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Abstract

EN: The application of measures deriving from information theory to com-
plex systems provide useful tools to quantify some of systems properties.
The same tools can be applied to robotics in order to improve the analysis
and the syntesis of automatic designed robot control systems. In this thesis,
the correlation of complexity measures with the fitness of robots trained for
three different experiments have been investigated. Results obtained sug-
gest that complexity measures are a promising tool for robotics, but their
employement may be not trivial for composite tasks.

IT: L’applicazione di misure, derivanti dalla teoria dell’informazione, for-
nisce un valido strumento per quantificare alcune delle proprietà dei sistemi
complessi. Le stesse misure possono essere utilizzate in robotica per fa-
vorire l’analisi e la sintesi di sistemi di controllo per robot. In questa tesi
si è analizzata la correlazione tra alcune misure di complessità e la capacità
dei robot di portare a termine, con successo, tre differenti task. I risultati
ottenuti suggeriscono che tali misure di complessità rappresentano uno stru-
mento promettente anche nel campo della robotica, ma che il loro utilizzo
può diventare difficoltoso quando applicate a task compositi.
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Introduction

Manually designing a robot controller is not a trivial task especially when
the robot has to operate in a noisy and unpredictable environment. A
potential alternative relies on the employment of automatic design tech-
niques, which usually make use of complex networks as evolvable controllers.
Typical examples of such complex networks are Artificial Neural Networks
(ANNs) and Boolean Networks (BNs).

While a qualitative description of a robot behaviour can be easily per-
formed by means of an objective function or a visual inspection, a way to
formally describe internal network dynamics is still elusive. A common ap-
proach, adopted in complex system science (CSS), to try quantifying com-
plex systems properties makes use of complexity measures deriving from
information theory. Recently, this approach has been also employed in
robotics to investigate if well performing robots share some kind of desired
dynamics.

This thesis aims to investigate the existence of a correlation between
complexity measures and fitness values of robots designed by means of an
automatic design process. The objective is to improve the analysis and
synthesis of robot control systems providing: 1) a methodology to formally
describing robots dynamics, and 2) an high-level task-independent utility
function to be used in combination with classical task-dependent ones.

Outline of the work

This thesis is organised as follows:

In Chapter 1, we introduce the main concepts of complex systems and
complex system science. Moreover, we present the complexity measures
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that will be used in our analysis.
In Chapter 2, we explain how an automatic design process works and

which is its structure. The last section of this chapter is dedicated to ge-
netic algorithms which represent the search algorithm we chose to train our
robots.

In Chapter 3, we present the model we used as robots controller: Boolean
Networks. We provide an exhaustive description of their structure and
dynamics, but we will focus on Random Boolean Networks which are a
variation of particular interest for this work. Finally, we describe how these
networks can be employed on robots.

Chapter 4 describes potential advantages deriving from the employment
of complexity in robotics, and illustrates some previous important works
related to this argument. The last section specifies how we implemented
complexity measures to perform our analysis.

In Chapters 5 and 7 are discussed the first two experiments we per-
formed, phototaxis and obstacle avoidance. We provide a description of
experimental settings and a brief presentation of obtained results in terms
of performance.

Chapters 6 and 8 contain respectively the analysis on robot trajectories,
by means of complexity measures, for phototaxis and obstacle avoidance.
Results will be presented and discussed.

In Chapter 9 we present the third, and last, experiment of this thesis:
the T-Maze task. This task presents some important differences from the
other two, such as the requirement of memory and the presence of different
phases during the same run. Considerations, and conjectures about analysis
results will be made in Chapter 10.

Considerations deriving from a comparison of the three tasks are pro-
vided in Chapter 11. In this analysis, we examine all the obtained results
looking for phenomena that could not be discovered by observing tasks
separately.

2



Chapter 1

Complex systems

Complex system science (CSS ) represents a new scientific approach to study
how parts of a system give rise to the collective behaviours of a system, and
how the system itself interacts with the surrounding environment. Complex
systems (CSs) exists in nature, examples can be the brain, a cell, or ant
colonies, moreover many of the human built systems such as the economical
system or the city traffic can be defined complex.

This Chapter provides a briefly introduction to CSs and CSS, a major
part of the material presented has been taken from [31], reworked, and
integrated.

The importance of studying complex systems is of immediate under-
standing, the capacity of creating reliable models of these systems and con-
trolling them can potentially bring to huge advancements in many fields.
For this reason CSS is multidisciplinary and involves mathematics, physics,
computer science, biology, economy, philosophy, neurology, chemistry, an-
thropology, meteorology and many others.

The definition of complex system is elusive but an informal definition
can be provided by summarizing the characteristics that CSs usually exhibit
[23], notice that all or only some of this characteristics can be present:

• Numerosity (composed of many elements)

• Nonlinear dynamics

• Positive and negative feedbacks

3



4 CHAPTER 1. COMPLEX SYSTEMS

• Some degree of spontaneous order in system behaviour (e.g. simmetry,
periodicity, pattern and more)

• Robustness and lack of central control

• Emergence of global behaviours

• Hierarchical organization

A key feature of complex systems, which is at the basis of the concept of
emergence, is that local rules of individual components produce a dynamics
that is not possible to understand only by observing the parts composing
the system. Another important concept directly connected to emergence is
self-organisation, which refers to phenomena where some spatio-temporal
structures emerge in a system without a direct external control, a typical
example is given by snow crystals.

