced risks associated with their use, human society has relied 

particularly on fossil fuels during the last decades. It was in 1956 the first presentation 

of the Hubbert peak theory 9, by which the rate of oil production has been described to 

follow a curve that reaches a maximum and then declines. Considering that the peak 

has been proved to have been around the 1970 9, and the amount of oil under the ground 

in any region is finite, according to the International Energy Agency (IEA) for most 
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countries the oil production has already started to decline 10. Moreover, according to 

the BP’s Energy Outlook 11, the global energy consumption is expected to increase by 

34 % between 2014 and 2035.  

     The massive usage of electrical power generated by fossil fuels has induced climate 

changes, due to the emission of greenhouse gases into the Earth’s atmosphere. These 

gases are transparent to incoming solar radiation on Earth, but they absorb and re-emit 

infrared radiation within the atmospherem causing the global temperature to increase. 

Greenhouse gases naturally present in the atmosphere consist in water vapor (H2O), 

carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ozone (O3), which 

except from ozone have largely incremented in recent years according to the European 

Environment Agency (EEA) 12. Figure 1.1 shows the main climate change due to the 

incessant use of fossil fuels. One of the main constituents of the human-emitted 

greenhouse gases is composed by carbon dioxide (CO2). This is is an important heat-

trapping gas released through human activities such as agriculture and land use changes 

like deforestation, use of industrial gases and burning of fossil fuels in electricity 

generation, transport, industry and households 13. Figure 1.1 (a) shows the atmospheric 

CO2 levels from 2005 to 2016.  

      Global warming has led to a rise in the average surface temperature by 0.6 to 0.9 

°C globally and by about 1 °C in Europe between 1906 and 2005, and the rate of 

temperature increase has nearly doubled in the last 50 years 14. Without a global action 

to limit the emissions, the Intergovernmental Panel on Climate Change (IPCC) expects 

that global temperature may increase further by 1.8 to 4.0 °C by 2100 15. Figure 1.1 (b) 

shows the global temperature anomaly registered between 1880 and 2015. The 10 

warmest years in the 134-year record all have occurred since 2000 13.  

    The increase in the average temperature has been widely proved to be the main cause 

of ice melting, with consequent increase of the sea level. Data from NASA’s Grace 

satellites have shown that the ice sheets in both Antarctica and Greenland are losing 

mass. The continent of Antarctica has been losing about 134 billion metric tons of ice 

per year since 2002, while the Greenland loss have been estimated in about 287 billion 

metric tons per year 13. The Antarctica ice mass variation since 2002 are depicted in 

Figure 1.1 (c). The melting of ice, jointly with the thermal expansion of the oceans (the 

increase in volume due to rising ocean water temperature), have inevitably led to the 

sea level rise. This is an important indicator of climate change, which also increases 

the probability  of storms and endangers coastal ecosystems by flooding flat coastal 

regions 15. Coastal areas often contain important urban centers and infrastructures. Thus 

coastal flooding related to sea level rise could affect a large part of the population 15. 

Figure 1.1 (d) shows the variation in the sea level from 1993 as observed by satellites.
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(a)

 (b) 

   (c)

 (d) 

Figure 1.1: Main climate changes due to global warming: (a) Atmospheric CO2 levels 

since 2005 (montly measurements); (b) Global surface temperature change relative to 

1951-1980 average temperatures (NASA GISS); (c) Antarctica ice mass variation since 

2002 (NASA’s Grace satellites); (d) Sea level change since 1993 (data source: NASA 

GSFC) 13. 
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     The development of other sources of energy is necessary not only from an ecological 

point of view, but also by considering the gap between the fossil fuels production and 

the global energy demand that there will be in the next future. The best possible 

alternative to fossil fuels today is given by renewable energies, mainly hydroelectric, 

wind and solar energy, based on the continuing flows from sources of energy that can 

be approximated as inexhaustible. The world’s largest oil company Shell expects that 

in the next future a restructuring of the energy industry will take place. In this scenario 

the global demand of fossil fuels will be still important, but it will reach a plateau by 

2020 16.  From this moment, renewable energy will become significant. Figure 1.2 

shows the energy demand by regions (a) and the energy type of exploitation (b) 

between 2000 and 2050.  

     The main advantages of using renewable energy sources over the fossil fuels are a 

cleaner environment, new employment opportunities, and security of energy supply. 

Figure 1.3 shows the top countries with installed renewable energy infrastructures in 

recent years. Emissions of greenhouse gases and other pollutants can be reduced by the 

use of renewable energy. A collective use of renewable sources of energy would also 

lead to job creation in the technology manufacturing industries and also in the 

agricultural sector, which can supply biomass fuel. According to IEA, in 2012 the 

world relied on renewable sources for around 13.2 % of its total primary energy supply 
17. In 2013 renewables accounted for almost 22 % of global electricity generation, and 

the IEA Energy Report 2015 foresees that at least 26 % will be reached in 2020 17. Most 

likely the renewable energy will be one of the worldwide largest sources of energy by 

2020, along with gas and nuclear 17. Today, the renewable energy market strongly 

depends on environment, research and development and market support policies 18. In 

Europe the renewable energy industry is a world leading sector, particularly in wind 

and PV 18.  

 

 

 

 



1. Introduction to Photovoltaics                                             11 

 

 

 

                                                        (a) 

 

 

                                                       (b) 

 

Figure 1.2: Energy supply scenarios for the next future: (a) Energy consumption by 

regions; (b) Primary energy by source 16. 
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Figure 1.3: Top countries with installed renewable electricity by technology in 2013 

according to NREL 19
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1.2    Present status and perspectives of photovoltaics 

 

     Among the renewable energies, photovoltaics (PV) is the most promising for the 

next future. It is non-polluting, requires minimum maintenance and no supervision, and 

has a long lifetime with low running costs. These and other advantages make PV the 

best candidate source of renewable energy.  

     Since 2000, the total production of photovoltaics has increased by almost two orders 

of magnitude, and the Compound Annual Growth Rate (CAGR) over the last decades 

has been about 44 % 20. Figure 1.4 shows the annual PV module production by region 

from 1997 to 2014. Asia is the country with the most rapid growth in annual production 

over the last five years, where China and Taiwan today account for more than 70 % of 

the worldwide production20. Figure 1.4 illustrates the evolution of the worldwide 

percentage production of PV in the main regions around the world. In the last years, 

new investments continued to rise in Asia. The leading country in new renewable 

energy investment was China at USD 54.2 billion (EUR 40.2 billion), followed by the 

USA at USD 36.7 billion (EUR 27.2 billion) 21.  

     At the present status, the solar cell technologies are well established and provide a 

efficiency around 20 - 25 %, with an energy output for at least 25 years. Over 85 % of 

the actual production employs crystalline silicon wafer technology. In the next future, 

the entry of new technologies in the market will be the main factor to enable further 

cost reductions. Hence, to maintain a large growth rate of the PV industry, different 

solar cell technologies must be developed simultaneously 20. Actually, the majority of 

thin-film manufacturers remain silicon based and use either amorphous silicon or 

microcrystalline silicon structure 22. 

 

 

Figure 1.4: PV module production by region: percentage of total MW peak produced 

from 1997 to 2014 20.  
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1.3    The physics of a solar cell  

 

     It was in 1839 when Alexandre Edmond Becquerel discovered the photovoltaic 

effect, which explains how electricity can be generated using light as a source. After 

attempts with selenium and cuprous oxide solar cells during the 19th century, a first 

silicon cell was developed in 194123. However, the first solar cell with a reasonable 

efficiency of 6 % was announced by Daryl Chapin, Calvin Fuller and Gerald Pearson 

in 1954 24. During the first decades, solar cells were mainly used as power sources for 

space applications. It was in the early 1970s that the interest for the solar cells was 

reconsidered because of the energetic crisis of oil in the western world23. 

 

1.3.1   The solar spectrum 

     Only photons of appropriate energy can be absorbed and generate the electron-hole 

pairs in the semiconductor material of which is made a photovoltaic device. The energy 

of the visible photons of which is composed the sun radiation is sufficient to excite 

electrons to higher energy levels if the target material has an energy gap lower than the 

photon energy, but these excited electrons quickly relax to their initial ground state. 

The collection of the charge carriers generated by the sun radiation is performed by a 

p-n junction, which prevents the recombination by using a junction to spatially separate 

the electrons from the holes 24. The carriers are separated by an electric field existing 

at the p-n junction. If the two regions of the cell are connected together, the photo-

generated carriers flow through the external circuit to produce a current.  

     Photons incoming from the sun provide an unlimited energy flow for PV power 

sources. The solar radiation spectrum, i.e. the number of photons as a function of 

wavelength, can be described by two parameters, namely the spectral power density 

P(λ) and the photon flux density Φ(λ). The spectral power density is defined as the 

incident radiation power per unit area and per unit wavelength. The photon flux density 

is the number of photons per unit area, per unit time and per unit wavelength. These 

two quantities are related by the following equation 1: 

𝛷(𝜆)  = 𝑃(𝜆)
𝜆

ℎ𝑐
 

(1.1) 

     Figure 1.5 shows the spectrum distribution of the solar radiation with various 

absorption peaks associated to the presence of air molecules in the atmosphere. The 

temperature at the center of the sun can reach 106 K, while on the surface is about 6000 

K. The sun radiation can be approximated to that of a 6000 K black body (i.e. a perfect 

emitter and absorber of electromagnetic radiation), due to the near total absorption of 

radiation by the photosphere. The total power density of the solar radiation at the mean 

earth-sun distance on a surface normal to the sun direction and outside the earth’s 

atmosphere defines the solar constant or air mass zero (AM0) radiation. Its value is a 
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constant parameter: 1353 kW/m2 1. The earth’s atmosphere attenuates the solar 

radiation over the 30 %. This is due to absorption and scattering by air molecules, dust 

particles and aerosols in the atmosphere. Oxygen and CO2 are among the main cause 

of absorption, which acts as a wavelength filter. As a result, a different solar spectrum 

can be measured at the earth’s surface, with the presence of gaps (e.g. ozone filters 

solar radiation with wavelength below 0.3 µm) 1, as depicted in Figure 1.5. The 

importance of this can be understood considering that the wavelength of the incoming 

solar radiation varies significantly the response of a solar cell. Except from the weather 

conditions, the main parameter that determines the solar spectrum at the earth’s surface 

is the distance that the sunlight has to travel through the atmosphere.  

     The ratio between an actual distance and the minimal path length when the sun is at 

the zenith is called the air mass. When the path length is the shortest, with the sun at 

the zenith, it corresponds to air mass one (AM1). At an angle θ respect to the zenith, 

the air mass can be defined as follows:  

𝐴𝑀 =
1

𝑐𝑜𝑠𝜃
 

(1.2) 

     The terrestrial solar radiation standard has been defined AM1.5, because of the 

variability of terrestrial light and to allow comparisons between the performances of 

solar cells at different locations. The AM1.5 radiation has a power density content of 

1000 W/m2, which is close to the maximum irradiance at the earth’s surface. However, 

the total solar radiation that reaches a particular region on the earth is extremely 

variable. The diffuse component of the solar radiation, which originates from the 

scattering with the air molecules in the atmosphere, represents about the 15 % of the 

total sunlight. The spectrum distribution of the diffuse part consists mainly in the 

shorter wavelengths. For these reasons, an optimal PV device must be designed 

depending on the solar radiation availability for each particular location.  

 

Figure 1.5: Spectrum distribution of solar radiation with various absorption peaks due 

to the presence of the atmosphere (labeled with the associated molecular species) 25.
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1.3.2   I-V characteristic and main definitions of a solar cell 

     A PV device, or solar cell, involves a contact with different electronic properties 

that pulls the excited electrons away before they can relax, bringing them to an external 

circuit. The output potential difference obtained results from the extra energy of the 

excited electrons, and can be used to do electrical work. The efficiency of the solar cell 

is directly related to the choice of light absorbing materials and their connections to the 

external circuit 24. The incoming photons are absorbed by the material to generate 

charge carriers. The rectifying properties of the solar cell drive the carriers toward the 

external circuit. An open circuit photo-voltage is made up in this way, and if the 

terminals are connected a short circuit photocurrent is generated. If a load is connected 

to the external circuit the cell delivers both current and voltage, which product gives 

the output power 24. 

     A solar cell develops a voltage when it is under illumination conditions, for this 

reason, the surface of a solar cell must result the less reflective as possible in order to 

absorb the largest amount of radiation. When the terminals are isolated, meaning an 

infinite load resistance is placed in the circuit, the voltage is called the open circuit 

voltage Voc. The current originating when the terminals are connected together without 

a load is called the short circuit current Isc. Introducing an intermediate load resistance 

RL, the cell develops a voltage between 0 and Voc and generates a current I(V) 

determined by the current-voltage characteristic of the cell under illumination. The 

photocurrent density results proportional to the illuminated area, as follows by the 

relation 24: 

𝐽𝑠𝑐  = 𝑞 ∫ 𝛷(𝐸)𝑄𝐸(𝐸)𝑑𝐸 
(1.3) 

where QE(E) is the probability that an incident photon of energy E to send one electron 

to the external circuit, Φ(E) is the incident photon flux density and q the charge of the 

electron. The quantity QE is called the quantum efficiency and depends on the 

absorption coefficient of the solar cell material but not on the incident spectrum, which 

makes it a key quantity in investigating solar cell performance under different 

conditions 24. Figure 1.6 shows the QE spectrum of various types of solar cells. 

     A solar cell in the dark under I-V measurements produces an exponential curve that 

is characteristic of diode, which is called the dark current Idark(V), and possesses an 

opposite direction respect to the photocurrent. It reduces the net current from the short 

circuit value. The dark current is also defined as the I-V characteristic of the solar cell 

under dark conditions, and it results much smaller than the current that it is developed 

under illumination. This rectifying behavior is the reason for which a solar cell is 

modeled like a diode.  The dark current density for an non-ideal diode results 24: 

𝐽𝑑𝑎𝑟𝑘(𝑉)  = 𝐽0(𝑒
𝑞𝑉

𝐴𝑘𝐵𝑇 − 1) 
(1.4) 

where J0 is the reverse saturation current of the associated diode, A is the ideality factor, 

kB is the Boltzmann’s constant and T is the temperature.
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Figure 1.6: Quantum efficiency of different technology based solar cells 26. 

     The expression of the net current can be approximated by the sum of the short circuit 

photocurrent and the dark current. This step is known as the superposition 

approximation, which is reasonable for many PV materials. Figure 1.7 shows the I-V 

characteristic of the solar cell under dark and light conditions. Therefore, the net current 

density is given by: 

𝐽(𝑉) = 𝐽𝑑𝑎𝑟𝑘 − 𝐽𝑠𝑐 (1.5) 

where the sign of the circuit photocurrent is conventionally taken negative in PV. 

Substituting the expression for Idark(V) in Eq. (1.5), the net current density results: 

𝐽 = 𝐽0(𝑒
𝑞𝑉

𝐴𝑘𝐵𝑇 − 1) − 𝐽𝑠𝑐 
(1.6) 

When the dark current and the short circuit photocurrent exactly cancel out, the 

potential difference reaches its maximum, which is the open circuit voltage VOC that 

increases logarithmically with the light intensity, as shown by the following relation 24:  

𝑉𝑜𝑐 =
𝐴𝑘𝐵𝑇

𝑞
𝑙𝑛 (

𝐽𝑠𝑐

𝐽0
+ 1) 

(1.7) 

     When the cell is under illumination, it generates a photocurrent that is proportional 

to the light intensity. The voltage must lie between 0 and Voc for the cell to generate 

power, which is the current-voltage product given by:  

𝑃 = 𝐽𝑉 (1.8) 

The cell’s maximum operating point for P occurs at the voltage Vm, corresponding to a 

current density Jm, as shown in Figure 1.7
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Figure 1.7: Current-voltage characteristic of the diode associated to a solar cell in dark 

and light conditions 27. 

     The ratio of the maximum power from the solar cell and the product of Voc and Jsc 

is defined as the fill-factor (FF) 24:  

𝐹𝐹 =
𝐽𝑚𝑉𝑚

𝐽𝑠𝑐𝑉𝑜𝑐
 

(1.9) 

The FF is a measure of the ‘squareness’ of the solar cell J-V curve. A fundamental 

quantity for characterize a solar cell is the efficiency η of the cell, defined as the ratio 

of power output from the solar cell to the incident light power density Pil:  

𝜂 =
𝐽𝑚𝑉𝑚

𝑃𝑖𝑙
 

(1.10) 

The efficiency is the most commonly used parameter to compare the performance of 

different solar cells.  

     In the equivalent circuit shown in Figure 1.8, the solar cell is modeled as a current 

generator in parallel with a non-linear resistive element with rectifying properties, i.e. 

a diode. For a non-ideal cell, the power is dissipated in various ways. The power 

dissipation of a solar cell can be modeled considering two parasitic resistances, namely 

the series (Rs) and shunt (Rsh) resistances. Figure 1.8 shows the equivalent circuit for a 

real solar cell, while Figure 1.9 depicts the effects of the series and shunt resistances 

on the I-V curve. The main causes of the presence of series resistance involve the 

contact resistance between the metal and the semiconductor 28. The shunt resistance is 

typically due to manufacturing defects, meaning the leakage of current through the cell 
24. The impact of both the series and shunt resistances in a solar cell is to reduce the 

FF. In order to have an efficient cell, a small Rs and a large Rsh are required.
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Figure 1.8: Schematic view of the equivalent circuit for a non-ideal solar cell including 

series and shunt resistances 29.  

 

Including the parasitic resistance in the Eq. (1.6), the diode equation results 24:  

𝐽 = 𝐽0 (𝑒
𝑞(𝑉+𝐽𝑅𝑠)

𝐴𝑘𝐵𝑇 − 1) − 𝐽𝑠𝑐 +
𝑉 + 𝐽𝑅𝑠

𝑅𝑠ℎ
 

(1.11) 

     The four quantities Jsc, Voc, FF and η define the main characteristics of a solar cell 

performance. Measurements made on these parameters must be performed at the same 

illumination conditions to compare different solar cells. The efficiency depends on the 

spectrum and intensity of the incident sunlight, and the temperature of the solar cell. 

Hence, conditions under which efficiency is measured must be carefully controlled in 

order to compare the performance of one device to another. Terrestrial solar cells are 

measured under AM1.5 conditions, at a temperature of 25 °C, and with an incident 

power density of 1000 W/m2. This set of parameters is called the Standard Test 

Condition (STC). Solar cells intended for space use are measured under AM0 

conditions 24.  

 

 

Figure 1.9: I-V curve of a solar cell with increasing series (Rs) and decreasing shunt 

(Rsh) resistances. The effect of both resistances is to reduce the FF of the cell 24.
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1.3.3   Homojunctions and heterojunctions 

     Solar cells use several junction types, all of them with the aim of generating the 

electric field that acts to separate the charge carriers to extract them in the external 

circuit. The main devices used for PV applications are the homojunction and the 

heterojunction 30. Figure 1.10 (a) and (b) show the energy band diagram for a 

homojunction and a heterojunction, respectively. 

