Temporal PageRank

Pompei, Luca (2016) Temporal PageRank. [Laurea magistrale], Università di Bologna, Corso di Studio in Informatica [LM-DM270]
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (2MB) | Anteprima

Abstract

The our reality is characterized by a constant progress and, to follow that, people need to stay up to date on the events. In a world with a lot of existing news, search for the ideal ones may be difficult, because the obstacles that make it arduous will be expanded more and more over time, due to the enrichment of data. In response, a great help is given by Information Retrieval, an interdisciplinary branch of computer science that deals with the management and the retrieval of the information. An IR system is developed to search for contents, contained in a reference dataset, considered relevant with respect to the need expressed by an interrogative query. To satisfy these ambitions, we must consider that most of the developed IR systems rely solely on textual similarity to identify relevant information, defining them as such when they include one or more keywords expressed by the query. The idea studied here is that this is not always sufficient, especially when it's necessary to manage large databases, as is the web. The existing solutions may generate low quality responses not allowing, to the users, a valid navigation through them. The intuition, to overcome these limitations, has been to define a new concept of relevance, to differently rank the results. So, the light was given to Temporal PageRank, a new proposal for the Web Information Retrieval that relies on a combination of several factors to increase the quality of research on the web. Temporal PageRank incorporates the advantages of a ranking algorithm, to prefer the information reported by web pages considered important by the context itself in which they reside, and the potential of techniques belonging to the world of the Temporal Information Retrieval, exploiting the temporal aspects of data, describing their chronological contexts. In this thesis, the new proposal is discussed, comparing its results with those achieved by the best known solutions, analyzing its strengths and its weaknesses.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Pompei, Luca
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Sistemi e reti
Ordinamento Cds
DM270
Parole chiave
InformationRetrieval TemporalInformationRetrieval WebInformationRetrieval PageRank OkapiBM25 Time
Data di discussione della Tesi
17 Marzo 2016
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^