Before proceeding in the description of complex systems, it is impor-
tant clarifying the mean of word system. System is used to identify entities
(concrete or abstract) for which it is possible to identify some kind of bound-
aries, therefore it is possible to distinguish what belongs to the system and
what is outside the boundaries (the environment). Of course, the identifi-
cation of a system depends on the level of abstraction chosen. An example
is the human body that can be certainly considered a system, but that can
be decomposed in other systems like muscular or nervous systems, which
are composed of cells and so on. In this case, the identification of system
boundaries depends on the observer specific viewpoint.

The definition of system leads automatically to the concept of model. A
model is a simplified representation of a system at some particular point
in time or space intended to promote understanding of the real system. A
model only represents a delimited portion of the whole system and captures
only some characteristics considered of interest. Thus, the creation of a
model requires an abstraction process which involves simplification, aggre-
gation, and omission of details. In CSS, models are widely used with the
following objectives:

• understanding the system and investigating some of its properties;

• being able to control the system;

• making prediction about the future of the system;
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CHAPTER 1. COMPLEX SYSTEMS 5

In this thesis, for example, real robots have been modelled through virtual
models and tested by means of computer simulations.

1.1 Order and chaos in dynamical systems

The term dynamical systems identifies a class of systems that evolve in time,
thus a model of a system that belongs to this class usually contains the rules
that govern the evolution in time of the system state. The system state is
usually defined by a set of values considered of relevance for the system and
that are measurable. Some important concept for dynamical systems are:

• Trajectory : represents the sequence of states encountered during the
system evolution in time. Trajectories end in an attractor that can be
a fixed point, a cycle or a more complex attractor;

• Phase space: is the space of the variables needed to characterise the
system or, in other words, is a space in which all possible states of a
system are represented;

• State space: is the space of the states of the system. It coincides with
the phase space when the set of variables needed to characterise the
system coincides with the system state.

Typical and widely studied models for dynamical systems are ordinary dif-
ferential equations and difference equations, due to their immediate under-
standing and predisposition for computer simulation only difference equa-
tions (DE) will be briefly explained with the objective of introducing the
concept of order and chaos in dynamical systems.
A typical DE is in the form:

x(t+ 1) = f [x(t), P, t] (1.1)

where x, f and P can be vectors and represent respectively the system state,
the transition functions, and the parameters of the model. When a system
does not depend upon t it is named autonomous.

One popular difference equation is the logistic map:

x(t+ 1) = Rxt(1− xt) (1.2)
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6 CHAPTER 1. COMPLEX SYSTEMS

that can be seen as a discrete-time demographic model where: xt is a number
between 0 and 1 that represents the ratio of existing population to the
maximum possible population, and R is a control parameter that permits
to modify the equation behaviour. By iterating the equation and plotting
the results some different behaviours can be observed depending on the
value assigned to parameter R:

• for R < 1 the equation tends to 0, i.e. the population goes extinct.
In this case the attractor is a fixed point, see fig.1.1(a);

• for 1 < R < 3 the equation value oscillates in a first phase, then it
eventually reaches a stable value. Also in this case the attractor is a
fixed point, but the value changes with R, see fig.1.1(b);

• for R > 3 the equation never reaches a stable value but oscillates
instead. In this case, the attractor is a cycle and its period starts
from 2 and doubles while R increases, see fig.1.1(c).

The equation results move from a fixed point attractor to a cycle attrac-
tor of increasing period. With values of R around 3.56995 no more finite
period oscillations are visible (see fig.1.1(d)) and slight variations in the ini-
tial value of x0 bring to dramatically different results over time, however, for
some values of R after this threshold, it is still possible to have finite period
attractors called islands of stability. Finally for R > 4 no more islands of
stability exist, and a chaotic behaviour can be observed (see fig.1.2). Due to
the deterministic nature of the logistic map, observed phenomena can not
be accounted as a random behaviour also if it is almost unpredictable, this
kind of attractor is defined strange attractor.

6



CHAPTER 1. COMPLEX SYSTEMS 7

(a) R=0.8 and x0 ∈ {0.25, 0.55, 0.85} (b) R=2.2 and x0 ∈ {0.25, 0.55, 0.85}

(c) R=3.3 and x0 = 0.85 (d) R=3.9 and x0 = 0.85

Figure 1.1: Graphical representations of Eq.1.2 for different values of R
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8 CHAPTER 1. COMPLEX SYSTEMS

Figure 1.2: Bifurcation diagram for the logistic map. The attractor for any
value of the parameter R is shown on the vertical line at that R.
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CHAPTER 1. COMPLEX SYSTEMS 9

1.2 Complexity and measures

In the previous section we pointed out how systems can behave in two
different ways: they can be in an ordered regime, attaining a fixed point or
cycling attractor and presenting regular behaviour, or they can be chaotic,
following a strange attractor and showing an apparently random behaviour.
Between these regime there is the realm of complexity, where systems exhibit
a behaviour that is neither totally regular, nor completely chaotic. CSS tries
to characterise, end even quantify, complexity.

Given a complex system, it is common to make use of qualitative de-
scriptions to identify some of its properties such as emergence or self-
organisation, this because does not exist a formal way to define them as
for the complexity itself.