     A homojunction occurs at the interface between the two parts of a semiconductor 

material, one n-doped and the other p-doped, are brought in contact to each other. The 

n-doped region has a high negative charge concentration, meaning electrons, and the 

p-doped region a high positive charge concentration, meaning holes. When the two 

regions are in contact, electrons diffuse from the n-doped to the p-doped region, while 

holes flow in the opposite direction. As the carriers diffuse, positive ions in the n-doped 

side, as well as negative ions in the p-doped side, will form at the junction 30. Hence, a 

band bending will occur at the interface between the two doped regions because of the 

Fermi levels pinning. Then, an electric field is generated at the junction, which sweeps 

free carriers out. This region is called the depletion region. A built in potential 

difference due to the electric field is then formed at the junction. This diffusion 

potential is equal to the difference between the work functions of the two doped regions 

as follows 30:  

 

𝑉𝑑𝑖𝑓𝑓 = 𝑒𝜙𝑑𝑖𝑓𝑓 = 𝑒(𝜙𝑤𝑝
− 𝜙𝑤𝑛

) (1.12) 

     The work function of a material can be defined as the external energy required to 

extract an electron from the material, meaning the energy difference between the Fermi 

level of the material EF and the vacuum level Evac: 

𝑒𝜙𝑤 = 𝐸𝑣𝑎𝑐 − 𝐸𝐹 (1.13) 

     If the energy of the incoming photons is larger than the forbidden gap of the 

semiconductor, namely the energy gap Eg, free minority carrier electrons in the p-doped 

region and free minority carrier holes in the n-doped region then originate. These 

minority carriers diffuse toward the junction, where they can recombine with each other 

or continue to diffuse until they reach the external circuit and generate current. For this 

reason, a typical homojunction is realized using a thin layer (~0.1µm) for the 

illuminated part 30. This allows the radiation to penetrate deep in the junction. However, 

a very thin layer with a high surface to volume ratio could rise some issues because of 

the large number of surface states that acts as recombination sites for the carriers.  

     A heterojunction is made of two different semiconductor materials, having different 

energy gaps and electron affinities. For a semiconductor, the electron affinity χ is 

defined as the energy obtained moving an electron from the vacuum level to the bottom 

of the conduction band. A fraction of the incoming photons penetrates through the n-

doped region toward the p-doped region, thus increasing the radiative absorption. This 

is due to the lower energy gap of the n-doped region respect to the energy gap of the p-

doped region 30. However, the use of different semiconductor materials inevitably leads 
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to reticular mismatch at the junction, which increases the probability of recombination 

for the free-moving charges. Figure 1.10 shows a heterojunction where Eg1 < Eg2 and 

with the same doping level for the two parts in order to have the same width for the 

depletion regions. In solar cells using a heterojunction device, the top layer acts as a 

window layer, that is a material with a high energy gap, which is transparent to the low 

energy photons. Almost all incident light can penetrate the window layer to reach the 

bottom layer, which is a material with a low energy gap to absorb another fraction of 

the photons 30. 

 

   

                                (a)                                                             (b) 

Figure 1.10: Energy band diagram: (a) p-n homojunction (χs is the electron affinity);  

(b) p-n heterojunction (χ1 < χ2 and Eg1 < Eg2); The different regions of both the junctions 

possess the same doping level 30. 

 

 

 

1.3.4   The Shockley-Queisser limit 

      From thermodynamics, the maximum theoretical limit of efficiency for a solar cell 

is given by a Carnot heat engine operating between the sun temperature (~6000 K) and 

the cell temperature (~300 K). However, the highest efficiencies reached for solar cells 

are much lower than the thermodynamic limit, depending on the energy gap, the optical 

material properties such as the absorbance and geometrical factors.  

    In 1961, William Shockley and Hans Queisser showed that a lower theoretical limit 

of efficiency exists for a single p-n junction solar cell, which is known as the Shockley- 

Queisser (SQ) limit. The SQ limit is derived from the detailed balance principle. In this 

assumption, the photons absorbed by the solar cell must be compensated by the thermal 

emission of less energetic photons, since both the hole-electron pair creation and 

recombination processes are possible 24. The main factors considered by the SQ limit 

include the black body radiation, the radiative recombination and the energy gap. To 

improve efficiency, a solar cell must have a high absorption coefficient, which permits 
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the cell to be modeled as a black body. Then, at thermal equilibrium a black body 

radiation is emitted by the cell depending on its temperature. The photons emitted by 

the cell cannot be re-absorbed, resulting in a loss of the available incoming energy 24. 

The radiative recombination between holes and electrons is then considered. Even if 

the radiative recombination is only a fraction among all possible recombination events, 

then the efficiency of the cell will be reduced with respect to the maximum possible 

value. The energy gap of the solar cell material is another important parameter that 

contributes to reduce the efficiency limit 31. Since only photons with an energy higher 

than the energy gap of the device can generate hole-electron pairs, photons of lower 

energy do not contribute to the electrical output power of the cell. Moreover, photons 

with a high energy do not provide their whole energy to the device, since the electrons 

lose this extra energy by Joule effect, converting it to heat. This provides the main 

efficiency loss factor for the solar cells. In addition to the radiative recombination 

considered in the SQ limit, other sources of recombination must be taken into account. 

Surface recombination plays an important role in reducing the efficiency of thin films 

solar cells. For this reason, a buffer layer is used in order to passivate the surface and 

reduce the recombination rate 4. Figure 1.11 shows the maximum theoretical efficiency 

with the energy gap of absorber materials reported for comparison. 

     In the SQ model, the efficiency η is expressed as a function dependent upon four 

different variables 31:  

𝜂 = 𝜂(𝑥𝑔, 𝑥𝑐, 𝑡𝑠, 𝑓) (1.14) 

 where ts is the probability that an incident photon with energy higher than Eg will 

generate a hole-electron pair, the factor f represents all other parameters (i.e. those 

involving transmission of radiative recombination and the solid angle subtended by the 

sun), xc is the ratio between the temperature of the cell and that of the sun: 

and xg is the ratio of the energy gap Eg to the energy associated to the sun temperature: 

Efficiency can then be written as follows: 

𝜂(𝑥𝑔, 𝑥𝑐, 𝑡𝑠, 𝑓) = 𝑡𝑠𝑢(𝑥𝑔)𝑣(𝑓, 𝑥𝑐, 𝑥𝑔)𝑚(𝑣𝑥𝑔/𝑥𝑐)  (1.17) 

where u is the ultimate efficiency (according to an ideal photoelectric process with a

𝑥𝑐 =
𝑇𝑐

𝑇𝑠
 

(1.15) 

𝑥𝑔 =
𝐸𝑔

𝑘𝑇𝑠
 

(1.16) 
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Figure 1.11: Efficiency as a function of the energy gap Eg showing the maximum 

theoretical value (the SQ limit) for solar cells under AM1.5 illumination conditions 

without concentration. The energy gaps of absorber materials (c-Si, CdTe, CIGS, 

CZTS) and window materials (CdS, ZnO) are shown for comparison 32. 

 

 

single cutoff frequency in a device maintained at 0 K with a 6000 K black-body 

radiation surrounding it), v is the ratio of the open-circuit voltage to the energy gap of 

the cell and m is the impedance matching factor, which is a function of the ratio of the 

ratio of the open-circuit voltage to thermal voltage for the cell 31.  

     The SQ model proves that a maximum efficiency of 33 % results for solar cells with 

an energy gap Eg of 1.35 eV under AM1.5 illumination conditions. Suitable absorber 

materials that have energy gaps in this range include CdTe (1.44 eV) and CuInGaSe2 

(CIGS) solutions, which energy gap can be tuned by controlling the In/Ga ratio 32. 

Monocrystalline silicon solar cells have already achieved efficiencies close to the SQ 

limit, while thin films solar cells still have to be improved.  

 

 

1.3.5   Surface passivation 

     The surface or interface of a semiconductor possesses discontinuities in the 

crystalline structure. The partially bonded atoms give rise to many dangling bonds, 

resulting in a large density of defect levels (or surface states) found within the energy 

gap at the semiconductor surface. The process of reducing these dangling bonds is 
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known as surface passivation. The rate of surface recombination Us, for a single defect 

can be derived from the Shockley-Read-Hall formalism, given by 33:  

𝑈𝑠 =
𝑛𝑠𝑝𝑠 − 𝑛𝑖

2

𝑛𝑠 + 𝑛1

𝑆𝑝0
+

𝑝𝑠 + 𝑝1

𝑆𝑛0

  
 

(1.18) 

where ns and ps are the concentrations of electrons and holes at the surface, n1 and p1 

statistical factors, Sp0 and Sn0 are related to the density of surface states per unit area 

Nts, to the capture cross-sections σn and σp, and to the thermal velocity vth for the specific 

defect: 

𝑆𝑛0 = 𝜎𝑛 𝑣𝑡ℎ𝑁𝑡𝑠  

𝑆𝑝0 = 𝜎𝑝 𝑣𝑡ℎ𝑁𝑡𝑠   

 

(1.19) 

The recombination lifetime τ and the surface recombination velocity S are defined as:  

𝜏(∆𝑛) =
∆𝑛

𝑈(∆𝑛)
 

𝑈𝑠 = 𝑆∆𝑛𝑠   

 

(1.20) 

where ∆𝑛 is the excess minority carrier concentration and ∆𝑛𝑠  is the excess minority 

carrier concentration at the surface. Neglecting carrier trapping, the excess densities of 

electrons and holes are equal (∆𝑛𝑠 = ∆𝑝𝑠), which gives 33: 

𝑆(∆𝑛𝑠) =
𝑛0 + 𝑝0 + ∆𝑛𝑠

𝑛0 + 𝑛1 + ∆𝑛𝑠

𝑆𝑝0
+

𝑝0 + 𝑝1 + ∆𝑛𝑠

𝑆𝑛0

  
 

(1.21) 

The quantity S defines the surface recombination velocity that is typically used for 

quantifying surface recombination processes. A high surface recombination velocity 

can have a large impact on both the short circuit current and the open circuit voltage 

since it reduces the minority carrier lifetime. Figure 1.12 (a) and (b) show simulations 

of the open-circuit voltage Voc as a function of the effective rear surface recombination 

velocity Seff for solar cells having different cell thickness, in the case of high-efficiency 

silicon solar cells with a higher minority carrier lifetime τbulk = 750 µs and medium-

efficiency silicon solar cells with a lower minority carrier lifetime τbulk = 100 µs, 

respectively. The result of both trends is an increased importance of an effectively 

passivated rear surface. It results that the influence of the rear passivation increases 

when the cells are getting thinner 34.
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                                       (a)                                                          (b)         

Figure 1.12: Simulations of the open-circuit voltage Voc as a function of the effective 

rear surface recombination velocity Seff for a-Si solar cells having different thickness, 

in the case of high-efficiency cells (τbulk = 750 µs) (a), and medium-efficiency cells 

(τbulk = 100 µs) (b) 34. 

     There are typically additional extrinsic surface defects, due to dislocations or 

chemical residues and metallic depositions on the surface. These defects are sites of 

several recombination mechanisms, namely surface recombination, Auger 

recombination and Shockley-Read-Hall (SRH) recombination 33. Thus, passivation of 

the cell interfaces improves the efficiency. Figure 1.13 shows the external quantum 

efficiency spectrum of a Cu(In,Ga)Se2 (CIGS) rear passivated solar cell with different 

Al2O3 passivation layer thickness. Actually, the presence of passivation layers in thin 

film solar cells technology is essential for efficiency increase, making the implement 

of an effective passivation method a near-term challenge in the PV industry.  

     Recombination losses at a semiconductor interface or surface can be reduced by two 

different passivation strategies. The first is to reduce the number of defects states at the 

interface by the growth of thin dielectric or semiconductor films. This method is known 

as the chemical passivation. The second strategy is the significant reduction of the 

electron or hole concentration at the interface, by means of a built in electric field 33. 

This electric field can be obtained by either a doping profile below the interface or the 
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Figure 1.13: External quantum efficiency (EQE) as a function of the wavelength for a 

non-passivated and Al2O3 rear surface passivated Cu(In,Ga)Se2 (CIGS) solar cell 35. 

 

presence of fixed electrical charges at the semiconductor interface. As a result, field-

effect passivation has limited applications but the effect can be employed successfully.       

     In silicon heterojunction solar cells, the passivation is obtained by placing a buffer 

layer with a larger energy gap between the metal contacts and the active material. In 

this way the open circuit voltage results increased and higher efficiencies can be 

reached with lower costs. The passivating layer at the front of the cell is often referred 

to as the window layer because it should have a high transmittance to let the photons 

passing through. These buffer layers with a higher energy gap have the role of a semi-

permeable membrane for carrier extraction 4. Front surface passivation is typically 

obtained by chemical vapor deposition of SiO2 and TiO2 layers. However, this requires 

very high temperature treatment, which degrades the bulk lifetime significantly as well 

as the stability of the passivated surface. In addition, SiO2 has a very low refractive 

index and it is not a suitable choice for high antireflection coatings. Regarding TiO2, it 

does not provide any electronic surface passivation33. Al2O3 has been found as an 

alternative material for rear passivation of high-efficiency silicon solar cells 33.  

     Recently, has been demonstrated that an exceptional high-level of c-Si surface 

passivation can be achieved for SiO2 synthesized at low temperatures when combined 

with a very thin Al2O3 capping film. The excellent efficiencies reached (up to 21.3-21.5 

%), the high voltages (680 mV), the large quantum efficiency and the high short circuit 

currents of these cells (40 mA/cm2) have showed the low rate of surface recombination 

for these devices 33. 
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1.4    Solar cells generations 

 

     The first generation solar cells dominated the PV market until the recent years. 

These devices rely upon high volumes bulk mono-crystalline or poly-crystalline silicon 

wafers. However, the costs of the materials represent over a half of the total 

manufacturing costs, with little potential in cost reduction. The basic structure scheme 

of a c-Si cell is depicted in Figure 1.14. 

     Silicon solar cells have commercial efficiencies that are limited to around 20 % 36. 

The efficiency of these cells is approaching the theoretical limit of 29.4 % calculated 

by recent studies 37. Although efficiency of mono-crystalline silicon (c-Si) solar cells 

is higher than poly-crystalline silicon (pc-Si) solar cells, production of poly-crystalline 

silicon wafer is easier and cheaper, making them competitive with mono-crystalline 

ones 38.  

     These cells use two different p-type substrates: c-Si and pc-Si. The surface is 

textured to reduce the efficiency losses associated to incident light reflection. In 

addition, an anti-reflection (AR) coating of silicon nitride (SiN) or titanium oxide (TiO) 

is used in order to obtain the maximum reduction of reflectivity. The p-n junction is 

obtained by a phosphorous doped n-type region on the front surface of the cell and a 

boron doped p-type substrate. The silver contacts on the front and on the back of the 

silicon surface collect mobile electrons generated in the silicon bulk and diffusion 

layers 39.  

     The second generation of solar cells consists of thin films technology, including 

amorphous silicon, CdTe and CuInGaSe2 (CIGS). The primary aim of these devices is 

to reduce material costs by using cheap semiconductor thin films deposited on low cost 

substrates to provide acceptable efficiencies of about 10-15 %. CdTe, CIGS and a-Si 

absorb the solar spectrum much more efficiently than c-Si or pc-Si and use only 1-10 

µm of active material 36. The thin-film technology is cheaper but less efficient than the 

first generation solar cells technology.  

 

 

 

Figure 1.14: Schematic view of a first generation mono-crystalline silicon solar cell 36.
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     However, the ratio of efficiency to cost results competitive today. In recent years, 

significant improvements of the thin film technology have been performed, with 

efficiencies reaching 21 % for CdTe and CIGS devices 20. Figure 1.15 shows the basic 

scheme of CdTe, CIGS and a-Si thin film PV devices.  

     Despite these results, the market of all thin-film technologies has been declining in 

the last years to about 9 % of the total annual production, while 85 % is held by 

crystalline silicon 20. In Figure 1.16 the efficiencies reached as a function of the cost 

for the three generations of solar cells technology are shown. 

     The structure of both CdTe and CIGS thin film solar cells includes a n-type CdS 

buffer layer grown by chemical bath deposition on the p-type absorber. The front 

contact (usually TCO for CdTe and a-Si, ZnO for CIGS cells) serves as a transparent 

conducting material that collects and delivers the electrons to the external circuit 40.  

     A third generation of solar cells has been developed in the last years exceeding the 

SQ limit, with reached efficiencies of over 40 %. The main third generation devices 

include multi-junction (tandem) cells developed in the early 1960s. The tandem cell 

concept lies in splitting the solar spectrum in ranges of energy in order to use several 

junctions for the energy conversion. If this technology can be improved reducing the 

costs, the next future market will be dominated by the third generation solar cells 41.  

 

 

 

 

Figure 1.15: Schematic view of thin film solar cells using CdTe, CIGS and a-Si thin 

film PV devices 36.
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Figure 1.16: Efficiency limits of the three generations of photovoltaic cells technology 

(wafers, thin films and multi-junction) as a function of the areal cost in US$ 42. 
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Chapter 2 

Zinc Sulfide State of the Art 

 
     Zinc sulfide (ZnS) exhibits interesting properties that have not yet been much 

investigated. ZnS thin films have been found useful in various devices, covering a wide 

area of applications, including antireflection coating for the solar cells, non-toxic buffer 

layer (compared to CdS layer in CIGS based thin film solar cells), wide energy gap 

material for electroluminescent and opto-electronic devices, photosynthetic coating 

and blue emitting laser diodes 7. In this section, an overview of the actual state of the 

art about the ZnS properties and applications, with particular attention for the field of 

photovoltaics, has been reported.  

 

 

2.1    Main characteristics 

     Zinc sulfide (ZnS) is among the first semiconductor materials discovered 43. It 

results peculiar in various fundamental properties, i.e. a wide energy gap and a high 

transmittance. It results also a promising alternative material for different applications, 

including photovoltaic and optoelectronic devices. Its atomic structure and chemical 

properties are comparable to another Zn compound: ZnO 43. Nevertheless, ZnS exhibits 

properties that are more advantageous with respect to ZnO. ZnS possesses a larger 

energy gap (in the range 3.5 - 3.9 eV) than ZnO (~3.4 eV) 43. For this reason, ZnS is 

more suitable for UV-light based devices such as photosensors, and even more for 

electroluminescence devices. In addition, ZnS is non-toxic, abundant and cheap. 

Actually, the properties of ZnS have not yet been investigated in much detail, making 

this material an actual field of research for further studies.
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2.1.1   Crystal structure 

     ZnS is found in nature in the mineral of sphalerite. It has commonly two available 

allotropes: the zinc blende (ZB) cubic form, which is more stable, and the wurtzite 

(WZ) hexagonal form. The ZB structure results in tetrahedrally coordinated zinc and 

sulfur atoms stacked in the ABCABC pattern, while the WZ form has the same 

structure with atoms stacked in the ABABAB pattern 43. Figure 2.1 (a) and (b) shows 

three different views of the ZB and WZ structures, respectively. The lattice parameters 

of WZ are a = b = 3.82 Å, c = 6.26 Å and those of ZB are a = b = c = 5.41 Å. The 

energy gap difference between the two structures is about 0.05 eV 43. The optical 

spectra, being related to the energy band structure, also results different. 

 

 

Figure 2.1: Schematic view of the zinc blende (a) and wurtzite (b) crystal structures for 

the zinc sulfide 44. 

 

 

2.1.2   Optical properties 

    Zinc sulfide has a high refractive index of about 2.35 at wavelength of 632 nm 45. 

Figure 2.2 (a) and (b) show the transmittance and the absorbance, respectively, of ZnS 

thin films deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) at 

different annealing temperatures. The absorbance is low in the visible and near infrared 

regions, but is high in the UV region, with an enhanced absorption observed close to 

360 nm 7. The transmittance is very high in the visible and near infrared regions, and 

low in the UV region. The high transmittance of about 90 % in the visible range show 

in Figure 2.2 (a) leads to the conclusion that the ZnS films are actually efficient 

transmitting and antireflective materials. Figure 2.3 (a) shows the plot of (αhν)2 (where 

α is the optical absorption coefficient and hν is the energy of the incident photon) as a 

function of the photon energy. Figure 2.3 (b) shows the energy gap as a function of the 

temperature. 
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                                  (a)                                                              (b)         

Figure 2.2: Transmittance (a) and absorbance (b) as a function of the wavelength for 

ZnS thin films deposited by SILAR at different annealing temperatures 7. 

 

   

                                  (a)                                                               (b)         

Figure 2.3: (αhν)2 as a function of the photon energy (a) and  energy gap as a function 

of temperature (b) for ZnS thin films deposited by SILAR at different annealing 

temperatures 7.
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     The decrease in energy gap with increasing annealing temperature could be 

attributed to improvement in the crystal quality or to possible variation of the grain size 
7. Because of these optical properties, ZnS may play an important role in photovoltaic 

devices as buffer layers in CIGS thin film solar cells. 

 

2.1.3   Dielectric properties 

     Dielectric studies show that the conduction phenomenon in ZnS nanostructures 

depends on the temperature and the frequency of the external electric field applied 46. 

The dielectric constant decreases with an increase in the frequency. In addition, it 

results much higher than that of the bulk ZnS, which can be treated as an insulator 46. 

Therefore, the conductivity has the inverse trend. Figure 2.4 shows the dielectric 

constant and the conductivity plots of ZnS nanostructures as a function of the 

frequency. All the inhomogenities and defects, together with other phenomena such as 

space charge formation, produce an absorption current, which results in dielectric 

losses. The nature of frequency and temperature dependence of AC conductivity 

suggests an electronic hopping mechanism, which is compatible with the highly 

disordered or amorphous structure of the grain boundary layers, having high densities 

of localized levels 47.  

 

 

   

Figure 2.4: Variation of dielectric constant (a) and AC conductivity (b) as a function 

of the logarithm of the frequency for nano ZnS samples at different temperatures 47.
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2.2    Applications in photovoltaics 

 

     Zinc sulfide (ZnS) has many opportunities for technological applications, e.g. opto-

electronic devices such as blue light emitting diodes, electroluminescent devices and 

photovoltaic cells. Moreover, monocrystalline and polycrystalline ZnS thin films have 

received particular attention in recent years because of its possible important roles in 

the photovoltaic technology. One of the advantages of the ZnS films is that they can be 

easily prepared by several techniques, such as sputtering, molecular beam epitaxy, 

chemical vapor deposition, thermal evaporation, spray pyrolysis and chemical bath 

deposition 48.  

     Today the efficiency of solar cells is one of the most important features in the contest 

of renewable energy sources. In thin film solar cells, CdS has been the most common 

semiconductor material used as a buffer layer deposited on top of Cu absorbers. 

However, the use of Cd is associated to toxic hazards thus leading the attention to new 

materials having a less impact on the environment to be used as buffer layer. The ZnS 

is considered one of the most promising candidates among various alternative materials 

for its non-toxicity, abundance and cheapness 49. In addition, ZnS has a direct wide 

energy gap of 3.5 – 3.9 eV at room temperature, which is larger compared to CdS which 

has an energy gap of 2.45 eV 49.  

     The efficiency of thin film heterojunctions solar cells strongly depends on the 

interfacial properties between absorber and buffer layers. The recombination of photo-

excited electron-hole pairs that takes places at the surfaces and interfaces is still a limit 

from this point of view. ZnS thin films can act as excellent surface passivation layers 

because of their high transmittance, wide energy gap and insulating properties. Due to 

its low reflectivity, ZnS thin films could also find applications as antireflection 

coatings, which are essential part of the solar cells. Previous studies showed that the 

use of a ZnS buffer layer for a CZTSSe monograin solar cell results in similar 

functionality level as a CdS buffer layer 5. In the experiment reported in reference 5, a 

higher transmission in the blue light region for the ZnS buffer compared to CdS has 

been observed. In addition, the substitution of the CdS buffer layer with ZnS, which is 

a higher energy gap material, has been observed to improve the quantum efficiency of 

CIGS thin film solar cells at short wavelengths leading to an efficiency of 13.3 % 6. 

Furthermore, doped ZnS nanoparticles with dimensions below that of the Bohr 

diameter exhibit interesting opto-electronic properties due to quantum confinement 

effect and are potential candidates for a variety of applications among which the 

quantum dot solar cells 45.  
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Chapter 3 

Materials and Methods 

 

3.1    Materials 

     In this work, a sample set of zinc sulfide (ZnS) thin films has been analyzed by 

Atomic Force Microscopy techinque, which will be described in detail in the following 

section. In addition, two samples of a different zinc compound, zinc oxide (ZnO) thin 

films, have been studied in order to compare the properties of the two zinc compounds. 

ZnS layers are grown by Direct Current sputter deposition (DC Sputtering) using 

different sputtering power. Zinc sulfides are grown at the Department of Materials 

Sciences, University of Milano Bicocca, while zinc oxides are grown also by DC 

sputtering at the Physics Department, University of Konstanz. 

    Deposition by sputtering is a Physical Vapor Deposition (PVD) technique widely 

used in the thin film industry. Sputtering method involves the bombardment of a target, 

made of the material to be deposited, by positive ions which act to remove the material 

by colliding with its surface 50. Ions are accelerated by gas discharge between two 

electrodes, where the negative electrode is bombarded by the positive ions generated 

in the plasma 51. A sketch of a typical sputtering deposition system is shown in Figure 

3.1. Sputtered atoms ejected this way can impact the substrate causing the layer to 

grow. A DC voltage applied in the presence of inert gas (usually Argon) kept at low 

pressure inside a vacuum chamber provides the discharge that originates the energetic 

ions 51. The inert gas atoms become positively charged ions attracted to the negatively 

charged target material at a very high velocity that sputters off particles from the source. 

These particles cross the vacuum chamber and are deposited as a thin film of material 

on the surface of the substrate to be coated. Among the main advantages, sputtering 

deposition technique provides a reproducible deposition control, with the same 

deposition rate for same value of the parameters involved, meaning an easy film 
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Figure 3.1: Schematic view of a sputter deposition device 52. 

thickness control 53. Another advantage is the absence of damage occurring from x-ray 
53. ZnS samples have been grown with different sputtering power. It will be shown in 

Chapter 4 that these different initial conditions will affect the morphology of the 

materials, yielding different surface parameters associated with that. ZnS samples have 

been grown through DC Sputtering using Argon as inert gas, on a 2 mm soda-lime glass 

substrate hold from fixed distance of 6 cm from the target. During the process a 

pressure of 6x10-3 mbar has been maintained for the Argon. The list of zinc sulfide 

samples investigated in this thesis is shown in Table 3.1. 

 

Table 3.1: List of the ZnS samples with related thickness and sputtering power. 

Sample 

name 

Thickness 

(nm) 

Sputtering 

Power (W) 

35 75 50 

36 75 75 

60 75 125 

53 75 150 

93 75 75 

94 75 75 

95 170 75 

97 370 75 
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where d represents the thickness of ZnS grown on the substrate and P the sputtering 

deposition power. Thickness of the ZnO layer is 900 nm for ZnO_96 and 1000 nm for 

ZnO_97, deposited on 2 mm of borofloat glass. 

     Characteristics of the ZnS thin films reported from previous studies made by the 

UniMIB Physics Department are reported in Figure 3.2. The average transmittance 

(measured in the wavelength range 400-800 nm in Figure 3.2 (a)) has a decreasing 

trend with increasing sputtering deposition power while the Eg value in dependence 

with power remains approximately constant around 3.2 eV, according to data from 

literature. The graph reported in Figure 3.2 (b) shows Eg as a function of the sputtering 

power holding a trend which is about a constant, although in the range 60 – 100 W it 

seems to assume the higher values. For the further results, it is important to note that 

the sample deposited with a 75 W sputtering power shows the greater transmittance in 

the higher wavelength range: 700 - 1000 nm (not on the graph). 

 

 

(a) 

 

(b) 

Figure 3.2: (a) Transmittance and energy gap vs deposition power for several ZnS 

samples; (b) Slope of (αhν)2 vs energy in order to get Eg from the intersection with the 

abscissa.
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3.2    Methods  

 

     The experimental methods employed for the morphological and electrical 

characterization of the ZnS thin films have been reported in this section, including: a 

detailed description of the Atomic Force Microscopy (AFM) technique, the 

experimental instruments used in the measurements with a brief overview on their main 

components, the image processing with the statistical analysis performed, the dip 

analysis method, the electrical characterization by means Electrostatic Force 

Microscopy (EFM) and Kelvin Probe Force Microscopy (KPFM). 

 

3.2.1    Atomic Force Microscopy      

     AFM analysis of the sample set have been carried out to obtain information on the 

morphological characteristics of the surfaces. This has been done obtaining several 

maps in different sizes (in the order of microns) and analyzing them with statistical 

methods. The main focus of the thesis is the morphological characterization of the ZnS 

thin films done by AFM measurements, in addition electrical analyses have been 

performed to prove that ZnS films totally act as insulators and a third step in which 

contact potential maps of the samples have been obtained by EFM and KPFM 

techniques.  

     The AFM is a type of Scanning Probe Microscopy (SPM), a branch of microscopy 

that forms images of surfaces using a physical probe that scan the specimen. It was 

invented by Binnig and co-workers in 1986, as a spin-off of its older sibling the 

Scanning Tunneling Microscope (STM) 54. For single crystals the STM and AFM are 

capable of resolving surfaces with true atomic resolutions, as was shown in the case of 

the AFM for the first time in 1995 by Giessibl 55, resolving individual atoms on a single 

crystal Si(111)(7×7) surface under Ultra High Vacuum (UHV) conditions 56. An AFM 

has several advantages over the Scanning Electron Microscope (SEM), which provides 

a two-dimensional image of a sample, being able to obtain three-dimensional surface 

profile. No special treatments are required for samples scanned by AFM that could lead 

to plastic deformation (damage) of the sample. Furthermore, where a SEM needs a 

vacuum environment to operate, an AFM can work perfectly without this expensive 

condition. However, some disadvantages place limits to the work of an AFM respect 

to a SEM: the scan area of an AFM is in the order of tens of microns while for a SEM 

it could easily reach square millimeters. Moreover, the scan speed of an AFM typically 

results extremely low. 

     As the name Atomic Force Microscopy implies, this technique utilizes forces arising 

from tip-sample surface interaction. The interaction occurs via the atoms of the sample 

surface and those of the tip-apex which probes the surface. For an atomic resolution 

imaging, it is of fundamental importance that the tip has a sharpness in the order of 

atomic size, which means having one atom or a cluster of atoms interacting with the 

surface. To obtain such a thin size super-sharp tips are used with the tip average radius 

typically lying on 10 nm. A flexible one-side-gripped cantilever free to oscillate in the 



3. Materials and Methods  41 

 

other side contain the tip, which is hold in the oscillating end of the cantilever. The tip-

surface distance (typically about 0.1–10 nm) is decreased until the tip is in contact or, 

in the case of non-contact mode, very close to the sample surface. In the first case the 

deflections acting on the cantilever provide the signal from which a morphological map 

is constructed. In non-contact mode however, the cantilever is made to oscillate and 

the long and short force interactions with the surface, which have an attractive or 

repulsive influence on the tip and depend on the distance from the surface, cause the 

cantilever oscillation to change amplitude or frequency providing a signal proportional 

to the variation. 

 

 

 

3.2.2   Experimental setup 

     In this work, two AFM instruments have been used in order to do combined 

measurements of samples: Solver P47H-Pro by NT-MDT and NX10 by Park. An image 

of the instruments used is shown in Figure 3.3 (a) and (b), respectively. The AFM 

measurements have been controlled by the software NOVA for NT-MDT and XEP for 

Park.  

     Main components of an AFM include an AFM probe that scan the sample surface 

for the morphological characterization, a piezoelectric scanner which controls the tip-

surface distance and moves the tip across the surface, an anti-vibration system which 

reduces external-environment mechanical vibrations, an optical system revealing the 

cantilever deflection and a digital control system which controls the raster scanning 

and the feedback unit. A schematic view of the main components of the AFM is shown 

in Figure 3.4. 

 

 

 
(a)                                                           (b) 

Figure 3.3: The AFM instruments used in the analysis: (a) AFM NT-MDT; (b) AFM 

Park 57, 58.
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Figure 3.4: (a) Scheme of an AFM. A small nano-tip probes the sample surface. A 

light lever detection scheme is used to measure the deflection of the cantilever due to 

the surface topography; (b) AFM placed on top of an inverted optical microscope 59.  

 

AFM Probes 

     Usually probes used in AFM are nanoscale elastic levers with a sharp apex on the 

free-oscillating end. The apex of the probe defines the resolution of the microscope, 

the sharper the probe the better the resolution. For atomic resolution imaging the probe 

must be terminated by a single atom. The probes are usually fabricated  through 

photolithography, ionic implant and acid etching, usually from silicon nitride and 

silicon oxide deposited on a silicon wafer 60. The rear of the levers is typically coated 

with a thin metal film made of aluminium or gold to increase reflectance but several 

types of interaction can be detected, depending on the interaction under investigation, 

the surface of the tip needs to be coated: making electrical measurements requires  a 

thin conductive-material film coating (usually Cr, Au, Ti, Pt), while ferromagnetic 

coatings (as Fe, FeCr, Co, CoCr) are required for detecting magnetic properties of the 

surface 61. The curvature radius of a tip-apex is in the order of  nanometers (1 – 50 nm). 

AFM probes are often replaced when the tip-apex becomes dull or when the cantilever 

has been damaged, which happens relatively often during analyses. The interaction 

force acting on the probe can be estimated from the Hooke’s law, where k is the elastic 

constant related to the cantilever, varying with material and geometry, in the range of 

10-3 - 10 N/m, and the shift is that of the tip due to the cantilever deflection. The softer 

the lever (smaller k), the better for sensing the deflection, but this requires smaller mass 

to keep the high frequency, which usually lie from tens to thousands kHz. Among the 

cantilever properties there must be included: length l, cross section S, density ρ and 

Young’s modulus E, related to the resonance frequency of oscillation by 62: 

 

𝜔𝑟𝑒𝑠  =
𝜆

𝑙2
√

𝐸𝐽

𝜌𝑆
 

 

(3.1) 

where 𝜆 is a numerical coefficient depending on the oscillation mode of the cantilever. 
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     The “quality-factor” (Q-value) of the oscillations, characterizing the resonator’s 

bandwith relative to its center frequency, is another important (dimensionless) 

parameter and depends on the medium in which the cantilever oscillates: higher Q 

indicates a lower rate of energy loss relative to the resonator energy, that is oscillations 

dying out more slowly. Typical values of Q in UHV lie around 100 62. 

     In this work two types of AFM probes have been used, listed in Table 3.2. The tip 

radius is one of the most important parameters for obtaining high resolution images, as 

tip-sample convolution effect is always present in AFM micrographs. Very sharp 

probes, with radius of the order of 2 – 5 nm, can be used to reduce this artifact (see e.g. 

SSS-NCHR in Table 3.2). In Figure 3.5 the AFM probe tips used for the morphological 

characterization of the samples are shown. 

 

 

Table 3.2: Main features of the AFM probes used for morphological characterization 

of ZnS. Measurements have been done in semi-contact mode with NT-MDT and in 

non-contact mode with Park. 

Probe 

(AFM) 

NSG10  

(NT-MDT) 

SSS-NCHR 

(Park) 

Radius (nm) 10 5 

Length (µm) 95 125 

Width (µm) 30 30 

Resonant frequency (kHz) 240 330 

Elastic constant (N/m) 11.5 42 

 

 

Anti-vibration system 

 

     To reduce the influence of external mechanical oscillations on the measurement 

process an anti-vibration system is employed. Mechanical vibrations originating from 

the external environment can excite the resonance frequency ωres of the tip-sample 

system, causing fluctuations on the tip-sample distance, observables as periodic noise 

in the resulting sample AFM image 62. To reduce the external vibrations effect, active 

(used in AFM Park) and passive (used in AFM NT-MDT) anti-vibration systems are 

developed. Active anti-vibration systems include a vibration sensor with an actuator 

which stabilizes through a feedback the platform. The sensor generate a signal sent to 

the feedback, where is amplified and re-sent to the piezo-actuators, reducing the 

platform acceleration 62. Passive anti-vibration systems are based on the following 

principle: external oscillations amplitude rapidly vanishes at frequencies far from the 

resonance frequency of the medium in which the oscillations act. Hence, placing the 



44  3.2 Methods 

 

 

   
 

(a)                                                 (b) 

Figure 3.5: AFM probe tips used for the morphological characterization. (a) NSG10 tip 

(used in NTMDT); (b) SSS-NCHR tip (used in Park) 63, 64. 

 

 

tip-sample mechanical system onto an elastic platform with a very low resonance 

frequency, the platform acts as filter for the external high-frequencies vibrations, with 

the result of have an efficient anti-vibration system 62. To obtain a very low resonance 

frequency anti-vibration system (less than 1 Hz), it requires a compression length of 

the elastic medium bigger than 20 cm 62. This is achieved for AFM NT-MDT using 

three elastic cables which acts definitely as passive anti-vibration system. 

 

 

AFM Scanner 

  

    To control the tip-sample distance with great accuracy a piezoelectric transducer 

(scanner) is employed. The scanner working-principle is based on the piezoelectric 

materials property of changing their geometric dimensions when undergoing to an 

electric field. The piezo-scanner is constituted of a single tubular element with the 

arrangement depicted in Figure 3.6. There is a single internal electrode while the 

external one is split in four different sectors. When applying a potential difference 

between two opposite sectors of the external electrode, the tube shortens in the case of 

the electric field and polarization having the same direction, or lengthens in the case of  

field and polarization having opposite directions. This make bend the tube resulting in 

a two-dimensional scan of the sample surface, while acting on the internal electrode 

potential is possible to shorten or lengthen the tube on the z axis. A piezoelectric tubular 

scanner like the one shown in Figure 3.6 is used by the AFM NT-MDT, while the AFM 

Park scanner is decoupled on the xy and z stages, resulting in a lower image distortion. 