A useful way to quantify some properties of dynamical systems makes
use of complexity measures. At the base of these measures there is the infor-
mation theory, this link with complex systems is sustained by the hypothesis
that a generic computational process can be thought as the evolution of a
dynamical system in time, thus systems exposing complex behaviours should
be characterised by an higher computational capability and, consequently,
by higher values of some kind of complexity measure.

In the following we give a description of measures employed for this
thesis, but details on their implementations will be provided in Chapter 4

1.2.1 Shannon Entropy

Entropy, also called Shannon Entropy due to the name of its inventor, can
be defined as a measure of unpredictability of information content. It was
developed as a measure to quantify the information content of a message.
Considering, for example, a system under observation, its state can be
modelled as a discrete random variable X with values x ∈ X . The in-
formation content about the observation of x, with an outcome probability
P (x) = Pr{X = x}, can be measured as 1

log2 P (x)
= − log2 P (x), thus an

improbable observation carries more information than one with high prob-
ability. The system entropy is given by averaging the information of each
observation over all possible outcomes:

H(X) = −
∑
x∈X

P (x) log2 P (x) (1.3)

9



10 CHAPTER 1. COMPLEX SYSTEMS

Notice that in case P (xi) = 0 for some i, the value of 0 log(0) is taken to be
0.

As measure of unpredictability, H(X) will be maximum for an X with
uniform probability distribution, while it will assume value near to 0 when
one of the possible values has probability P (xi) ≈ 1. Therefore it is expected
to find high entropy values in systems with a chaotic regime and low values
in ordered systems.

1.2.2 Disequilibrium and LMC complexity

As pointed out at the begin of this section, the notion of complexity refers
to a system that is neither in an ordered regime nor in a chaotic one, but
the entropy measure by itself does not really capture this concept. For ex-
ample, a random generated sequence of symbols 0 and 1 will return an high
entropy value, while it should have low complexity instead. A solution to
this problem has been proposed in [26] with a measure called LMC complex-
ity, by the name of its inventors. The idea is that a measure for complexity
should reach its maximum in a region between order and chaos, therefore to
identify this region it is necessary a measure that assumes higher values for
more chaotic systems (entropy) and one that is higher for more ordered sys-
tems. The measure proposed for measuring order is called Disequilibrium,
and it is defined as:

D(X) =
∑
x∈X

(
P (x)− 1

|X |

)2

(1.4)

On the contrary of entropy, Eq.1.4 assumes value 0 when X has a uniform
probability distribution.

Once both measures has been described, LMC complexity can be simply
defined as the product of entropy and disequilibrium:

LMC(X) = H(X) ·D(X) (1.5)

1.2.3 Mutual Information

Another important information-theoretic measure is the mutual information
between two random variables X and Y . This measure is based on entropy

10



CHAPTER 1. COMPLEX SYSTEMS 11

and quantifies the amount of information gained on a variable by observing
the other. Mutual information is defined as follows:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (1.6)

where H(X, Y ) is the joint entropy of X and Y , defined on the basis of joint
probability P (x, y).

1.2.4 Dynamic Correlation

One last measure to quantify complexity, proposed by Beggs and Timme[4],
is the dynamic correlation:

Cij = 〈(i− 〈i〉)(j − 〈j〉)〉 (1.7)

This measure quantifies the correlation between states of two separated sys-
tem components, the angled brackets indicate the time average while i and
j are the values assumed by the respective components at the observation
moment. The word dynamic suggests that to obtain high values of this
measure each component must change its state in time, in fact the term
(i − 〈i〉) will assume a value of 0 if at each instant of time i is equal to its
average. Moreover, to obtain a positive value the components must fluctu-
ate in a coordinated manner, i.e. they must be both over or under their
averages, otherwise their product will be negative. Applying this measure
to two random generated sequences of symbols 0 and 1 it will return a cor-
relation value of 0, because contributes of coordinated fluctuations will be
nullified from uncoordinated ones.

The idea of this measure is to capture information flowing among the
system and, coherently with the hypothesis made at the begin of this section,
it is expected to be higher in a system that shows a complex behaviour.
In their article Beggs and Timme applied dynamic correlation to the Ising
model[10][12], and demonstrated how it reaches higher values and maximum
distance when the system is working at the critical temperature.

11
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Chapter 2

Automatic design

The most typical approach for developing an autonomous robot controller is
based on manual design processes. This methodology relies entirely on the
abilities and knowledge of researchers and engineers designing the robot.
This practice suits perfectly for some kind of robotic applications, in par-
ticular when robots are operating in a very simple environment and/or are
performing a repetitive task, and often permits to reach optimal solutions
in terms of effectiveness and efficiency. An example is given by industrial
robots where, even for really complicated tasks, the robot controller can be
defined in terms of well-defined procedures, this possibility is given by the
controlled environment in which they are operating.