Non-desirable effect can arise when treating piezoelectric materials. Deformations are 

never exactly proportional to the applied electric field, in fact at a certain field values
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Figure 3.6: Schematic illustration of a piezoelectric AFM tubular scanner viewed from 

ahead (a), and on top (b). The blue tube is made of piezoelectric material, while the 

grey plates represent the external and internal electrodes to which a voltage is applied 

in order to control the tube’s deformation in horizontal and vertical directions. 

      

 

(over 100 V/mm) the linearity regime is lost 62, this is avoided by applying a restrained 

electric field. Another effect is the so-called creep phenomenon, it consists in a delay 

of response when suddenly changing the potential difference applied, causing image 

distortion. This is in some part removed including controlled-delays in the control 

system. Piezo scanners exhibit more sensitivity at the end than at the beginning of a 

scan, this causes the forward and reverse scans to behave differently and display an 

hysteresis effect between the two scan directions, in which the piezo-deformation 

depends on the potential difference applied at an instant before. To remove image 

distortion originated from this phenomenon, signals are stored only in a monotone way 

during the scan. 

 

 

Optical system 

 

     To detect the cantilever deflections, both AFM employ a beam-bounce technique. 

It consists in a laser beam emitted from a source and focalized on the lever so that the 

reflected beam hits the center of the optical system which acquires the signal. In this 

way, attractive or repulsive forces acting on the cantilever are measured by the optical 

device composed by a four-sectors photodiode, allowing the measurement of the 

vertical and lateral component of the force associated with the tip-sample interaction. 

Considering In
0 (with n = 1,2,3,4) the reference values of the four photocurrents 

associated with the respective photodiodes, and In
def the same values when the 

cantilever is deflected, the interaction between the tip and the sample surface will be 

proportional to the shift intensity and direction of the cantilever detected in terms of 

photocurrent difference: 

∆𝐼 =  𝐼𝑛
𝑑𝑒𝑓

− 𝐼𝑛
0 (3.2) 

where the difference proportional to the deflection due to the normal component of the 

force Fz is:
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∆𝐼𝑧  = (∆𝐼1 + ∆𝐼2) − (∆𝐼3 + ∆𝐼4) 

 

(3.3) 

 

and that proportional to the lateral component of the force Fxy: 

 

∆𝐼𝑥𝑦  = (∆𝐼1 + ∆𝐼4) − (∆𝐼2 + ∆𝐼3) 

 

(3.4) 

 

     Hence, the photocurrent difference ΔIz is the main signal introduced in the feedback 

system of the AFM, which acts on the piezo-scanner to hold the value constant by 

varying the tip-sample distance to maintain the deflection Δz equal to the reference 

value before the scanning operations 62. A schematic view of the optical device is 

shown in Figure 3.7. 

 

 

 
 

Figure 3.7: Schematic view of the four-sector photodiode optical device for the 

cantilever deflection measurement 65. 

 

 

 

3.2.3   AFM modes of operation 

     In general, AFM measurements can be performed in three different modes: contact, 

non-contact and semi-contact (tapping) mode topography. In this thesis all the AFM 

measurements on ZnS have been done in semi-contact mode with AFM NT-MDT and 

in non-contact mode with AFM Park. The main differences and the basic features of 

the procedure used are described in the following section.  
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     The main general disadvantage of contact mode is the direct mechanical interaction 

between the tip and the sample that usually lead to a permanent damage of the tip and, 

more important, of the sample surface. This is the main reason why contact mode has 

not been employed in this work. In contact mode a direct contact between the tip and 

the surface is established and the repulsive force acting between the tip-apex atoms and 

the sample surface ones is balanced by the elastic force originated from the cantilever 

deflection. For this reasons the elastic constant of cantilevers used in contact mode are 

relatively small compared to those used in non-contact, in fact a higher sensibility 

means a lower risk of an exaggerated tip-sample interaction. It was realized relatively 

early that force of magnitude such as that existing between single atoms lead to a high 

risk of irreversible damage ruining either the surface structure or the atomic sharpness 

of the tip making it blunt 56. A blunt tip has more tip-apex atoms interacting with the 

surface, resulting in an apparent atomically resolved image of the sample surface but 

making the atomic defects invisible at all, as schematically depicted in Figure 3.8. 

Contact mode can be performed by maintaining either a constant force or a constant 

average tip-sample distance. During a constant force scan, the feedback system 

maintains a constant deflection of the cantilever, which reflects a particular interaction 

force, by applying a potential difference to the z-axis electrode of the piezo-scanner 

proportional to the topographic height in each point of the surface. In constant average 

distance mode there is no feedback acting on the scanner and the height trace of the 

AFM image is obtained as a signal proportional to the deflection of the cantilever 

measured by the optical system.  This is however only applicable on samples with a 

very small roughness, which makes this mode of operation the less preferred of the 

two. 

 

 

 

 
Figure 3.8: Schematic view of contact AFM imaging: (up) the intact tip maps perfectly 

the atomic structure of the surface; (down) the trace of the blunt tip fail to detect the 

point defect in the surface 66.
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Figure 3.9: Schematic model of non-contact AFM mode. (a) Tip-cantilever-sample 

system from a macroscopic view; (b) Zoom illustrates the long ranged interaction of 

several tip and surface atoms, while the short ranged interaction principally only exists 

between the tip-apex atom and the surface atom directly below; (c) By approaching the 

surface from a certain height in the z-axis various distance dependent electromagnetic 

long and short ranged interatomic forces are detected 67. 

 

     Non-contact mode has been used in AFM Park measurements of ZnS. In this mode 

of operation, the cantilever oscillates at or near by its resonance frequency close to the 

sample surface but separated from a safe distance, which means that the minimum tip-

sample distance achievable is such that no permanent damage can be done to either the 

tip or the sample, therefore the tip-cantilever system scans the surface in a dynamic 

mode, contrary to contact AFM. A schematic illustration of non-contact AFM mode is 

shown in Figure 3.9. Any tip-sample interaction influences amplitude, frequency or 

phase of the cantilever. During non-contact mode, signal associated with height and 

phase topography is acquired from these variations of the amplitude or frequency (or 

phase) of the cantilever oscillation, which are detected by the optical system. Main 

features of an oscillating-lever-surface interaction can be described by a classical 

mechanic model of the z-axis motion of the cantilever, considering the tip mass as a 

point-like mass on the free end of an oscillating lever with an elastic constant kcant and 

treating the tip-cantilever system as an effective mass meff , through the following 

equations 56:  

 

𝑚𝑒𝑓𝑓�̈� = 𝐹𝑑𝑟 cos(𝜔𝑑𝑟𝑡) − 𝑘𝑐𝑎𝑛𝑡𝑧 − 𝛾𝑚𝑒𝑓𝑓�̇� + 𝐹𝑡𝑠 

 

𝑘𝑐𝑎𝑛𝑡 =
𝐸𝑤𝑡3

4𝐿3
  

 

(3.5) 

where Fdr, ωdr, kcant and γ are the magnitude and frequency of the excitation force 

driving the oscillation, the cantilever spring constant and the oscillation damping, 

respectively, and E, w, t, L are Young’s modulus, width, thickness, length of the 

cantilever. Fts is a force term which includes all the interaction forces between the tip 

and the surface, meaning the total tip-surface force. However, an exact expression for 

Fts requires a detailed knowledge of all interacting atoms resulting quite complex to 
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model exactly. Neglecting the total tip-surface force term Fts, Eq. (3.5) has the 

followings solutions for the tip motion 56: 

 

𝑧(𝑡) = 𝐴 cos(𝜔𝑑𝑟 + 𝜑) 

 

𝐴 =  
𝐹𝑑𝑟

𝑚𝑒𝑓𝑓

1

√(𝜔0
2 − 𝜔𝑑𝑟

2 )2 + (
𝜔𝑑𝑟𝜔0

𝑄 )
2
 

 

𝜑 = arctan (
𝛾𝜔𝑑𝑟

𝜔𝑑𝑟
2 − 𝜔0

2) ,   𝜔0 = √
𝑘𝑐𝑎𝑛𝑡

𝑚𝑒𝑓𝑓
  ,   𝑄 =

𝜔0

𝛾
 

 

 

 

(3.6) 

 

where A, φ, ω0 and Q are the oscillation amplitude and phase, the mechanical resonance 

frequency of the free oscillating tip-cantilever system and the quality factor (Q-value) 

of the oscillation, respectively. Eq. (3.6) describes a forced damped harmonic 

oscillator, however system including Fts into the equation of motion of the tip-

cantilever requires to make the so called small amplitude approximation.  

     For small oscillations around the z0 distance from the surface, the total tip-surface 

force term Fts can be approximated with a series expansion truncated at the second term 
56: 

 

𝑚𝑒𝑓𝑓�̈� = 𝐹𝑑𝑟 cos(𝜔𝑑𝑟𝑡) − 𝑘𝑐𝑎𝑛𝑡𝑧 − 𝛾𝑚𝑒𝑓𝑓�̇� + 𝑧
𝑑𝐹𝑡𝑠

𝑑𝑧
|

𝑧=𝑧0

 

 

𝑚𝑒𝑓𝑓�̈� = 𝐹𝑑𝑟 cos(𝜔𝑑𝑟𝑡) − 𝑘𝑒𝑓𝑓𝑧 − 𝛾𝑚𝑒𝑓𝑓�̇� 

 

with    𝑘𝑒𝑓𝑓 = 𝑘𝑐𝑎𝑛𝑡 − 𝑘𝑡𝑠 

 

 

 

(3.7) 

 

where the first order derivative of Fts is a variation from the “effective” elastic constant 

keff, included as an additional term kts, as shown in Eq. (3.7). The main consequence is 

that the only difference from the equation of motion described by Eq. (3.5) is that the 

resonance frequency changes, in fact Eq. (3.7) still describes the motion of a forced 

damped harmonic oscillator. 
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The new resonance frequency can therefore be expressed as follows: 

 

𝜔𝑟𝑒𝑠 = √
𝑘𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
= 𝜔0 −   

𝜔0𝑘𝑡𝑠

2𝑘𝑐𝑎𝑛𝑡
 

 

𝑓𝑟𝑒𝑠 = 𝑓0 + ∆𝑓 , ∆𝑓 =
𝑓0𝑘𝑡𝑠

2𝑘𝑐𝑎𝑛𝑡
 

 

 

(3.11) 

 

     As a result, the resonance frequency of the cantilever will decrease if the tip-surface 

interaction corresponds to a positive force gradient kts, while increasing in the case of 

a negative force gradient. From Eq. (3.11) it is clear that probing in the attractive regime 

will result in a positive frequency shift Δf, while in the repulsive regime will result in 

a negative one. The total force and its gradient are plotted in Figure 3.10.     The tip-

surface separation distance dependence of the force gradient kts and thus of the 

resonance frequency is the main link used to obtain a topographic map of the surface 

under investigation by detecting the mechanical resonance frequency changes of an 

oscillating tip-cantilever which is very close to the sample surface. The two most 

common modes of non-contact AFM operation, frequency modulation (FM) and 

amplitude modulation (AM), are described below. 

 

 

 
Figure 3.10: A plot of the total tip-surface interaction force (Fts) and force gradient (kts). 

Shaded regions are available for probing with a positive or negative resulting frequency 

shift 56. 
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     In frequency modulation mode, which was first introduced by Albrecht et al. in 1991 
68, the cantilever oscillates separated from the surface with a constant amplitude 

maintained by the feedback system 69. The signal used to generate the image is obtained 

by the detection of changes in the resonant frequency of the cantilever 70. The difference 

between the actual resonant frequency, which depends on the tip-surface forces, and 

that of the free lever can be measured to find the frequency shift associated to the tip-

surface separation distance 71. Then the frequency shift can be recorded as function of 

position during the scan to generate a topographic image of the sample surface. 

     In amplitude modulation mode, which was first introduced by Binnig and Quate in 

their seminal 1986 AFM paper 72, the cantilever is excited over its resonant frequency 

making possible to detect forces that change the resonant frequency by detecting the 

amplitude of oscillation, as shown in Figure 3.11. When the tip approaches the sample 

surface, the force gradient causes a change in both the amplitude and the phase of the 

cantilever. These changes are used to produce the signal that generate the image. The 

AFM control system then uses amplitude as the reference channel, either in feedback 

mode, or it can be recorded directly in constant height mode. When the tip-cantilever 

system is driven exactly at its resonance frequency, the resulting oscillation amplitude 

reaches a maximum. If the driving frequency is shifted from resonance, either higher 

or lower, the oscillation amplitude will decrease 56. Amplitude modulation can fail if a 

sudden change to a more repulsive (less attractive) force can shift the resonance over 

the drive frequency causing it to decrease. In constant height mode this will only lead 

to an image artefact, but in feedback mode the feedback will read this as a stronger 

attractive force, causing positive feedback until the feedback saturates.  

     In the semi-contact or tapping mode, which has been used in AFM NT-MDT 

measurements, the cantilever oscillations are excited near the resonance frequency with 

a high amplitude usually varying from several nm to 200 nm 56. The cantilever in close 

proximity with the surface during the lower semi-oscillation get in contact with the 

sample surface, meaning in the repulsive force region.  

 

 

 
Figure 3.11: Plots showing the basic principles of amplitude modulation AFM. (a) 

Force and force gradient between the tip and the surface; (b) Resonance frequency for 

the free oscillating cantilever (red) and resonance frequency shifted cantilever (blue), 

relating to distances (1) and (2) in (a). The resulting decrease in oscillation amplitude 

(ΔA) due to the force gradient induced frequency shift (Δf) is shown 56.
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     The Van der Waal’s forces, dipole-dipole interactions and electrostatic forces cause 

the amplitude of the cantilever’s oscillation to change as the tip gets closer to the sample 
56. The amplitude is the parameter used by the feedback system to maintain a set 

cantilever oscillation amplitude adjusting the height above the sample. A tapping AFM 

image is therefore obtained by mapping the force of the intermittent contacts of the tip 

with the sample surface, storing the potential difference signals provided by the 

feedback system to the z-axis electrode of the scanner 62. At the same time, the phase 

shift variations are stored as a “phase contrast” image, which can give rise to regions 

of varying stiffness or with different adhesion properties that are not visible in the 

topographic image. Although the peak forces applied during the contacting part of the 

oscillation can be much higher than typically used in contact mode, tapping mode 

generally decreases the damage done to the surface and the tip compared to the amount 

done in contact mode 62. 

 

3.2.4   Image processing 

     To obtain clear AFM images it is of primary importance to set the correct values of 

the main AFM parameters during the measurement. First of all, the set point (the 

measure of the force applied by the tip to the sample) must be adjusted to reach the 

optimal value for each scan. Too high values lead to minor interaction between the tip 

and the sample, with the possibility of lose it completely. However, a too low set point 

provides a large force, which often means better imaging, but also more wear on the 

tip and the sample, i.e. lower tip life and less chance of getting a complete sample 

without the tip getting contaminated or broken 73. 

     In this thesis, each AFM measurement has been started with a high value of the set 

point to avoid fast tip degradation. The set point has been subsequently lowered until 

the value for the best tip-sample interaction was reached, depending on the attractive 

or repulsive regime. In the analyses performed, both attractive and repulsive regimes 

have been used to obtain the better image quality. Other parameters have been chosen 

to improve the measurements: the amplitude of oscillations, the amplitude gain and the 

scan rate, which is of particular interest since AFM measurements usually take a long 

time to perform, this is the reason for a high scan rate is often preferred. However, this 

could result in an image distortion along the scan direction due to an exaggerated scan 

speed. During the scan, the phase of oscillations is another important parameter to 

check continuously, since its value reflect in what interaction regime the scanning is 

going through, that is attractive or repulsive. Standing in a halfway-regime, meaning a 

phase around 90° (so called instable phase), could lead to artifacts which compromise 

the clearness of the image. Measurement done in this work has been taken in either 

attractive or repulsive regime, depending on the better quality result. 

     Once the AFM measurements have been done, a series of corrections have been 

applied to the maps in order to remove distortions and artifacts originated from several 

causes. Main artifacts that may occur are divided in three types
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- Tip effects, meaning the various artifacts that can occur due to the interaction 

of the tip with the sample;  

- Scanner artifacts, effects due to the peculiarities of the piezoelectric scanner; 

- Other artifacts; 

 

     Tip effects include the general tip-sample convolution, or a contaminated tip which 

introduces strange shapes into the image, and the case of a blunt tip which reduce image 

quality, as was shown in Section 3.2.3. Among scanner artifacts the piezo-creep and 

the edge overshoot must be included, the first described in Section 3.2.2 and the second 

occurring when the scanner moves further than it should vertically, with the result of 

an exaggerated sharpness of the image features 73. Other artifacts include sample 

thermal drift movement which cause distortions and artifacts (see Figure 3.12 and 3.13) 

due to problems with the feedback. In the following part of this section, the main 

methods that have been used in order to get the best quality morphological images for 

ZnS, that will be shown in Chapter 4, are described in detail. 

     AFM measurements lead usually to not leveled data. This is due to a non-perfectly 

flat sample surface or to a sample which has been assembled with an inclination. A 

very inclined image occupies a great portion of the z-axis, with the result of a small 

contrast for the smaller details in the map. The choice of levelling method is based on 

the AFM configuration. For systems with tubular scanner moving in all three axes a 

plane leveling must be performed 74. In the image processing made for ZnS, a series of 

tools from the software Gwyddion have been used. Plane leveling is typically the first 

function applied to raw AFM data. With this tool the plane is computed from all the 

image points and is subtracted from the data 74. The matrix of values associated with 

the map obtained has a very lower portion of values occupying the z-axis, which allow 

to detect the smallest details, increasing the image contrast. An example of the filtering 

process which has been applied to ZnS_35 is shown in Figure 3.14 and Figure 3.15. 

     A line averaging by matching height median filter has been applied to all the 

measurements presented in this work. Micro-shifts in parts of the probe-head or micro-

particles captured by the tip-apex could lead to fluctuations in the tip-sample distance 

during a scan, resulting in a step-effect in the lines parallel to the scan direction. This 

filter shifts the lines so that the differences of medians (between vertical neighbor 

pixels) becomes zero, preserving better large features 74. Another very common 

scanning error is the local fault of the closed loop. As a result, scars or stripes are parts 

of the corrupted image, looking similar to line defects usually parallel to the scan 

direction. A filter that removes scars filter has been applied to all measurements, which 

finds and removes scars using neighborhood lines to fill in the gaps 74. An example of 

line averaging application is shown in Figure 3.14 and Figure 3.15. 

      Moreover, one of the most important error sources in AFM measurements is the tip 

convolution artefact, which is shown in Figure 3.13. Since the AFM tip is never a delta-

like function, meaning ideal, is often observed a certain degree of image distortion due 

to this effect and usually AFM tips are also imaged on the surface scan 74. The AFM 

image is always a convolution between the tip geometry and that of the sample surface 

structure. If the precise form of the tip is known, then an AFM image can be partially 

reconstructed by a numerical deconvolution algorithm which uses an image of the tip 

obtained scanning structures with a known topography.
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(a)                                                                 (b) 

Figure 3.12: An example of thermal drift effect on ZnS_95: (a) An image obtained 

without with correct parameters after waiting the system to stabilize; (b) Another image 

of the same topography where the thermal drift effect is present. 

 

 

 

 
Figure 3.13: Tip convolution effect example images: various AFM probes are viewed 

as artifacts on the images due to the multiple contact points of a “bad” tip with the 

sample which produces a repetition of topographic features 74. 
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                                       (a)                                             (c) 

        

                                       (b)                                             (d) 

Figure 3.14: Image processing, application of various filters on ZnO_96: (a) original 

map; (b) plane level applied; (c) 2nd order polynomial background subtraction applied; 

(d) line averaging applied. 

 

        

                                       (a)                                             (c) 

        

                                       (b)                                             (d) 

Figure 3.15: Image processing, application of various filters on ZnS_36: (a) original 

map; (b) plane level applied; (c) 2nd order polynomial background subtraction applied; 

(d) line averaging applied.
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3.2.5   Image analysis 

     Once the samples have been scanned providing a number of topography maps, the 

next step of the work, the image analysis, has been done. The analysis done in this 

thesis consists in large part in measurement of the surface parameters associated with 

the morphology of the ZnS, meaning surface roughness, mean grains number and size. 

Values have been calculated with different methods: firstly, a general statistical 

evaluation of the main parameters (roughness, mean grains number and size) has been 

made using the software Gwyddion 2.40, and then the same parameters have been 

calculated from the theoretical approach described in detail in the following section 

using the computation software OriginPro 8.5. Dips measurement and the I-V 

characteristic are separated parts of the analysis, described in detail in the following 

section. 

     AFM data are usually represented as a two-dimensional data matrix of size NxM, 

where N and M are the number of rows and columns of the data field, respectively 74. 

Assuming that is possible to describe the surface height at a given point (x,y) by a 

random function ξ(x,y) that has given statistical properties, numerical characteristics of 

each row or column can be evaluated as functions of (x,y). In this way, an average value 

with its error is directly calculated by the software 74. As a result, a statistical parameter 

has been evaluated: the Root Mean Square Roughness (RRMS), which is the standard 

deviation of the height distribution, defined as follows 74: 

 

 

 

where zi is the value of the i-th point and 𝑧̅ is the mean value over the evaluation length 

and N is the number of pixels on a row/column. Moreover, extrapolating the 

distribution of RRMS is possible to calculate the standard deviation by rows or columns, 

that is averaging all values over the whole map, to obtain the average roughness R* that 

avoids noise effects in the scanning line. However, since these calculations belong to 

the first-order statistical quantities describing only the statistical properties of the 

individual points, for a complete morphological description of the samples a higher 

order function has been considered. This function is the Height-Height Correlation 

Function (HHCF), which is provided by Gwyddion software and it is useful to obtain 

the surface parameters. HHCF is defined as follows 74: 

 

 

 

 

 

 

 

where N and M are the number of rows and columns of the data field, z is the height 

associated at every point of the matrix and m is related to the sampling interval ∆𝑥 (i.e. 

the distance between two adjacent points) of the AFM measurement, as in Eq. (3.13), in 
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which r is the lateral separation of two surface heights 75. For AFM measurements, the 

one-dimensional HHCF is evaluated, based only on profiles along the fast scanning 

axis, assuming the surface to be self-affine. This results in a simpler form for the HHCF 

that is an approximation consisting of an exponential function, which has been used to 

fit the HHCF data extrapolated by Gwyddion. The general characteristics of a self-

affine surface can be described by the following model.  

     For a surface profile h(x) with 𝑟 ≪ 𝜉 it follows the relation 75: 

 

 

 

where the left side term represents the surface roughness, α is the roughness exponent 

(the Hurst exponent) and m denotes the local slope of the surface profile. Remaining in 

the one-dimensional case, the following equation also holds 75: 

 

 

 

that can be rearranged to obtain: 

 

 

 

which compared to Eq. (3.14), yields to the following relation: 

 

 

 

     A surface profile for which Eq. (3.17) holds is said to be self-affine 75. In this case 

α represents the local roughness of the self-affine surface, where larger values of α ( 

𝛼 ≈ 1 ) correspond to a greater roughness, while smaller values ( 𝛼 ≈ 0 ) correspond to 

a lower roughness 75. An exemplificative illustration of surfaces with different α is 

shown in Figure 3.16. 

     For a self-affine surface profile, for which Eq. (3.17) holds, the HHCF data can be 

fitted by the exponential function given by the following equation: 

 

 

 

 

 

where σ denotes the root mean square deviation of the heights, meaning the HHCF 

evaluated surface roughness RHHCF and ξ denotes the autocorrelation length (or lateral 

correlation length) 74. The lateral correlation length ξ is defined as the maximum lateral 

separation that two points of the surface can have to be considered correlated. 

 

 

[ℎ(𝑥 + 𝑟) − ℎ(𝑥)] ~ (𝑚𝑟)𝛼 (3.14) 

[ℎ(𝜀𝑥 + 𝜀𝑟) − ℎ(𝜀𝑥)] ~ (𝜀𝑚𝑟)𝛼 (3.15) 

[𝜀−𝛼ℎ(𝜀𝑥 + 𝜀𝑟) − 𝜀−𝛼ℎ(𝜀𝑥)] ~ (𝑚𝑟)𝛼 (3.16) 

[ℎ(𝑥)] ~ 𝜀−𝛼ℎ(𝜀𝑥) (3.17) 
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Figure 3.16: Three surface profiles showing different values for the Hurst exponent. 

From the profiles is visible that the larger is the value of α the smoother is the associated 

morphology, while a near zero value of α means a very rough surface profile 76. 

 

     For the ZnS films, 2µm x 2µm maps have been acquired to perform the statistical 

analysis described above. Values of surface roughness evaluated from HHCF analysis 

(RHHCF) have been compared with root mean square roughness (RRMS) provided by 

Gwyddion and with the rows/columns statistic average roughness (R*). The results and 

their comparisons will be shown and discussed in Chapter 4.  

     Other important parameters, such as the mean grain density and average equivalent 

disc radius of the grains, have been extrapolated from the image segmentation tool 

developed by the software Gwyddion. Image segmentation method includes two stages 

of the grain analysis 74. 

At first, a grain location is performed placing a virtual water drop at each point of the 

inverted surface. In this way the local minima of the surface are filled. After repeating 

the process several times, the positions of the grains for segmentation in the next step 

are identified by the larger lakes that have been formed. Secondly, the segmentation 

process is applied. This involves the marking of grains that have been found in the first 

step with different numbers. As the virtual water drops continue to be placed on the 

inverted surface filling the local minima, the possible results are 74: 

 

1. The drop fills the lake that has been previously marked as a grain. In this case 

the drop is marked as a part of the same grain.  

2. The drop fills a place without the presence of grains. In this case, if in the 

nearest neighborhood another grain is present, the drop is marked as a part of 



3. Materials and Methods  59 

 

the same grain. However, if no grains are present close to the drop, it is not 

marked at all. Moreover, in the case of more than one grain lying in the nearest 

neighborhood of the drop, it is marked as a grain boundary.  

3. The drop fills a place marked as grain boundary. In this case the drop also is 

marked as grain boundary.  

     By default, the segmentation algorithm marks valleys, therefore to mark upward 

grains the height has been inverted in the process. Before the evaluation of the main 

surface parameters (grain positions, sizes and number) by the segmentation method, a 

two-pixels threshold filter has been applied on each map in order to remove grains one-

pixel wide under the assumption that they have been formed in the local minima 

originated by noise. With the application of this filter it is possible to evaluate correctly 

the grain number for each map without the contribution of false one-pixel grains 

incorrectly identified, which otherwise would have overestimated the total grain 

number and underestimated the mean grain size. Segmentation method involves the 

choice of several parameters, meaning that it is fundamental to set the optimal values 

of these parameters in order to get a mask perfectly matching with the grains 

boundaries. Incorrect grain segmentation could occur during the process (e.g. an 

individual grain can be split in several ones, grains could merge in a single one, one-

pixel grains) and lead to over/under estimation of grain number and size. 

     The preprocessing segmentation has the following parameters, which vary in the 

range 0 – 100 %, except Gaussian smoothing that varies between 0 - 20 74: 

 

- Gaussian smoothing: a Gaussian blur filter is applied to the data to reduce image 

noise and reduce detail, where applying a zero value means no smoothing. 

- Add gradient: variations of the local gradient of the data originate grain 

boundaries in the regions associated with a high local slope. 

- Add curvature: variations of the local gradient of the data originate grain 

boundaries in the regions locally concave. 

- Barrier level: applies a height level above which pixels are not assigned to any 

grain. 

- Prefill level: applies a height level up to which the surface is prefilled. Details 

at the bottom are removed. 

- Prefill from minima: acts as the prefill level but the surface is prefilled from the 

local minima. Details at the bottom are removed. 

 

     Figure 3.17 shows exemplificative images of the image segmentation process, in 

which the segmentation parameters have been varied to show the different results. 

Grain results have been obtained using the grain-statistics Gwyddion tool which 

calculates the total number of marked grains, their total projected area, total length of 

grain boundaries and the mean area and equivalent disc radius of one single grain. The 

results of these calculations will be shown in Chapter 4.
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                                       (a)                                             (b) 

 

   
                                       (c)                                             (d) 

 

   
                                       (e)                                             (f) 

 

   
                                       (g)                                             (h) 

 

Figure 3.17: Exemplificative application of the segmentation parameters for a ZnS_53 

map, where the blue mask marks the grains: (a) Original AFM image; (b) The same 

image with a correct choice of parameters; (c) A lower Gaussian smoothing; (d)A 

higher Gaussian smoothing; (e) A too low barrier level; (f) A too high barrier level; (g) 

A too low prefill from minima; (h) A too high prefill from minima.
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3.2.6   Dips analysis 

     For a complete morphological characterization of the ZnS a dips analysis has been 

carried out in order to investigate the dips-associated parameters of the samples like 

mean dips density, mean dips size and area, in relation to either the sputtering 

deposition power or the surface parameters like roughness, lateral correlation length, 

exponential factor and mean grain size. Results with dips distribution for ZnS samples 

are reported in Chapter 4.  

     The technique, which has been applied to four 20µm × 20µm maps per sample in 

order to have a larger statistical confidence for the films, involves the following main 

steps:  

1. Calculation of the mean plane height value zplane; 

2. Marking grains with height threshold; 

3. Map processing; 

4. Dips parameters calculation; 

 

     In the first step the mean value of the plane has been calculated by extracting five 

linear profiles for each map with the software Gwyddion to get a series of height 

distribution for the sample, as shown in Figure 3.18. Then the average height value of 

the plane zplane has been calculated.   

     The second step consists in applying a height threshold to the AFM processed image 

in order to identify the grains of the map with a negative height respect to the mean 

value of the plane zplane. To do this a height threshold tool from the software Gwyddion 

has been used. The algorithm marks with a mask each point of the map which have a 

height lower than the set value zsegm. The choice of this parameter has been done for 

each map starting from observational considerations of the three-dimensional AFM 

image more than a theoretical approach. 

 

 

Figure 3.18: Step 1: extraction of five linear profiles from a ZnS_60 map to calculate 

the mean height value of the plane zplane
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(a) 

   

                      (b)                                                                  (c)                                    

Figure 3.19: Step 2: ZnS_60 dips analysis example of application. (a) Three-

dimensional profile showing the presence of dips; (b) Original AFM processed map; 

(c) Marking with a height threshold application. 

     The value of this parameter is of primary importance for the dips distributions that 

have been calculated, but, as it will be shown in Chapter 4, the choice of zsegm has been 

done in such a way to remain in the range of lowest zsegm dependence of the dips density 

but at the same time to get the better marking matching with the dips. The values of 

zsegm that will be reported in Chapter 4 are the result of the very best choice for each 

processed map in comparison with the original. Each point on the surface that has been 

defined as dip in this analysis have a height negative value larger than zsegm. An 

exemplificative visual approach of dips and height threshold algorithm application is 

shown in Figure 3.19. 

     At this point, as third step, the height scale of each map has been scaled of - zplane to 

have the plane associated with 0 nm and the dips with a negative z.  Then the map color 

range has been set between – zsegm and 0 nm to get in the final image the plane 

associated with white and everything with height lower than zsegm saturated with dark. 

An exemplificative view of the process is shown in Figure 3.20. With this process the 

final image obtained represents the mean plane of the sample surface with dips clearly 

visible also without the application of a mask. In fact, each point with height below the
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                                                      (a) 

 

                                                      (b) 

Figure 3.20: Step 3: (a) ZnS_60 map with height threshold; (b) Height scaling of – zplane 

with color range set between -zsegm and 0 nm to have the plane associated with white 

and dips saturated with dark. 

set value zsegm in this analysis has been defined as a dip for the map, as a result each 

point in the final image saturated with dark represents a dip, which has been marked to 

get the dips distribution. 

     In the fourth and last step the dips density, the mean dip size and area have been 

calculated with the statistical grains analysis tool provided by Gwyddion, further 

calculations have been done with OriginPro. All the results, displayed with the sample 

images, are reported in Chapter 4.
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3.2.7   Sheet resistance measurement 

     An electrostatic characterization of ZnS has been done in two parts, in order to get 

a more complete description of the samples. At first, sheet resistance has been measured 

with a four-contacts method, then several maps of surface contact potential have been 

obtained using Electrostatic Force Microscopy (EFM) and Kelvin Probe Force 

Microscopy (KPFM) techniques. KPFM maps also have been used to obtain an 

evaluation of the work function difference between ZnS and Al. All the experimental 

results of these analyses are reported in Chapter 4. 

     The sheet resistance is an extensive property of conductors associated to thin films 

that depends only upon the resistivity and the thickness of the film 77. For this reason, 

it is used in characterization of thin film deposition on a substrate, as is the case of the 

ZnS samples. The definition of the sheet resistance (Rsheet) is given by the following 

equation 78: 

 

where R is the electrical bulk resistance, ρ the resistivity, t, l and w the sheet thickness, 

length and width, respectively. Rsheet has been measured with a four-contacts method 

to obtain an accurate measurement of the real value, avoiding the contact resistance 

between the metal of the electrode and the semiconductor (ZnS). The four contacts 

method or four-point probes method, is useful to measure the sheet resistance of thin 

layers grown by sputtering 79. The four-point probes has proven to be a tool that  makes 

more accurate measurements than a common two-terminal method 80. A two-terminal 

measurement always approximates in excess the real resistance value since it includes 

the resistance of either the wires or the contacts 80. The four contact method of 

measurement is often used to measure sheet resistance of semiconductor thin film 

because it neglects the contact resistance that forms in a metal-semiconductor junction, 

which is incorporated in the resistance of the cables 80. 

     The measurement of Rsheet has been done for ZnS_36 which, as it will be shown in 

Chapter 4, is the sample with the best morphological characterization, meaning the 

minor dips density. In order to measure Rsheet with a four contacts method, four 

aluminium thin layers have been deposited on the ZnS_36 surface. This has been done 

applying an Al foil mask at the borders of the sample, with three Au wires placed to 

separate the four channels. Then, 50 mg of Al has been deposited by thermal 

evaporation on the ZnS_36 sample, leading to a 125 nm Al-layer, at a vacuum pressure 

of 2x10-2 Torr. Figure 3.21 shows the Al mask and the Al deposited layers. 

     The measurement of Rsheet has been done by applying the four electrodes on the four 

Al layers, leading current to flow in two terminals and voltage to measure between the 

other two avoiding the contact resistance.

 

𝑅 =  
𝜌

𝑡

𝑙

𝑊
= 𝑅𝑠ℎ𝑒𝑒𝑡

𝑙

𝑊
 

 

 

 

(3.19) 
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                             (a)                                                       (b) 

 

(c) 

Figure 3.21: Preparation of the ZnS_36 sample for the 4-points probe method: (a) 

Thermal evaporation of Al on ZnS_36; (b) Macroscopic view of the mask; (c) Mask 

zoom detail; The three Au wires are placed to separate the Al-layers that will be 

deposited and an Al foil has been put on the borders.
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3.2.8   EFM – KPFM characterization 

     In the last part of ZnS characterization, Electrostatic Force Microscopy (EFM) and 

Kelvin Probe Force Microscopy (KPFM) have been used in order to obtain contact 

potential maps and a contact potential difference measurement between the tip and the 

sample. Both EFM and KPFM provide contact potential maps but where EFM directly 

measures electrostatic force, KPFM uses a compensation technique to allow a more 

accurate quantitative determination of the local surface potential 81. As a result, EFM 

is more sensitive to topographic artifacts than KPFM. A schematic view of the main 

principle by which an EFM works is shown in Figure 3.22. 

     EFM is a dynamic mode non-contact atomic force microscopy used to probe the 

electrostatic force on a surface by applying a bias voltage between a conductive 

cantilever tip and the sample 58. Then a capacitor (C) is formed between the two and 

the z-axis component of the electrostatic force between the tip and the surface can be 

defined as follows 82: 

𝐹𝑒𝑙 =  
1

2

𝜕𝐶

𝜕𝑧
∆𝑉2 

 

(3.20) 

     This force is always attractive because the derivative is negative. The electrostatic 

force can thus be probed by changing in the voltage: in order to maintain the feedback, 

the applied voltage on the tip is adjusted such that a constant amplitude is maintained 
82. 

 

 

 

Figure 3.22: Schematic view of the main path followed by the cantilever due to the 

electrostatic force originated from locally charged domains on the sample surface 58.
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     Another EFM mode is the constant height mode, where the deflection (or resonance 

frequency change) of the cantilever, proportional to the electrostatic force, can be 

measured using the standard optical system 81. However, to map the surface contact 

potential, it is crucial to keep the tip at constant height to remove the effect of surface 

fluctuation. Therefore, first a surface topography is acquired in tapping mode, then the 

tip is lifted up and retrace the surface profile maintaining a constant tip-surface 

distance. In this way an EFM can be used to distinguish conductive and insulating 

regions in a sample 81. 

     KPFM is also a dynamic mode non-contact atomic force microscopy. With KPFM 

it is possible to measure the work function of a surface at atomic scales. The work 

function map obtained by a KPFM scan provides information about the composition 

and electronic state of the local structures on a sample surface. KPFM is a scanning 

probe method where the cantilever is a reference electrode which forms a capacitor 

with the surface 81. Contrarily to other dynamic modes of operation, the cantilever is 

not driven at its mechanical resonance frequency, but an alternating current (AC) 

voltage is applied at this frequency. By applying a direct current (DC) potential 

difference between the tip and the surface, the sum of the voltages will cause the 

cantilever to oscillate. This oscillation is detected using the standard optical system. 

The feedback then changes the DC tip voltage until the frequency associated with the 

AC component of the voltage vanishes. The DC voltage signal being equal to the 

contact potential of the surface, i.e. the work function difference between the tip and 

the sample, is then stored to obtain a work function distribution image of the sample 

surface 81. 