When the environment and tasks complexity increases, the difficulty of
designing a well performing robot controller will rapidly become unsustain-
able, limiting the degree of functional complexity that can be achieved, this
because designers must anticipates every possible situation that the robot
may encounter and, in a complex environment like the real world, they can
be simply too much. A potential solution to the problem is to develop
methods that allow robots to learn how performing complex tasks in an
automatic way. The term automatic design includes all the methodologies
known to design a system, in this case a robot controller, with a minimum
human intervention, thus represents an appealing alternative to the manual
design processes described above. In addition to the one presented, there
are many motivations supporting the automatic design idea:

• this practice can potentially save many hours of human work and
resources by moving the solution design process to computers;

13



14 CHAPTER 2. AUTOMATIC DESIGN

• may find solutions not imagined by the designers by exploiting dy-
namical couplings between robots and the environment;

• may be used to investigate the emergence of some kind of behaviour;

• is very useful in robotic fields, such as swarm robotics [9], where tra-
ditional methodologies are not effective;

The increasingly interest in this field is demonstrated by the recently
selection for founding by the European Research Council of project “DEMI-
URGE: automatic design of robot swarms”[6].

While there are many successful examples of automatic design applied
to robot controllers, it is worth to mention also some works where automatic
design techniques have been utilized to develop robot morphology. In [25] an
automatic design process develops simultaneously the robot controller and
his morphology by adding, modifying or removing basic building blocks.
Another example of automatic design applied to hardware, but not to a
robot, is reported in [20] where researchers from NASA were able to crate,
in an automated way, an antenna with better performance than manually
designed ones.

2.1 Structure of an automatic design process

In [27], Matteini provides an interesting overview of the most used automatic
robot design techniques, in this section we described an automatic design
process by following the structure of his work.

The elements necessary to apply an automatic design process can be
summarized in:

• a configurable or evolvable controller;

• a genotype-phenotype mapping to transfer controller information to
the physical robot;

• a fitness function for evaluating robots;

• a search algorithm to find a good solution for the specified controller;

14



CHAPTER 2. AUTOMATIC DESIGN 15

2.1.1 Evolvable controller

The decision of the controller to use is a choice of great impact on the whole
design process, there is in fact a great variety of controller typologies that
can be summarized in:

• Programs (executable code): This type of controller requires a special
set of instructions usually defined for a specific experiment. In Busch
et al. [11] researchers programmed different morphologies of walk-
ing robots using a sequence of instructions as genotype, and applied
genetic algorithms in order to obtain better performing controllers.

• Arificial Neural Networks (ANNs): ANNs are a family of models in-
spired by biological neural networks, such as the brain, and are widely
used in the field of Artificial Intelligence for many purposes. An ANN
is defined by the number of neurons composing the network, the con-
nections topology, the weight of connections between neurons and the
activation threshold value of each neuron. An example of ANN con-
trolling a robot can be found in [17] where a Kephera is trained to
perform obstacle avoidance, and the evolution process has been carried
out entirely on a real robot.

• Finite State Automata (FSA): An example of FSA used as robot con-
troller is reported in Francesca et al. [18], where the performances
of an automatic designed FSA controller are compared, on different
tasks, with the ones obtained by an ANN controller and two human
designed controllers. In that experiment, the genotype was composed
of two different modules called behaviours, representing activities the
robot could perform, and transitions that were criterion to regulate
the change of behaviour in response to events.

• Boolean Networks (BNs): BNs are a model of genetic regulatory net-
work (GRN) that have been adopted in robotics only recently. This
is the controller chosen for the experiments presented in this work, for
this reason a deeper explanation of the model will be given in Chapter
3 .

15



16 CHAPTER 2. AUTOMATIC DESIGN

2.1.2 Genotype-phenotype mapping

The word genotype refers to the form chosen to represent the controller, usu-
ally only the variables are taken in consideration. Considering for example
an ANN whose topology is kept fixed during all the design process, the
genotype will be composed only of threshold values and connection weights.
Once defined the genotype it is necessary to map it with the system, in
terms of the previous example this means building an ANN with all its
properties coded in the genotype, and specifying how it interacts with the
robot sensors and actuators. The result obtained by coupling genotype with
system is the phenotype, and may refer to both, behaviour and morphology.

2.1.3 Fitness function

The fitness function is responsible for distinguishing well performing indi-
viduals from the others and, even more important, it can be considered
as the task objective, therefore it is what specify the task itself. For this
reason, defining the fitness function is the phase with the major human
intervention required, and thus with the higher probability of introducing
biases in the automated process.

A well-defined fitness function should be as task-independent as possible
but often this means slowing down the design process. This is particularly
true in case of complex tasks where a too general function could not lead to
the desired behaviour. In Nelson et al. [28] fitness functions has been cate-
gorized on the base of the degree of a priori knowledge that they introduce
into solutions.

2.1.4 Search algorithm

The search algorithm objective is to search for a genotype able to produce
a phenotype that better fits the desired task, this means a research in the
genotype space that can be both, finite or infinite depending on the con-
troller chosen. Notice that in the case of finite search space it can be too
large to be completely explored anyway.
Often, the search of a more performing individual can be reduced to an
optimization problem, therefore some kind of heuristic algorithms are used
to find a solution that, in this case, will be a suboptimal one. Probably,

16



CHAPTER 2. AUTOMATIC DESIGN 17

the most used algorithms in the field of automatic robot design are stochas-
tic descent(SD) and genetic algorithms(GAs). As this last category is the
one used for the experiments reported in the following chapters, it will be
described in details during the next section.

2.2 Genetic algorithms

GAs are widespread employed because of their ability to solve a wide range
of real world problems. This category of algorithms takes inspiration from
the Darwinian ideas of natural selection and “survival of the fittest”. In
nature, individuals in a population compete with each other for resources
such as food and water, moreover members of the same species compete
to attract a mate. Those individuals which are most successful in surviv-
ing and attracting mates, i.e. the ones with an higher fitness, will have
a larger number of offspring than poorly performing individuals, i.e. the
ones with a lower fitness. This means that the individuals of the successive
generation will have “better”genes and, with them, an higher chance to fit
well in the environment. Sometimes a particular combination of genes gives
origin to individuals that are better then their parents, moreover the DNA
of an individual may suffer a mutation with positive consequences in its
phenotype. These events bring the species to evolve, making them more
and more well suited with their environment. GAs are based on the same
natural principles, in fact they are characterised by the following common
elements:

• Initial population: this is the initial ensemble of genomes (genotypes),
each one represents a possible solution to the problem to solve. Each
genome is evaluated through the fitness function described above and
a score is assigned. The dimension of the initial population can vary:
in general more individuals means more phenotypic variety, and con-
sequently higher probabilities to find different problem solutions. The
number of individuals in the successive generations can be kept fixed
or can be modified during the evolution depending on the specific
algorithm chosen, usually it is kept fixed.

• Selection criteria: once all the individuals of a population have been
evaluated, some of them are chosen for “reproduction”, giving them

17



18 CHAPTER 2. AUTOMATIC DESIGN

the opportunity to transmit their genes to a new generation of indi-
viduals. A criteria for the selection of individuals chosen for repro-
duction is thus necessary, for example only the fittest individual of
each generation can be selected, or the N ones with higher scores.
Other techniques are based on assigning to each individual a proba-
bility value to being chosen based on the fitness value obtained. This
criteria is typically referred as roulette wheel selection. The choice of
the selection criteria can have an high impact on the whole evolution
result, on the one hand a restrictive criteria can lead to a solution in
a minor time but with an higher probability of being stuck in local
minima, on the other hand a criteria that select too many bad indi-
viduals may be responsible for a non-convergent evolution.
A typical mechanism adopted to facilitate the evolution convergence is
called elitism and, when applied, it lets the best individual ever found
to pass in the successive generations and spreading it genes, this tech-
nique prevents the lost of a “good”genome caused by few children with
bad performances.

• Crossover operator : taken two individuals chosen for reproduction,
their genomes are cut into two parts at some random point. The
genome “stripes”produced are then swapped to create a new individ-
ual that have parts of genome from both parents. This technique is
called single point crossover ; many variations of crossover exists, but
all of them relies on the same principle.
The crossover idea is to take the best from two good individuals, ide-
ally if a part of the genome identifies a desired characteristic in one
individual and another part determines something good on a second
one, the crossover should give birth to a child exposing traits from
both. Practically this is unlikely to happen due to the complex dy-
namics between the components identified by the genome, but it is
still useful to promote new solutions, especially when some distinct
“families”emerge inside a population. This operator is not applied
to all the individuals of a new generation, usually a probability p is
defined.

• Mutation operator : crossover operators do not introduce novelties in
the population, therefore if a particular gene value is not present in at
least one individual it will never appear in new generations. For this
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reason mutation operators are needed. Their implementations heav-
ily depends on the genome type, for example in the case of boolean
genomes a mutation can consist in a bit-flip, while for an ANN can
be the variation in a connection weight or threshold value.
As for crossover, it is defined a probability for applying mutation.
This probability may refer to a single gene or to an entire individual,
in the second case the number of mutations per individual must be
specified in some way.

Once specified the problem formulation and the elements described, the
evolution can start. The algorithm will end on the basis of a termination
criteria which can be the maximum number of generations to evolve, or a
particular fitness value to reach, it can also not be defined at all letting the
evolution run until manually interrupted.
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Chapter 3

Boolean Networks

Boolean networks (BNs) have been introduced by Kauffman [22] as a genetic
regulatory network (GRN) model. BNs raised a considerable interest in
both, biology and complex systems communities, due to their capabilities
to reproduce some aspects and mechanisms of living systems.

BNs are of great interest due to their unique attributes: they are char-
acterized by the compactness and dynamics richness typical of GRNs com-
bined with the simplicity of Boolean logic that make this model particularly
easy to compute. A considerable part of the robotic landscape is heading
to miniaturization, leading to the creation of robots with dimensions of few
centimetres [35], or even smaller. For this kind of robots a small and easily
computable software controller is crucial, however BNs remain a promising
model for many other applications.

In this chapter we describe Boolean networks in terms of structure and
dynamics, and we illustrate how they can be employed as robots controller.
A major part of the information reported has been taken from [33], reworked
and integrated with other material.