     At first, a series of maps have been obtained from a test sample. This consists of 

two comb shaped Au electrodes on a Si substrate. Each tooth of one electrode lies 

between teeth of the other, electrically connected to the metal plate sample holder, 

resulting in one series of electrodes connected to a voltage of 5 V and the other 

connected to ground. The contact potential difference between two consecutive Au 

teeth has been measured resulting about 4.9 V. This value is lower than the potential 

difference applied because the two electrodes are not completely isolated, meaning that 

a voltage drop exists due to the resistance between electrode and potential source. 

Images obtained from the test sample measurement have been reported in Figure 3.23. 

For each measurement, a first morphological scan has been done using standard non-

contact mode to set the lift height from surface, obtaining height and phase profile of 

the sample. Then, a second scan with a conductive tip has been made to obtain a surface 

contact potential map with an applied potential difference of 5 V between the 

electrodes.  

     Once the test sample maps have been obtained, measurements on the ZnS_36 

sample have been done. For the ZnS samples, contacts have been made using silver 

paste applied on the borders. The results for the ZnS films are reported and discussed 

in Chapter 4.
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                       (a)                                                               (b)            

                 

                                                              (c) 

 

                                                             (d) 

Figure 3.23: EFM analysis on the test sample. (a) Height topography showing the Au 

electrodes with residuals of the photolithography fabrication process; (b) Phase 

topography; (c) Contact potential EFM map. The lighter structures are the Au 

electrodes connected to the 5 V voltage, while the darker regions are those connected 

to the ground; (d) Three-dimensional contact potential profile.
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Chapter 4 

Experimental Results 

 
     The morphological AFM images resulting for the ZnS and ZnO thin films with all 

the parameters mentioned in Chapter 3 are reported in Section 4.1. The presence and 

density of dips are discussed in Section 4.2 with graphs showing the mean associated 

parameters as a function of the sputtering deposition power (SDP). Surface parameters 

like roughness RHHCF, lateral correlation length ξ and roughness exponent α have been 

reported in Section 4.3, in association with the HHCF graphs for each sample. Grains 

analysis results and parameters, that is the equivalent disc radius (EDR) and the grain 

number (GN), have also been reported in Section 4.3. Furthermore, a more complete 

characterization is provided by comparisons between ZnS and ZnO structural and grain 

parameter results that are discussed in Section 4.4. EFM and KPFM contact potential 

maps have been reported in Section 4.5, where also the I-V measurement results of 

sheet resistance for ZnS are discussed.  

 

4.1    Morphological characterization 

     In this section the more representative AFM height topography images for the ZnS 

and ZnO samples are reported, with a brief description of the main AFM parameters 

used to get the better surface clearness for each sample. Different modes of operation 

have been used for both AFM NT-MDT and AFM Park, either in attractive or in 

repulsive interaction regime. Experimental results for parameters characterizing the 

surface structural and grain properties will be reported in Section 4.3. In the following 

subsections, the main features of the ZnS and ZnO films morphology are reported.
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4.1.1   ZnS morphology 

     From the AFM images shown in Figure 4.1 and 4.2, is possible to visualize the 

surface structure and determine the contribution of the sputtering deposition power 

(SDP) to the main structural properties of the ZnS films. In all cases the ZnS samples 

cover the substrate in a non-uniform manner, with the presence of dips randomly 

distributed. From the images depicted in Figure 4.1 and 4.2, it results a dependence on 

the SDP of the morphology of the ZnS films, but in a way not yet well defined. Indeed, 

considering the sample with the lowest SDP (ZnS_35), it results a surface structure 

very similar to that of the samples with the highest SDP (ZnS_60 and ZnS_53), 

meaning that the grain size is about the same. However, the intermediate SDP sample 

(ZnS_36) has a totally different morphology, with a large number of smaller grains and 

a very low presence of dips. This proves a non-linear dependence on the SDP of the 

ZnS films morphology.  

     Images of ZnS_35 (SDPZnS_35 = 50 W) depicted in Figure 4.1 (a), show a uniform 

morphology on large scale (in the order of µm) with the presence of dips. However, the 

surface structure results flat, as it is visible from the three-dimensional profile. For the 

ZnS_60 (SDPZnS_60 = 125 W), the situation is about the same, meaning the presence of 

uniformity and dips of similar size randomly distributed on the surface. Sample ZnS_53 

shows a different morphology from the previous two. The sample surface exhibits a 

discontinue structure in which the last grown epitaxial layer shows non-filled regions, 

as visible from Figure 4.2 (b). This sample is the one with the largest sputtering power 

(SDPZnS_53 = 150 W), leading to the conclusion that a very high SDP results in a 

discontinuous growth deposition, which yields to a non-uniformity of the surface plane. 

At last, the ZnS_36 sample (SDPZnS_36 = 75 W) is the one that exhibits the better surface 

morphology. The surface structure results the one with the lowest mean roughness and 

presence of dips, as visible from the three-dimensional profiles depicted in Figure 4.1 

(b). For these reasons, as it will be shown in the Section 4.5, ZnS_36 has been 

considered the best candidate for the EFM and KPFM characterization.  

     A further analysis has been performed on a second set of ZnS films (93, 94, 95 and 

97) to confirm the properties of samples with a sputtering power of 75 W, namely the 

absence of dips. Thus the further analyses have been performed on ZnS_36 and not on 

the whole set of 75 W samples. AFM images of the second set of ZnS thin films are 

reported in Figure 4.3. From the three-dimensional profiles is visible the peak-valley 

like structure of ZnS 93, 94 and 95. Sample ZnS_97 is the one showing the more 

uniform surface profile. From all AFM maps is visible that there is a near total absence 

of dips, as it is for ZnS_36. This lead to the conclusion that the surface morphology 

with the lowest presence of dips is the one obtained using a SDP of 75 W. In addition, 

the surface morphology evolves with different thicknesses, showing more complex 

structures. In the framework of photovoltaic applications, especially in thin film solar 

cells, it is important to manage with thin layers, meaning the lowest roughness and 

density of dips. For this reason, further analyses of these maps, which have proved the 

absence of dips, have not been performed. 
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(a) 

 

 

 

 

(b) 

Figure 4.1: Morphological maps of ZnS_35 (SDP = 50 W) (a), and ZnS_36 (SDP = 75 

W) (b), with 3-D profile and its detail. Image obtained using AFM Park. (Area 2µm × 

2µm; Resolution 1024 × 1024 px2)
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(a) 

 

 

 

 

(b) 

Figure 4.2: Morphological maps of ZnS_60 (SDP = 125 W) (a), and ZnS_53 (SDP = 

150 W) (b), with 3-D profile and its detail. Image obtained using AFM Park. (Area 

2µm × 2µm; Resolution 1024 × 1024 px2)
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                      (a)                                                                (b) 

 

  

             

                      (c)                                                                (d) 

Figure 4.3: Morphological maps of four different ZnS samples grown at a 75W with 3-

D profile: (a) ZnS_93; (b) ZnS_94; (c) ZnS_95; (d) ZnS_97; Images show a uniform 

grain distribution and a near total absence of dips. Images obtained using AFM NT-

MDT. (Area 2µm × 2µm; Resolution 256 × 256 px2)
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4.1.2   ZnO morphology 

     AFM measurements have been performed for another zinc compound, as mentioned 

in Chapter 3: the zinc oxide (ZnO). The characterization of the two ZnO samples, 

namely ZnO_96 and ZnO_97, has been done mainly as a reference, disregarding of 

their growth process, with the only motivation to compare morphological features and 

experimental results associated with the surface and grain analysis with the properties 

of the ZnS films, as it will be reported in Section 4.3. However, a brief description of 

the most evident surface features is reported below, with a comparison between the 

main surface features of ZnS. The AFM images obtained for the ZnO films are depicted 

in Figure 4.4.  

     The main structure of ZnO_96 is in general similar to that of ZnS_36, apart from 

the size of the grains. From the AFM images is possible to view the uniform 

morphology of ZnO_96, where the grains are homogeneously distributed on the surface 

This can be viewed from the three-dimensional detail in Figure 4.4 (a). Grains are very 

near-packed and the presence of dips is totally absent. This is visible from the 

morphology of the two samples, as it was for ZnS 93, 94, 95 and 96.  

     For ZnO_97 the surface structure is quite different, due to the presence of bigger 

grains with a triangular shape randomly distributed among the smallest ones. 

Uniformity for this sample exists only on very small scale, as it was the case of ZnS_93 

and ZnS_95, and the general surface structure is similar to the two ZnS samples.  

 

                               

      

                             (a)                                                                    (b) 

Figure 4.4: Morphological maps of samples ZnO_96 (a), and ZnO_97 (b), with 3-D 

profile and its detail. Images obtained using AFM Park. (Area 2µm × 2µm; Resolution 

512 × 512 px2)
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4.2    Presence and density of dips 

 

     One of the main parameters associated with the quality of the ZnS films is 

represented by the presence of dip defects, where the lower density of dips means the 

better choice for ZnS applications. The analysis presented in this section has been 

performed to characterize the ZnS films in dependence of the sputtering deposition 

power (SDP). The further electrostatic EFM and KPFM analyses, that will be reported 

in Section 4.5, have been performed on the sample that shows the lowest presence of 

dips. Results involving the density and the mean size of dips, calculated from the dip 

analysis described in Chapter 3, have been reported and discussed in this section. In 

this work, the motivations behind the existence of dips have not been investigated.  

 

4.2.1   Choice of zsegm 

     In Subsection 3.2.6, Chapter 3, it was described in detail the technique used in order 

to obtain the mean dip density for each ZnS sample. In this technique, a fundamental 

role was played by the height threshold value zsegm. The choices of zsegm performed for 

ZnS_35 and ZnS_53 are reported as vertical lines in the graphs depicted in Figure 4.5. 

From the graphs it is possible to view the dip number variation in function of zsegm. The 

careful choice of zsegm, as mentioned in Chapter 3, means that the value of height 

threshold marking during the analysis has been made outside the region with the highest 

slope, that is outside the region of highest zsegm dependence for the dip number. The 

choice of zsegm was done mainly on the better match between the dips and the marking 

mask. However, looking from the graphs depicted in Figure 4.5, a superior limit over 

which the choice of zsegm would have led to the possibility of an incorrect evaluation of 

the parameters has been established. In Table 4.1 is shown the dip number variation for 

two different regions of the plot, corresponding to different slopes of the function. The 

calculation of parameters associated with dips has been done in two steps: first, 

obtaining results from 20µm × 20µm maps with the technique described in Chapter 3, 

and then averaging the experimental results of four different maps for each sample to 

get more accurate values.

Table 4.1: Mean variations of the dip number corresponding to a zsegm change of ± 0.1 

nm in the regions of lowest and highest slope shown in Figure 4.5. 

ZnS sample  35 53 

Low-slope dip number variation ±120 ±25 

High-slope dip number variation ±440 ±240 
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(b) 

Figure 4.5: Plots of the total mean dip number calculated over four 20µm×20µm maps 

per sample in function of the zsegm chosen value shown in linear (left) and logarithmic 

(right) profile, for the analysis of ZnS_35 (a) and ZnS_53 (b). The vertical lines 

intercept the zsegm value of each map. From the graphs is possible to view the careful 

choice of zsegm done outside the region of highest slope. 

 

     The images after the dip analysis are shown in Figure 4.6 and 4.7. As described in 

Chapter 3, the value of zsegm represents the negative height value at which a point on 

the surface begins to be defined as a dip. Thus this distance is referred to the mean 

plane height value, namely zplane, which has been calculated for each map.
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Table 4.2: Mean zsegm for each sample. Values have been obtained by averaging over 

four maps per sample. 

ZnS sample 35 36 60 53 

�̅�𝒔𝒆𝒈𝒎(nm) 3.7 2.4 3.6 6.3 

 

     In Table 4.2 the mean zsegm values for each sample are reported. These results have 

been calculated by averaging the four values of zsegm associated to the four maps per 

sample. These values do not show the deepness of dips, but the average negative height 

at which a point on the surface starts to be considered a dip in the analysis. The results 

are not only in the same order of magnitude, but very close to each other, apart from 

ZnS_53, which is the sample showing the larger zsegm average value. 
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                                (a)                                                            (b) 

Figure 4.6: Dip distribution evaluation analysis: AFM morphological images (left) and 

final results of the four-step dip marking technique (right) for ZnS_35 (a) and ZnS_36 

(b). Images show the grains marked as “dips” and the relative choice of zsegm. In the 

right-side images the 0.0 nm height value represents the mean height value of the plane 

zplane after the z-shifting of the original maps. Note the near absent presence of dips for 

ZnS_36. Images obtained using AFM NT-MDT. (Area: 20µm × 20µm; Resolution: 

256 × 256 px2)
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                                 (a)                                                           (b) 

Figure 4.7: Dip distribution evaluation analysis: AFM morphological images (left) and 

final results of the four-step dip marking technique (right) for ZnS_60 (a) and ZnS_53 

(b). Images show the grains marked as “dips” and the relative choice of zsegm. In the 

right-side images the 0.0 nm height value represents the mean height value of the plane 

zplane after the z-shifting of the original maps. Images obtained using AFM NT-MDT. 

(Area: 20µm × 20µm; Resolution: 256 × 256 px2)
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4.2.2   Dip analysis results 

     After the dips are marked, the associated parameters have been calculated at first 

for each map and then averaging the results of four maps per sample. Results have been 

reported in the following graph depicted in Figure 4.8, in which the dependence on the 

SDP has been shown. From the AFM images depicted in Figure 4.6 and 4.7, the density 

distribution of dips for ZnS_35, which is very similar to the distribution of dips shown 

by ZnS_53, results large. The main differences in the analysis between the two samples 

is the value of zsegm chosen for each sample. The mean size of dips has been evaluated 

of about 100 nm, further analyses of the dip size and area have not been done because 

of the too low resolution achievable in the measurement. 
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Figure 4.8: Mean dip number per map and density as a function of the sputtering 

deposition power (SDP) for the ZnS samples.  

 

     From the results, the 50 W and the 150 W samples are those with the largest total 

number of dips and thus the larger dip density, as visible from Figure 4.8. The dip 

arrangement can be viewed both from the two and the three dimensional morphological 

profiles shown in Section 4.1, Figure 4.1 and 4.2. Another important consideration has 

to be made about ZnS_36, which shows a near-absent dip distribution. 

     Those results yield to the conclusion that a non-linear SDP dependence of the dip 

associated parameters exists. The main motivation it is shown from the graphs above, 

in which the 75 W sample (ZnS_36) exhibits the lowest values of the dip density. An 

analogous consideration may be done about the 50 W sample (ZnS_35): this is the 

sample with the lowest SDP, and exhibits a large dip density. The sample with the 

largest SDP (150 W), also exhibits a large dip density, which is very similar to ZnS_35. 

The experimental results show that ZnS thin films grown with a 75 W possess a 

morphology associated to a surface with a low presence of dips. As it will be shown in 

Section 4.3, the 75 W sample is the one with the highest number of grains, while ZnS 
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films with the largest dip density, that is the 50 W and 150 W samples, will result as 

the those with the lowest number of grains, leading to the conclusion of an inverse 

dependence between the two parameters.  

     The second set of ZnS films grown with a 75 W, namely ZnS 93, 94, 95, 97, has 

been checked in order to verify that at 75 W a minimum dip density is obtained. In fact, 

as mentioned in Section 4.1, these films exhibit a surface structure very similar to that 

of ZnS_36, which also has been grown with a 75 W. From the analysis of the AFM 

morphological maps of these film it results that the presence of dip on the surface is 

totally absent, thus confirming the conclusion that a 75 W provides for ZnS thin films 

the lowest dip density. From the images depicted in Figure 4.3 it is possible to view the 

absence of dips, while in the first ZnS set of samples dips were visible with black points 

randomly distributed on the surface.
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4.3    Structural and grain properties 

 

     Experimental results from the ZnS thin films structural and grain analyses have been 

reported in this section. For each sample, both the graphs and the parameters obtained 

from the analyses have been displayed in a single subsection, where a brief discussion 

about the values calculated for the structural and grain associated parameters has been 

also reported. Experimental results have been obtained in different ways. First, the 

surface roughness (RHHCF), the lateral correlation length (ξ) and the Hurst exponent (α) 

have been extracted from the self-affine fit of HHCF data. In addition, the average 

surface roughness R* has been calculated by averaging all values over the map. 

     Secondly, the image segmentation method has been applied on the AFM processed 

images with a correct choice of the segmentation parameters that also has been 

reported. From the segmentation, the grain number (GN) has been extracted for each 

sample. Moreover, the equivalent disc radius (EDR) distribution has been obtained to 

calculate the mean EDR (MDR) value associated to the grains of each sample. The 

results for both RHHCF and R* are shown and discussed in this section, where are also 

reported all the HHCF data graphs obtained from the analysis, in which the self-affine 

fitting function has been displayed. HHCF data have been extrapolated from the five 

best AFM height topography 1µm × 1µm maps and then fitted by the exponential 

function shown in Eq. (3.18), in the approximation for a self-affine surface. From the 

self-affine fit of the HHCF data, the statistical parameters that characterize the surface 

grain properties have been extracted for each sample, namely the surface roughness 

RHHCF, the lateral correlation length ξ and the Hurst exponent α. 

     Furthermore, the mean values of the parameters have been calculated by averaging 

the values of the five maps per sample. The image segmentation method described in 

Chapter 3 has been applied averaging values of five maps per sample. The choice of 

segmentation parameters has been also reported and discussed for one map per sample 

in this section. Furthermore, as for the ZnS, AFM maps of the ZnO films were also 

acquired. A direct comparison between the ZnS and the ZnO structural and grain 

properties will be done in Section 4.4.
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4.3.1   50 W - ZnS_35 

     Figure 4.9 shows the optimal agreement of the self-affine fit with the HHCF 

experimental data distribution in the graph. The resulting values for the parameters are 

reported in Table 4.3. The RHHCF value results to be within the R* error range. The 

roughness exponent α is comparable to the other samples, which means a lower 

roughness of the surface profile. Furthermore, the lateral correlation length ξ has almost 

the largest value among the ZnS samples, as it will be shown in Section 4.4. 
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Figure 4.9: HHCF experimental data (black dots) as a function of the distance between 

points on the surface in logarithmic scale for ZnS_35. HHCF has been fitted by the 

self-affine function (red line, see Eq. 3.18). Parameters extrapolated from the fit have 

been reported in Table 4.3.

 

Table 4.3: Mean values of parameters for ZnS_35. RHHCF, ξ and α evaluated from 

self-affine fitting of HHCF data. R* evaluated by averaging over all maps. 