3.1 Structure

A BN can be seen as a directed graph of N nodes where each node can only
assume Boolean values (discrete-state) and the whole system state evolves at
precise intervals of time (time-discrete). Therefore each node is associated
to a Boolean variable xi, i = 1, ..., N , and a Boolean function fi(xi1 , ..., xiKi

),
where Ki is the number of inputs of node i. The arguments of the Boolean
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22 CHAPTER 3. BOOLEAN NETWORKS

Figure 3.1: Example of a simple BN with deterministic update functions
and synchronous dynamics

function fi are the values of the nodes whose outgoing arcs are connected
to node i. The set of all the Boolean functions composes the network truth
table. At time t, t ∈ N, the network state is completely defined by the N
Boolean variable values: s(t) ≡ (x1(t), ..., xN(t)). Since each node can only
assume values 0 or 1, the state space size is 2N . The model used in this
work is characterized by synchronous dynamics and deterministic functions,
which is the most studied BN model (see fig.3.1). However many variants
have been proposed in literature, some of these make use of asynchronous
and probabilistic update rules [36].

3.2 Dynamics

Despite their simple definition, BNs can exhibit complex dynamics which
can be studied by means of usual dynamical system methods such as state
(or phase) space, trajectories, attractors, and basins of attraction. Every
BN starts from an initial state which can be both, randomly generated or
externally imposed, and evolves in time according to its update functions.
In the case of autonomous BNs, where no external events can interfere with
the dynamics, the network evolution will eventually ends in an attractor
that, how has been said in Chapter 1, can be a fixed point or a cycle with
length ≤ 2N (see fig.3.2).
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Figure 3.2: State space and possible trajectories of the network described
in fig.3.1

A special category of BNs of particular interest are called Random
Boolean Networks (RBNs). RBNs are obtained by randomly generating
both, the network morphology and truth table, by keeping fixed the value
K. Each of the 2K values composing the truth table is set by assigning a
value of 1 with probability p, and 0 with probability 1− p. Parameter p is
called bias.

RBNs, and BNs in general, are indeed complex systems and, as described
in Chapter 1, can show ordered or chaotic behaviours. It has been demon-
strated that RBNs behaviour changes depending on the values of p and K
selected [14][37]. In particular, an ordered behaviour has been observed for:

2p(1− p)K < 1 (3.1)

while the network shown, on average, to be chaotic for:

2p(1− p)K > 1 (3.2)

In the ordered regime attractors are small or even fixed point. Initially
there may be a short transient where many states may change, but the
network will quickly stabilize (fig.3.3(a)). A this regime, a perturbation
such as a bit-flip on a node state value dies out quickly with a very little
propagation. Networks at this regime are also very robust to initial condi-
tions which means that similar states have an high probability to end in the
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same attractor. On the contrary, at the chaotic regime the attractors have
a really long period, and successive states may appear as completely ran-
dom with no recurrent patterns recognisable (fig.3.3(c)). Moreover chaotic
networks are extremely sensitive to initial condition, thus slightly different
states tend to diverge.

(a) (b) (c)

Figure 3.3: Trajectories of RBNs in different regimes: (a) ordered, (b)
critical, (c) chaotic.

3.2.1 Criticality in RBNs

What has been observed in the field of CSS suggests that systems that
exhibit a complex behaviour are usually in a particular dynamical condition
that lies between order and chaos, taking advantages from the robustness
of ordered regimes and the flexibility of chaotic ones. This conjecture, first
introduced by Packard[29], Langton [24], and Crutchfield[13], is at the base
of the so-called criticality hypothesis that defines this particular condition,
i.e. operating between order and chaos, as dynamical criticality or also “the
edge of chaos”. The concept of critical state has been introduced in the
theory of phase transitions, that describes how modifying a suitable control
parameter can bring a system to undergo strong qualitative changes in its
macroscopic properties, usually defined in terms of an order parameter [38].
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In the case of RBNs the critical regime is achieved when the equation
2p(1− p)K = 1 is satisfied, therefore when the network lies between order
and chaos. In a network at the critical regime, a perturbation can spread
but its effects tend to remain isolated to a portion of the whole system.
Moreover, as can be seen in figure 3.3(b), some recurrent patterns are visible
in the network dynamics.

3.3 Boolean Network Robotics

RBNs, and BNs in general, have been mainly studied as isolated system.
To being able to use BNs as robot controllers, it is first necessary defining
a mapping between network nodes and robot sensors/actuators. A possible
solution is proposed in Roli et al.[33] where the values of a set of nodes
(BN input nodes) is imposed on the base of robot sensor readings, thus
the state of these nodes is not determined by the network dynamics. In
a similar way, a set of nodes (BN output nodes), whose states depend on
the network dynamics, is chosen to pilot robot actuators. This model for
coupling network nodes with robots sensors and actuators requires some
tailored functions to encode continuous sensor values into boolean ones,
and vice-versa (see fig.3.4).

Figure 3.4: The coupling between BN and robot

An automatic design method (see Chapter 2) can be used to evolve the
RBN controller and obtaining well performing robots. For the designing
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of RBNs employed in the various experiments conduced in this work, we
decided to use genetic algorithms (see Section2.2); the specific evolution
parameters will be reported for each task separately. The evolution process
can be applied on the network truth table, by performing one or more bit-
flips on its values, or even on the network topology by rewiring some of the
node connections. The first of these two described methods is the one we
applied in this work experiments since it is widely employed in literature
with good results.

Despite RBNs has only recently being used as robot controllers, some ex-
periments have been already performed. In Roli et al.[33] a RBN-controlled
robot is trained to alternate phototaxis and anti-phototaxis behaviours on
the base of an external command, represented by a sharp sound (a “clap”),
given at a random time during the experiment.

A sequence learning task has been performed in [32], in this experiment
a robot equipped with a floor colour sensor is trained to recognize a specific
sequence of black and grey rectangles, separated by white ones, painted
along a straight line. When a rectangle placed in the right sequence order
is found, the robot must light its LEDs on, otherwise the LEDs must be
turned off.

An application in the field of swarm robotics is provided by Vichi in his
thesis [41], where a swarm of E-pucks are placed on a floor with a particular
pattern painted on it. Each robot can only sense the ground below itself, and
communications are limited to the neighbourhood. In case the recognised
pattern is equal to a given one all the robots must light their LEDs on,
otherwise all LEDs must be switched off.
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Chapter 4

Complexity measures in
robotics

In Chapter 1 we introduced complexity measures as a useful tool to quantify
some complex systems properties such as emergence, self-organization, and
even complexity. Given the fact that robots are themselves complex systems,
an entire branch of research has been started to investigate how to make
use of such measures to quantify properties of robots behaviour.

One of the main problem deriving from the employment of complex
controllers, such as ANNs or BNs, is the impossibility to describe their dy-
namics by means of a set of clear and formal rules, therefore it is not possible
to predict robot behaviours. Moreover, a robot is not an isolated entity and
its dynamics, therefore its behaviour, is the result of a continuous interac-
tion with the surrounding environment. Thus, if a robot performs well in a
specific environment it can poorly behave in a slightly modified one, in ad-
dition its controller can exhibit a total different dynamics if extracted from
its embodiment and analysed as an autonomous system. The only way we
have to classify a robot behaviour is to make use of a task-specific objective
function, or performing a visual inspection and assigning a qualitative and
subjective evaluation, but neither of the two methodologies gives us any
information on controller properties and on dynamics characterising it.

Advantages deriving from the application of complexity measures to
automatic design of robot controllers can be summarized as follows:

• complexity measures can be adopted to provide quantitative infor-
mation on robot behaviours, thus giving an evaluation that does not
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depend on subjective interpretations;

• they will be employed to increase our understanding of robot dynamics
and how complex behaviours emerge from the interaction with the
environment;

• the usage of information theory principles let us to abstract from the
specific controller employed. For example, information collected on
ANN-robots dynamics through complexity measures remain valid for
BN-robots;

• can be used in automatic design as an high-level task-independent
utility functions for the development of useful behaviours. This par-
ticular way to use information-theoretic measure gave origin to a novel
methodology in evolutionary robotics named information-driven evo-
lution[39];

• if the correlation between such measures and well performing robot
behaviours will be demonstrated, they can be combined with clas-
sical task-dependent fitness functions to improve automatic design
processes in terms of both, efficiency and effectiveness, by promoting
internal complex network dynamics;

In the following sections we present some related works about this branch
of research, then we provide an overview of the work done giving details on
the specific implementation adopted for measures presented in Chapter 1.

4.1 Related works

Complexity measures have been already adopted with different purposes in
robotics.

In Ay et al.[2] researchers used predictive information, evaluated as mu-
tual information on successive sensor states, to describe the behaviour of a
two wheels robot. The experiment consists in placing a robot, moved by a
purely reactive controller, in a square arena surrounded by walls with some
obstacles in it and observing its exploration capacity. The robot does not
have any proximity sensors, and it can sense the environment only through
the true velocity of its wheels (if the robot hits an obstacle, the wheels may
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get totally or partially blocked). The robot behaviour is modified by means
of a control parameter c that determines the wheels target velocities at t+1
on the bases of real velocities sensed at time t. Results shown that the value
of c corresponding to the maximum value of predictive information agrees
almost exactly with the maximum explorative robot behaviour.

In [39] Sperati, Trianni and Nolfi simultaneously evolved a group of 3 e-
puck robots by maximizing the mutual information of motor states between
all possible robot pairs. Each robot is controlled by an ANN, and is equipped
with a large variety of sensors (light, proximity, visual, and signal sensors).
In addition to motors, robots have at their disposition LEDs and a sound
emitting actuator that can be used for communication. Researchers define
the behaviours obtained as “structured, periodic, and coordinated”. More-
over, different evolutionary runs led to qualitative different behaviours. For
example, one of the obtained behaviour consists in a sort of “dance”around
a light bulb placed in the middle of the arena, each robot circles anticlock-
wise alternating four atomic movements: (i) forward motion on the circle,
(ii) clockwise turn on the spot, (iii) backward motion on the circle, and (iv)
anticlockwise turn on the spot. Moreover, to maintain the synchronisation
robots learnt to make use of the sound signal emitter.

A deep analysis of the correlation between a set of complexity measures
and animats fitness is reported in [16]. In this experiment, agents controlled
by Markov networks must navigate and pass through a maze, composed of a
series of walls having a single door, along the shortest possible path connect-
ing the entrance with the exit. At every maze door, the agent is instructed
about the position of the next door through a light signal, which is available
only while the agent is standing in the doorway. The agent has only few time
instants to perceive and memorizing the information about the next door
before the light signal disappears. Six typologies of information processing
and information integration measures have been calculated along the whole
evolutionary process. Results showed a positive and highly significant corre-
lation of all the measures proposed with fitness, but researchers pointed out
how integrated information measures tend to better predict agent fitness
when memory is involved.