Parameters Value 

RHHCF (nm) 1.675 ± 0.003 

ξ (nm) 33.7 ± 0.2 

α 0.748 ± 0.003 

R* (nm) 1.5 ± 0.6 
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     From the image segmentation depicted in Figure 4.11 (a) and (b), it is possible to 

view the grain arrangement on the surface of the sample. The results reported in Table 

4.5 show a EDR that is smaller than the lateral correlation length. This could mean that 

at a 50 W sputtering power a grain clustering occurs in the ZnS films. The grain clusters 

formed on the surface are also visible from the images shown in Figure 4.1 (a) (Section 

4.1), where can be viewed as bigger grains distributed among the smaller ones. The GN 

value results to be 1200, which is a high value compared to the other samples. The 

image segmentation shows a very packed structure of the grain boundaries, which lead 

to the elevated GN value calculated. From the results, the following conclusion can be 

drawn about the grain analysis of the 50 W ZnS film: the surface profile is smooth, 

apart from the presence of dips, with a structure composed by about 1200 grains with 

a mean size of 14.5 nm, alternated with few bigger grains that result from a grain 

clustering process, which is due to the large lateral correlation length value (larger than 

the EDR) of the sample. 
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Figure 4.10: Equivalent disc radius distribution of the grains with the application of the 

2 px2 filter (red) and without (blue) for ZnS_35. The MDR has been calculated by 

averaging the distribution without the contribution of grains with an area smaller than 

2 px2 (represented by the blue column on the left of the histogram), which would have 

led to an incorrect evaluation of the parameter.

Table 4.5: Grain number and equivalent disc radius results for ZnS_35. MDR has 

been calculated by the equivalent disc radius distribution shown in Figure 4.12. 

Parameters Value 

GN 1200 

MDR (nm) 14.5 ± 0.1 
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                                                             (a) 

 

                                                            (b) 

Figure 4.11: Image segmentation of the ZnS_35 1µm × 1µm map for the evaluation of 

the GN and EDR. (a) Height topography map acquired in non-contact mode; (b) 

Application of the segmentation mask on the map. The segmentation parameters are 

listed in Table 4.4. (Image obtained using AFM Park)

Table 4.4: Segmentation parameters values used for the grain analysis of the ZnS_35. 

The parameters description is reported in Section 3.2.5, Chapter 3. 

Parameters GS AG AC BL PL PFM 

Set Value 5.00 px 0.00 % 49.01 % 55.02 % 0.00 % 5.00 % 
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4.3.2   75 W - ZnS_36 

     The graph depicted in Figure 4.12 shows an optimal self-affine fit for the HHCF 

data of the sample. From the results shown in Table 4.6, the values of RHHCF and R* 

are very close to each other, with the statistical error for RHHCF extremely small. The 

lateral correlation length exhibits a low value compared to the other samples. The 

roughness exponent α results to be close to 1. However, from the calculated values it 

results a lower surface roughness for ZnS films grown at a 75 W respect to other 

samples. 
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Figure 4.12: HHCF experimental data (black dots) as a function of the lateral separation 

of surface heights in logarithmic scale for ZnS_36. HHCF has been fitted by the self-

affine function (red line, see Eq. 3.18). Parameters extrapolated from the fit have been 

reported in Table 4.6.

 

Table 4.6: Mean values of parameters for ZnS_36. RHHCF, ξ and α evaluated from 

self-affine fitting of HHCF data. R* evaluated by averaging over all maps. 

Parameters Value 

RHHCF (nm) 0.7879 ± 0.0002 

ξ (nm) 10.82 ± 0.07 

α 0.893 ± 0.006 

R* (nm) 0.78 ± 0.07 
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     The results reported in Table 4.8 show that the value of GN is the largest obtained 

among the ZnS samples. This value is visible from the images depicted in Figure 4.14 

(a) and (b), where is possible to view the arrangement of the grains for the sample. The 

EDR value results the lowest between the ZnS samples, which means that the smallest 

grains are formed by a 75 W sputtering power growth. Hence, the smallness of grains 

leads to the large value of GN calculated. Furthermore, the MDR value is higher than 

the lateral correlation length calculated. Therefore, no clustering processes exist for this 

sample. Considerations from the results are the following: at 75 W the ZnS film shows 

a very flat surface profile (with the absence of dips shown in Section 4.2), where the 

main structure is formed by tiny grains not clustered to each other, leading to a reduced 

roughness on the surface. 
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Figure 4.13: Equivalent disc radius distribution of the grains with the application of the 

2 px2 filter (red) and without (blue) for ZnS_36. The MDR has been calculated by 

averaging the distribution without the contribution of grains with an area smaller than 

2 px2 (represented by the blue column on the left of the histogram), which would have 

led to an incorrect evaluation of the parameter.

 

Table 4.8: Grain number and equivalent disc radius results for ZnS_36. MDR has 

been calculated by the equivalent disc radius distribution shown in Figure 4.15. 

Parameters Value 

GN 1630 

MDR (nm) 12.2 ± 0.1 
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                                                            (a) 

 

                                                            (b) 

Figure 4.14: Image segmentation of the ZnS_36 1µm × 1µm map for the evaluation of 

the GN and EDR. (a) Height topography map acquired in non-contact mode; (b) 

Application of the segmentation mask on the map. The segmentation parameters are 

listed in Table 4.7. (Image obtained using AFM Park)

Table 4.7: Segmentation parameters values used for the grain analysis of the ZnS_36. 

The parameters description is reported in Section 3.2.5, Chapter 3. 

Parameters GS AG AC BL PL PFM 

Set Value 1.89 px 0.00 % 3.85 % 90.12 % 0.00 % 3.69 % 
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4.3.3   125 W - ZnS_60 

     The self-affine fitting of the experimental data does not provide an optimal match, 

as it was for the ZnS 35 and 36 samples, as visible from the graph depicted in Figure 

4.15. In Table 4.9 are shown the experimental results calculated for the sample. RHHCF 

and R* show large values that are in agreement to each other. The lateral correlation 

length value is close to that of the ZnS_35 sample. The roughness exponent α results 

to be large.  
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Figure 4.15: Graph showing the HHCF experimental data (black dots) as a function of 

the lateral separation of surface heights in logarithmic scale for ZnS_60. HHCF has 

been fitted by the self-affine function (red line). Parameters extrapolated from the fit 

have been reported in Table 4.9. 

Table 4.9: Mean values of parameters for ZnS_60. RHHCF, ξ and α evaluated from 

self-affine fitting of HHCF data. R* evaluated by averaging over all maps. 

Parameters Value 

RHHCF (nm) 2.58 ± 0.01 

ξ (nm) 29.0 ± 0.8 

α 0.84 ± 0.01 

R* (nm) 2.5 ± 1.2 

 

     Images depicted in Figure 4.17 (a) and (b) show the grain arrangement on the 

surface of the ZnS_60 sample. As visible from the images, grain boundaries are 

spatially very separated from each other, with grains varying in size from small ones to
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 large clusters. The lateral correlation length results larger than the MDR. The GN is 

about the same of the 50 W sample (ZnS_35), that is a high number of grains is present 

on the surface. From the results, a dense grain structure is present on the sample, similar 

to that of ZnS_35. Both RHHCF and α result to have large values. 
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Figure 4.16: Equivalent disc radius distribution of the grains with the application of the 

2 px2 filter (red) and without (blue) for ZnS_60. The MDR has been calculated by 

averaging the distribution without the contribution of grains with an area smaller than 

2 px2 (represented by the blue column on the left of the histogram), which would have 

led to an incorrect evaluation of the parameter.

 

Table 4.11: Grain number and equivalent disc radius results for ZnS_60. MDR has 

been calculated by the equivalent disc radius distribution shown in Figure 4.18. 

Parameters Value 

GN 1200 

MDR (nm) 16.0 ± 0.2 
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                                                            (a) 

 

                                                            (b) 

Figure 4.17: Image segmentation of the ZnS_60 1µm × 1µm map for the evaluation of 

the GN and EDR. (a) Height topography map acquired in non-contact mode; (b) 

Application of the segmentation mask on the map. The segmentation parameters are 

listed in Table 4.10. (Image obtained using AFM Park)

Table 4.10: Segmentation parameters values used for the grain analysis of ZnS_60. 

The parameters description is reported in Section 3.2.5, Chapter 3. 

Parameters GS AG AC BL PL PFM 

Set Value 2.93 px 28.4 % 11.11 % 100.00 % 0.00 % 2.29 % 
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4.3.4   150 W - ZnS_53 

     The results reported in Table 4.12 show that the values of RHHCF and R* differ to 

each other more than the standard error. This is due to the non-optimal fit of the self-

affine function for the HHCF data, which is shown in Figure 4.18. The main reason for 

this is that the sample, as described in Section 4.1, possesses a non-uniform surface 

profile, with regions where the last epitaxial layer is totally absent. In addition, the 

sample shows the largest mean dip number and size, as found in Section 4.2, which 

contributes to the non-uniformity of the surface. 
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Figure 4.18: Graph showing the HHCF experimental data (black dots) as a function of 

the lateral separation of surface heights in logarithmic scale for ZnS_53. HHCF has 

been fitted by the self-affine function (red line). Parameters extrapolated from the fit 

have been reported in Table 4.12. 

Table 4.12: Mean values of parameters for ZnS_53. RHHCF, ξ and α evaluated from 

self-affine fitting of HHCF data. R* evaluated by averaging over all maps. 

Parameters Value 

RHHCF (nm) 3.44 ± 0.02 

ξ (nm) 34 ± 1 

α 0.83 ± 0.02 

R* (nm) 3.09 ± 0.02 

 

     From the image segmentation depicted in Figure 4.20, the grain arrangement results 

in a good match with the mask. From the experimental results reported in Table 4.14, 
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the GN value is shown to be the smallest over the ZnS samples. The MDR value is 

about the same of that of the 50 W sample (ZnS_35), and it is shown to be lower than 

the lateral correlation length. From the experimental results, the sample shows a low 

density of grains on the surface, which possesses a non-uniform structure. This non-

uniformity lead to a large surface roughness for the sample, also shown by the values 

of RHHCF and α reported in Table 4.12. 
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Figure 4.19: Equivalent disc radius distribution of the grains with the application of the 

2 px2 filter (red) and without (blue) for ZnS_53. The MDR has been calculated by 

averaging the distribution without the contribution of grains with an area smaller than 

2 px2 (represented by the blue column on the left of the histogram), which would have 

led to an incorrect evaluation of the parameter.

 

Table 4.14: Grain number and equivalent disc radius results for ZnS_53. MDR has 

been calculated by the equivalent disc radius distribution shown in Figure 4.21. 

Parameters Value 

GN 1110 

MDR (nm) 14.4 ± 0.2 
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                                                            (a) 

 

                                                            (b) 

Figure 4.20: Image segmentation of the ZnS_60 1µm × 1µm map for the evaluation of 

the GN and EDR. (a) Height topography map acquired in non-contact mode; (b) 

Application of the segmentation mask on the map. The segmentation parameters are 

listed in Table 4.13. (Image obtained using AFM Park

Table 4.13: Segmentation parameters values used for the grain analysis of ZnS_53. 

The parameters description is reported in Section 3.2.5, Chapter 3. 

Parameters GS AG AC BL PL PFM 

Set Value 5.00 px 0.00 % 49.01 % 55.02 % 0.00 % 3.70 % 
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4.3.5   Choice of segmentation parameters 

     The image segmentation method has been used in order to extract the grain 

properties as the GN and the EDR distribution for each sample. As described in Chapter 

3, a correct segmentation mask must be applied on each map, which means a correct 

choice of the segmentation parameters. This choice has been done to yield the better 

match between the applied mask and the grain arrangement for the samples. However, 

little changes of the segmentation parameters correspond to variations of the 

experimental results that can affect the analysis. To understand how large these 

variations are, the segmentation parameters of the maps have been modified with 

respect to the optimum choice and the resulting values of grain number (GN) and mean 

grain size (MGS) have been reported. The MGS value is a grain size parameter 

calculated by Gwyddion that approximates a grain to a square and measure its side, 

while the equivalent disc radius (EDR) is the radius of a disc that possesses the same 

grain projected area. Variations of GN and MGS have resulted about the same for 

different samples. An exemplificative view of segmentation parameter variations with 

the relative GN and MGS values measured for the ZnS_35 sample have been reported 

in the graphs of Figure 4.21. 

     The more sensitive segmentation parameters are the Gaussian smoothing (GS) and 

the prefill from minima (PFM), depicted respectively in Figure 4.21 (a) and (f). Little 

variations of these two parameters correspond to considerable changes in the final GN 

value. For this reason, the choice of GS and PFM have been the most important during 

the grain analysis. The barrier level (BL) shows also changes in the final result, but in 

a less crucial way respect to the GS and PFM. At last, the add curvature (AC), add 

gradient (AG) and prefill level (PL) parameter variations show the smallest change in 

the final GN value.  

     Basing on these considerations, it can be concluded that the grain analysis done 

using the image segmentation method is stable, since even small variations of the 

chosen segmentation parameters do not compromise significantly the final results.
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                                   (e)                                                             (f) 

Figure 4.21: GN (red triangles) and MGS (blue circles) variations for ZnS_35 

corresponding to changes in the segmentation parameters used: (a) Gaussian 

smoothing; (b) Add curvature; (c) Barrier level; (d) Add gradient; (e) Prefill level; (f) 

Prefill from minima; 
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4.3.6   Sputtering power dependence of the results 

     The experimental results from the structural analysis are reported in the graphs 

depicted in Figure 4.22. From the experimental results a non-linear dependence of the 

parameters on the sputtering deposition power (SDP) is shown. The SDP at which the 

films are grown affects in a crucial way the surface structure of the samples under 

investigation, but the main parameters do not vary with a linear proportionality with it. 

The graph in Figure 4.22 (a) shows the average roughness (R*) to increase with the 

SDP except from 50 W. Figure 4.22 (b) also shows a similar trend for the lateral 

correlation length (ξ) as a function of the SDP. The results of the roughness exponent 

α show an inverse plot respect to R*, where at 50 W corresponds the lowest value and 

at 75 W the largest among the samples, as visible from Figure 4.22 (c). At 75 W the 

MDR results to be the smallest among the samples, where the largest corresponds to 

125 W, as it can be seen in Figure 4.22 (d). It can be concluded that ZnS thin films 

grown at a 75 W possess the lowest surface roughness, with very small grains that tend 

not to form clusters. Higher SDP lead to a larger roughness and MDR that is correlated 

to the greater presence of dips.
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Figure 4.22: Graphs of the main experimental results from the structural and grain 

analyses of the ZnS as a function of SDP. The two colored regions of the graphs 

differentiate results of samples with the presence of dips (light blue) from those without 

the presence of dips (yellow). Parameters shown in the graphs: (a) Average surface 

roughness R*; (b) Lateral correlation length ξ; (c) Roughness exponent α; (d) Mean 

grain equivalent disc radius (MDR). 
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4.4   Comparison with ZnO  

 

     Experimental results for both ZnS and ZnO samples have been reported and 

discussed in this section in order to compare structural and grain properties of the ZnS 

thin films with those of another Zn compound: ZnO. In the first part of this section are 

reported the results from the analyses of the two samples ZnO 96 and 97. As for the 

ZnS films in Section 4.3, a brief discussion about the main results has been done for 

each sample. The analyses on the ZnO have been the same performed on the ZnS 

samples, meaning structural parameters extracted from self-affine fit of the HHCF data 

and grain properties calculated by using image segmentation of the AFM maps. The 

HHCF data have been extracted from five different 1µm × 1µm maps for each sample, 

and then averaged by rows to obtain the distributions from which the parameters have 

been evaluated. The grain parameters GN and MDR have been extracted by the image 

segmentation with the application of the 2 px2 threshold filter. Both the HHCF graphs 

with the self-affine fit and the EDR grain distribution histograms for the ZnO samples 

have been reported in this section. In the last part of this section the main experimental 

results for both the ZnS and ZnO samples have been reported and discussed in 

comparison. 

 

 

4.4.1   ZnO - Structural and grain analyses results  

     Experimental results of the roughness exponent α and average roughness R* from 

the structural analysis of the ZnO samples are reported in Table 4.15. Surface roughness 

RHHCF, lateral correlation length ξ, GN and MDR will be reported and discussed in 

comparison with those of the ZnS samples in Subsection 4.4.2. The image 

segmentation process is shown in Figure 4.23, with the segmentation parameters used 

reported in Table 4.16. The HHCF data and the EDR grain distributions are shown in 

Figure 4.24 and 4.25, respectively. 

 

Table 4.15: Mean values of the roughness exponent α, average roughness R* and 

ARsq of the self-affine fit for ZnO 96 and 97. 

Parameters ZnO_96 ZnO_97 

α 1.00 ± 0.05 1.00 ± 0.05 

R* (nm) 7.5 ± 0.8 11.1 ± 0.2 
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                           (a)                                                                 (b) 

   

                           (c)                                                                 (d) 

Figure 4.23: Image segmentation of the 1µm × 1µm maps for the evaluation of the GN 

and EDR. (a) Height topography of ZnO_96; (b) Segmentation of the ZnO_96 map; 

(c) Height topography of ZnO_97; (b) Segmentation of the ZnO_97 map. The 

segmentation parameters used are listed in Table 4.16. (Image obtained using AFM 

Park in non-contact mode)

 

Table 4.16: Segmentation parameters used for the ZnO samples.  

Parameters GS AG AC BL PL PFM 

ZnO_96 2.07 px 13.58 % 13.58 % 100.00 % 19.75 % 2.58 % 

ZnO_97 5.64 px 14.81 % 28.40 % 92.59 % 17.28 % 2.47 % 
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                                  (a)                                                                 (b) 

Figure 4.24: Experimental HHCF data (black dots) in function of the lateral separation 

of surface heights in logarithmic scale for: (a) ZnO_96 (ARsq = 0.8743); (b) ZnO_97 

(ARsq = 0.8706); HHCF data have been fitted by the self-affine function (red line). The 

parameters extracted from the self -affine fit have been reported in Table 4.15. 
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                                     (a)                                                                (b) 

Figure 4.25: Equivalent disc radius distribution of the grains with the application of the 

2 px2 filter (red) and without (blue) for ZnO_96 (a) and ZnO_97 (b). The MDR has 

been calculated by averaging the distribution without the contribution of grains with an 

area smaller than 2 px2 (represented by the blue column on the left of the histogram), 

which would have led to an incorrect evaluation of the parameter.
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4.4.2   Results comparison and discussion  

     The experimental results obtained both for the ZnS and the ZnO samples are 

reported in Table 4.17. The comparison between the two sets has been done for the four 

main parameters of the analysis: mean surface roughness RHHCF, mean lateral 

correlation length ξ, grain number (GN) and mean equivalent disc radius (MDR). 

Table 4.17: Experimental results of structural and grain parameters for both the ZnS 

and ZnO samples to do a comparison. 

Sample 

(SDP) 

ZnS_35 

(50 W) 

ZnS_36 

(75 W) 

ZnS_60 

(125 W) 

ZnS_53 

(150 W) 

ZnO_96 ZnO_97 

RHHCF (nm) 1.67 0.79 2.58 3.44 7.66 11.70 

ξ (nm) 33.7 10.8 29.0 34.0 23.9 32.3 

GN 1200 1630 1200 1110 780 380 

MDR (nm) 14.5 12.2 16.0 14.4 18.0 27.0 

 

     The mean surface roughness RHHCF of the ZnO thin films results much larger than 

that of the ZnS. This can be viewed from the three-dimensional profiles depicted in 

Figure 4.4 (a) and (b) (Section 4.1). The surface of the ZnO results very rough, due to 

the presence of tall clusters that are large in size. In fact, the MDR values for the ZnO 

samples are also the largest measured in the analysis. From these considerations, the 

surface of the ZnS films possesses a very low roughness compared to ZnO, with a 

maximum exhibited by the 150 W sample (ZnS_53), which is less than a half of those 

of the ZnO. For the flattest of the ZnS samples, which is the 75 W (ZnS_36), the surface 

mean roughness RHHCF is a tenth of that of ZnO_96 and a sixteenth of that of ZnO_97, 

meaning a surface that is ten and sixteen times smoother, respectively. The lateral 

correlation length for ZnO results about of the same order of the ZnS (apart from 

ZnS_36). However, the MDR is considerably larger for the ZnO samples. This means 

that grain clusters will tend to form mostly on the ZnS surface than the ZnO, since the 

ZnO samples show the lower ξ to MDR ratio. This can also be viewed from the images 

reported in Figure 4.1 and 4.2 (Section 4.1), where the presence of grain clusters is 

visible. Nevertheless, this is not true for the 75 W sample (ZnS_36), being the one with 

the lowest MDR and ξ. From the grain analysis results, a small value of the GN is 

shown by the ZnO films. In particular, ZnO_97 shows a GN that is one quarter of that 

of ZnS_36. From this values it can be deduced that the ZnS films exhibit a very higher 

amount of grains on the surface. From the values reported in Table 4.17 it results an 

inverse proportionality between the GN and the surface roughness, which means a 

sample with a large GN possesses a low mean roughness, and vice versa. From the 

results, it can be concluded that the ZnS thin film grown at a 75 W shows the flatter 

surface profile, where the presence of grain clusters (and dips) is near absent.
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4.5   Electrostatic characterization results 

 

     In this section the experimental results from the electrostatic characterization of the 

75 W sample (ZnS_36) are reported. The motivation behind the choice of this sample 

comes from the morphological analyses: it has been shown from the dip and grain 

analyses that ZnS thin films grown at a 75 W possess the flattest surface profile, 

meaning the smallest roughness and presence of dips. Starting from these results, the 

75 W sample has been chosen to be investigated by the EFM and KPFM techniques 

because it exhibits a uniform surface profile. The EFM measurements have been 

performed using AFM Park, in order to get the contact potential (CP) maps that 

characterize the electrostatic structure of the surface. In addition, the KPFM analysis 

has been used to obtain an evaluation of the contact potential difference (CPD) between 

the ZnS and the Al layer deposited for the sheet resistance measurement. At last, by 

using a four-probe points method, the sheet resistance of the sample has been evaluated 

yielding a result that will probe to be an inferior limit and not a final value. In 

Subsection 4.5.1, the main EFM and KPFM maps have been reported and discussed. 

The CPD results between ZnS and Al have been reported in Subsection 4.5.2. At last, 

the sheet resistance experimental result has been discussed in Subsection 4.5.3.  

 

 

4.5.1   EFM surface topography 

     The contact potential maps reported in this subsection have been obtained by using 

non-contact EFM Park in constant height mode. A first scan has been performed in 

order to obtain a morphological map of the sample surface. Then, a second scan with a 

conductive tip has been done to get a contact potential topography. Four maps 500nm 

× 500nm of sample ZnS_36 have been obtained during the analysis, using a resolution 

of 256 × 256 px2. The more exemplificative EFM contact potential and height 

topographies maps have been reported in Figure 4.26. 

     A match between the electrostatic and the height topographies of the surface can be 

observed in the images. From the AFM result, it can be deduced that the local charge 

density is distributed depending on the surface morphology. This means that the local 

slope of the surface profile affects directly the charge accumulation. From the images 

depicted in Figure 4.26 (a), it is visible that the contact potential is larger in regions 

associated to valleys and lower in regions associated to peaks. This means that charge 

density tends to accumulate in concave spaces. This is also partially visible in the 

second map shown in Figure 4.26 (b). Therefore, the contact potential profile for the 

ZnS thin film varies inversely with the height topography, where height maxima 

correspond to potential minima and vice versa. 
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                                                               (a) 

   

                                                               (b) 

   

                                                               (c) 

Figure 4.26: EFM surface characterization of the 75 W sample ZnS_36, where the 

height topography map (left) and contact potential map (right) are displayed: (a) Map 

1 (Amplitude = 27 nm; Scan rate = 0.2 Hz); (b) Map 2 (Amplitude = 24.7 nm; Scan 

rate = 0.2 Hz); (c) Map 3 (Amplitude = 29.6 nm; Scan rate = 0.25 Hz); 

 

 

 



4. Experimental Results                                                                   105 

 

4.5.2   Sheet resistance result 

     The four-probe points measurement performed on the 75 W sample confirm that the 

ZnS sample acts as an insulator. From the measurement, a precise value of the sheet 

resistance has not been obtained. The motivation of this lies in a too high resistance 

that went beyond the instrument sensibility. However, an inferior limit of 7 GΩ has 

been reported for the 75 W ZnS film. This result proves the ZnS film effectively as an 

insulator.  

 

4.5.3   ZnS - Al Contact potential difference  

     The 75 W sample has been investigated using KPFM technique in order to measure 

the CPD between the Al and ZnS layers. The KPFM potential map resulting from the 

analysis is depicted in Figure 4.27, where the dark region on the left corresponds to the 

Al layer, while the light region on the right to the ZnS layer. The image has been cut to 

point out the potential step between the two deposited layers.  

     The measurement of the CPD between the two materials, corresponding to the 

measurement of the difference between the work function of the Al and the electron 

affinity of the ZnS sample, has been done by averaging the CP values extracted from 

two separated regions of the map. The results of the measurement are reported in Table 

4.18. 

Table 4.18: CPD mean values for the ZnS and Al layers. 

Layer ZnS Al 

   

CP (V) 0.045 ± 0.002 0.020 ± 0.001 

 

     From the measurements, the CPD value between ZnS and Al results 0.02 V (with 

an error of 10-3 V). The known value of the work function of Al is about 4.08 eV 83, 

while the bulk electron affinity value of ZnS has range of values between 3.8 to 3.9 eV 
84. However, from the experimental data it results that the CPD obtained is about an 

order of magnitude smaller than the reference value. The motivation behind this result 

could lies in several effects that can act on the surface. A decrease in the measured CP 

can be explained by induced-surface states originating from oxide formation 85. The 

presence of positive and negative charges trapped in oxide (e.g. SiO2 and Al2O3 films 

grown on a Si substrate) have been experimentally observed by Ludeke et al. 85. The 

trapped charge appears as dark spots for negative charges under negative substrate bias 

and positive charge for positive bias in potential images measured by KPFM 85. The 

non-uniform profile of the contact potential, as visible in Figure 4.27, meaning the 

dense-packed presence of maxima and minima, could reflect trapped charge effects on 
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the surface. Therefore, being the experimental CPD calculated by averaging values on 

regions with a large non-uniform profile, the final result could be smaller than the real 

CPD between the ZnS and the Al layers. A second measurement of the CPD performed 

considering only values on the maxima and minima of the map has yielded to an 

approximated CPD of 0.12 V. This can be viewed in a qualitative way from the three-

dimensional profile depicted in Figure 4.27. 

      

 

           

 

 

Figure 4.27: KPFM contact potential map in the step between the Al (dark region on 

the left) and ZnS (light region on the right) layers. From the three-dimensional profile 

is visible a CPD of about 0.12 V that corresponds to the difference between the electron 

affinity of ZnS and the work function of Al. The CPD value averaged over the two 

regions results of 0.02 V. 

 

     From the experimental results, it can be concluded that the average CPD value is 

not concordant with the values known from literature. However, this could be due to 

induced-surface states originating from oxide formation. Nevertheless, a measure of 

the CPD considering only the difference between maxima and minima of the two CP 

values yields a CPD of about 0.12 V.
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4.6   Discussion 

 

     The morphological characterization of ZnS thin films grown at different sputtering 

deposition power was performed by several steps. At first, the presence of dips, which 

is related to the quality of the films for photovoltaic applications, was investigated in 

order to delineate the sputtering power at which the lowest density of dips is obtained. 

In the employed technique, a crucial role was played by the height threshold value 

chosen to define a dip, namely zsegm. From the calculations, the dip number variation 

corresponding to little changes in the height threshold resulted of about 3 – 15 %. From 

the results it was immediate to identify the sputtering power at which the lowest 

presence of dips was exhibited, namely 75 W. This was also confirmed by further 

analyses performed on a second set of ZnS thin films grown at 75 W that showed a 

total absence of dips. It was concluded that the dip density is affected by the sputtering 

deposition power without a linear dependence, since a non-linear trend was observed.  

     Then, the structural properties of the ZnS thin films were investigated by using a 

statistical method to calculate the main parameters associated to the surface structure. 

The analysis was carried out assuming the surface to be self-affine, which allows to fit 

the height-height correlation data extracted by the software Gwyddion for each map 

and extrapolate the parameters from the self-affine fit, namely the surface roughness 

RHHCF, the lateral correlation length ξ and the roughness exponent α. In addition, the 

mean number and size of the grains were evaluated by the image segmentation method. 

This analysis included the correct choice of the parameters used during the 

segmentation, which was done to obtain the better match between the applied mask and 

the grain arrangement for the samples. The parameters that mostly affect the final 

results were shown to be the Gaussian smoothing and the prefill from minima.  

     The analyses were performed also on two ZnO thin films in order to get a 

comparison of the structural properties between the two zinc compounds. From the 

experimental results, it is possible to conclude that the sputtering power strongly affects 

the surface morphology but in a non-linear way. The mean surface roughness RHHCF of 

the ZnS samples resulted in the range 0.8 – 3.44 nm, which is much lower than that of 

ZnO, which is in the range 7.6 – 11.7 nm. The mean grain number was shown to be 

much larger for the ZnS films (1100 – 1600 µm-2) than that of ZnO (380 – 780 µm-2). 

Moreover, the mean grain equivalent radius of the ZnS films was calculated in the range 

12 – 16 nm, while that of ZnO resulted of 18 – 27 nm. These results showed that the 

ZnS thin films to have a larger number of grains that are smaller in size respect to ZnO, 

and a surface roughness which is much lower. The surface profile of the ZnS films 

resulted flatter than the ZnO. In some of the analyzed samples the lateral correlation 

length ξ is greater than the dimension of the grains, evidencing that a clustering of the 

grains is present. This was not observed for the ZnS sample grown at a 75 W sputtering 

power, in which ξ resulted lower than the mean grain size. Clustering of the grains due 

to the sputtering deposition also contributes to the variations observed in the density of 

dips, meaning the lower clustering corresponds to the lower presence of dips. Also in 
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this case, the lowest values for the structural parameters were observed for the dip-free 

ZnS sample grown at 75 W. The low density of dips of the sample deposited at 75 W 

can be related to this low deposition power. At higher power, clustering effects could 

lead to a decrease in the homogeneity of the surface, on the contrary a lower deposition 

power could lead to a non-complete surface coverage, and thus to an increase of the 

dip density. 

     At last, the electrical properties of the flattest ZnS thin film, meaning the one 

exhibiting the lowest roughness and presence of dips, were investigated by means of 

EFM and KPFM techniques. In order to measure the sheet resistance with a four-point 

probes method, four Al channels were deposited on the surface of the 75 W ZnS thin 

film by thermal evaporation. The EFM contact potential maps were obtained to get the 

electrostatic characterization of the surface and to have an evaluation of the potential 

difference between the ZnS and the Al layer, corresponding to the difference between 

the Al work function and the ZnS electron affinity. A match between the electrostatic 

and the height topographies of the ZnS sample surface was found from the EFM maps. 

This could be due to a direct morphological dependence of the local charge distribution. 

It was observed that the contact potential is larger in regions associated to valleys and 

lower in regions associated to peaks. Therefore, the local charge density tends to 

accumulate in concave areas.  

     The contact potential difference between the ZnS and the Al layer was obtained by 

using KPFM technique to get more precise measurements. The experimental result was 

found to be one order of magnitude smaller than the reference value known from 

literature. This could be related to presence of induced-surface states originating from 

oxide formation. Positive and negative charges trapped in oxide has already been 

observed in previous studies 85. The main consequence of these trapped charges is the 

very non-uniform profile of the contact potential map, with a dense-packed 

arrangement of maxima and minima that leads to an underestimation of the real 

potential difference. A second measurement was performed by considering only values 

on the maxima and minima of the map, yielding a result close to the value known from 

literature. Finally, the resistance of the sample was measured to be beyond the 

instrument sensibility, with an inferior limit of 7 GΩ, thus leading to the conclusion 

that the ZnS film totally acts as an insulator. 
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Conclusions 

 
     The aim of this thesis is the morphological and electrical characterization of zinc 

sulfide (ZnS) thin films in dependence of the sputtering deposition power by using 

Atomic Force Microscopy (AFM) and Kelvin Probe Force Microscopy (KPFM) 

techniques.  

     This work has been developed in the framework of the worldwide energy problem 

of the 21st century. To stop the global warming related to the use of fossil fuels and to 

fill the gap due to the increasing global energy demand, the development of renewable 

sources of energy is of fundamental importance. Photovoltaics (PV) is one of the most 

promising and interesting source of renewable power.  Today, over the 85 % of the 

whole PV market is dominated by monocrystalline and polycristalline silicon wafer 

based solar cells, which require high wafer thickness (~300 µm). For this reason, costs 

associated to silicon wafer cells have low possibility to be reduced in a future prospect. 

For a large scale use of the PV resources, it is crucial to improve new technologies 

aimed to increase the cells performance while lowering the costs. A promising 

alternative is represented by the thin film solar cells, which require cheaper materials 

and smaller thickness, with wider possibilities to improve the efficiency while keeping 

the costs low. These devices are made of several thin layers of different materials, with 

various alternatives for the absorber material, including amorphous silicon (a-Si), CdTe 

and CuInGaSe2 (CIGS). 

     In this context, a fundamental role is played by the passivating layers, in order to 

diminish the surface states that act as recombination centers. It has been already proved 

by previous studies 4,33,86,34, that placing a buffer layer with a larger energy gap between 

the metal contacts and the active material results in the open circuit voltage to increase 

and higher efficiency to be reached with lower costs. Actually, among various suitable 

materials, CdS has been the most common semiconductor used as a buffer layer for 

surface passivation for CIGS solar cells. However, the use of Cd is associated to toxic 

hazards, thus leading the attention to new environmental-friendly materials. One of the 

most promising candidates among various alternative materials is ZnS, since it is non-

toxic, abundant and cheaper 49. In addition, ZnS has a direct wide energy gap of 3.5 – 

3.9 eV at room temperature, that is larger compared to CdS having an energy gap of 
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2.45 eV 49. ZnS thin films are promising as surface passivation layers because of their 

high transmittance, wide energy gap and insulating properties. Due to its low 

reflectivity, ZnS thin films could also find applications as antireflection coatings, which 

are essential part of the solar cells 45. This material exhibits peculiar properties that 

have not yet been much investigated. ZnS thin films have been found useful in various 

devices, covering a wide area of applications, including electroluminescent devices, 

photosynthetic coating and optoelectronic devices such as blue light emitting diode 7. 

For the interesting properties of ZnS thin layers, in particular focusing on PV 

applications, a morphological and electrical characterization of ZnS thin films has been 

performed, with the aim of pointing out the connection between the deposition 

conditions (i.e. the sputtering deposition power) and the properties of the material at 

the nano-scale. 

     The ZnS thin films studied in this thesis are deposited by DC sputtering at the 

Department of Materials Sciences of the University of Milano Bicocca (UNIMIB). The 

deposition was performed using Argon as inert gas; the sputtering power has been 

varied in the range 50 – 150 W; the ZnS samples have been grown on a soda-lime glass 

substrate hold from fixed distance of 6 cm from the target.  

     AFM morphology analyses showed the presence of dips on the sample surfaces. The 

sputtering deposition power corresponding to the lowest dip density was determined. 

The presence of dips, which is related to the quality of the films for PV applications, 

was investigated in order to define the sputtering power corresponding to the lowest 

density of dips. In the analyses of AFM morphological maps, a fundamental role was 

played by the height threshold value chosen to define a dip. After the analysis, the 

variation of the grain parameters as a function of the height threshold was calculated to 

be in the range 3 – 15 %.  

     The structural properties of the ZnS thin films were investigated by means a 

statistical method to calculate the main parameters associated to the surface structure, 

namely the surface roughness, the lateral correlation length and the roughness 

exponent. In addition, the mean number and size of the grains were calculated by the 

image segmentation method. Through this technique, it is possible to mark the grains 

on the map, extracting their number and the equivalent disc radius distribution, from 

which the mean grain radius was evaluated for each sample. The analyses were 

performed for another zinc compound, ZnO, in order to get a comparison between the 

structural and grain properties. 

     Furthermore, the electrical properties of the flattest ZnS sample, meaning the one 

exhibiting the lowest roughness and presence of dips, were investigated at the nano-

scale by using EFM and KPFM techniques. Four Al layers have been deposited on the 

sample surface by thermal evaporation in order to measure the sheet resistance of the 

sample using a four-point probes method. At last, the contact potential difference 

between the ZnS and the Al layer, corresponding to the difference between the Al work 

function and the ZnS electron affinity, was evaluated from the KPFM maps. From the 

experimental results, the conclusions are the following ones. 
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     The sputtering deposition power strongly affects the morphology of the samples. 

The sample grown at 75 W sputtering power shows the lowest density of dips, while 

the samples with the lowest and highest sputtering power, namely 50 W and 150 W, 

both show a large density of dips.  

     The structural and grain parameters also show a non-linear dependence on the 

sputtering power. The 75 W sample results the one with the lowest roughness and the 

highest density of grains. The reduced dimensions of grains could be related to the low 

density of dips and hence to the larger uniformity of the sample surface. Apart from the 

75 W sample, the presence of dips is observed in the ZnS films jointly with a grain 

clustering process, which is shown also by the larger value of the lateral correlation 

length respect to the mean grain radius. 

     From the comparison with ZnO, the surface roughness of ZnS samples results much 

lower, meaning a smoother surface profile. Moreover, the ZnS grain arrangement 

shows a higher number of grains that are smaller in size.  

     A match between the electrostatic and the height topographies of the sample surface 

was found from the EFM maps. This could be related to a direct morphological 

dependence of the local charge distribution, meaning that the charge density tends to 

accumulate in concave areas. The measurement of the sheet resistance proved that the 

ZnS film acts as an insulator. Finally, the contact potential difference between the ZnS 

and the Al layer resulted underestimated with respect to the value known from 

literature. This could be due to the presence of induced-surface states originating from 

oxide formation, which has already been observed by previous studies 85. 

     The morphological and electrical properties studied in this thesis provide a thorough 

characterization of the ZnS thin films, with a particular care for the best sputtering 

deposition power to be used for photovoltaic applications, especially with a focus on 

thin film solar cells technology. With a direct wide energy gap, high transmittance and 

insulating properties, ZnS thin layers are expected to play a key role on developing new 

photovoltaic solar cells and creating non-toxic and cheap renewable energy. 
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