One last work, strictly connected with the one performed in this the-
sis, is described in Roli et al. [34] where various analysis of BN-robots
dynamics were performed. In the task presented, robots have to alternate
phototaxis and anti-phototaxis as already described in Section 3.3. Among
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the analysis performed, researchers calculated entropy, disequilibrium and
LMC complexity on robot trajectories collected during the entire evolu-
tion process. Results led to an important observation: LMC complexity of
successful individuals increases during the training process, whilst remains
almost constant for unsuccessful ones.

4.2 Application of complexity measures

All the results reported by the works presented in the previous section
support the hypothesis that there is a strong correlation between complexity
measures and robot behaviours.

The aim of this thesis is to investigate such correlation in RBN-controlled
robots. To do so, we implemented 3 experiments with different characteris-
tics and different complexity degrees. A detailed description of the work per-
formed and of obtained results will be provided in the next chapters. This
section reports how we applied complexity measures presented in Chapter
1 to our robotics experiments (i.e. to RBN trajectories).

For the calculation of complexity measures, we decided to discard values
of nodes related to sensor groups because externally imposed and not di-
rectly associated with the network dynamics. On the other hand, it is also
true that the motor commands are related with the sensor readings through
the environment, so that the robot with its “brain”forms a feedback sys-
tem which also includes the environment itself. We took this decision to
maintain the analysis focus on the network internal dynamics, although an
alternative analysis considering only sensor and actuator nodes has been
made for the T-Maze task (see Chapter 10). Nodes connected to robot
actuators have been kept instead, thus measures are calculated on trajecto-
ries composed of states of 16 or 15 bits depending on the number of sensors
employed in each task.

Entropy and Disequilibrium

Both the entropy equation (eq. 1.3) and the disequilibrium one (eq. 1.4)
contain the term P (x), which is the probability for the discrete random vari-
able X of assuming value x. To implement these measures on trajectories,
the following assumptions have been made:

• x represents one of the state values that appear in the trajectory;
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• P (x) is obtained by dividing the number of times each x appears in
the trajectory by the trajectory length;

• |X | is the number of different states that appear in the trajectory. We
also tried to use the number of possible states that can be obtained (i.e.
216), but results obtained in the analysis did not highlight appreciable
differences, therefore we decided to report only results obtained with
the first definition of |X |.

LMC complexity is the product result of measures above, for this reason
does not need any further explanation.

Average Mutual Information

The main decision on how to apply mutual information to trajectories con-
cerns the choice of the random variables to evaluate. One of the possible
ways to apply this measure is considering single nodes as variables, then
evaluating mutual information on every possible pair. The term “aver-
age”indicates that the final value is obtained by making the sum of all
mutual informations, and diving by the number of different node couples.
Thus average mutual information is defined as follows:

〈I〉 =

(∑N−2
i=0

∑N−1
j=i+1Mij(

N
2

) )
(4.1)

where N is the number of nodes composing a state, Mij is the mutual
information for nodes i and j as defined in eq.1.6, and

(
N
2

)
is the number

of possible node couples.

Dynamic Correlation

The dynamic correlation requires the definition of some kind of system com-
ponents. In the case of RBNs, network nodes are the obvious choice. Equa-
tion 1.7 is then implemented as follows:

• i is the value of the i-th node at a precise instant of time, i.e. the value
assumed by the node in one of the state composing the trajectory;

• 〈i〉 is calculated as sum of the values assumed by the i-th node in all
the trajectory states divided by the trajectory length;
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• Cij = 〈(i − 〈i〉)(j − 〈j〉)〉 is obtained by the sum of (i − 〈i〉)(j − 〈j〉)
iterated over all the states and divided by the trajectory length;

• Cij refers to a single pair of nodes. The final value of dynamic corre-
lation is given by the sum of Cij calculated for every possible couple
of nodes with i 6= j. Notice that Cij = Cji and is considered only one
time.
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Chapter 5

Phototaxis task

This chapter presents the first task we implemented for this thesis. We
focus on giving an exhaustive description of the experimental set-up and of
the results obtained in terms of fitness values.

5.1 Task definition

The Phototaxis task is one of the simplest task used in robotics. We chose
this to study how complexity measures behaves in a task of minimal com-
plexity. In this task the robot objective is to move towards a light source,
reaching it, and remaining as near as possible.

Many variants of this experiment have been proposed in literature, for
example in [19] the light source change its position once reached by the
robot. In [40] phototaxis is part of a much more complex task where the
robot has to discriminate between two scenarios, in the first it is able to
reach the light source while in the second the path is blocked and must be
signalled by emitting a sound. The latter task requires the emergence of
memory, while the version we decided to implement for this work can be
accomplished by a purely reactive robot like a Braitenberg vehicle [8].

This task, as all the tasks of this thesis, has been implemented using an
open source modular multi-robot simulator called ARGoS [30]. The robot
used is a Foot-bot [15], but despite the large variety of sensors available only
light sensors have been used.

The environment is defined by an arena (12m x 12m) with a light source
positioned in the centre (see figure 5.1). Each experiment run is composed
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Figure 5.1: Portion of the arena used in phototaxis experiment

of 5 trials with a duration of 120 seconds, at the start of each trial the
robot is placed 4.5 metres away from the light at angles going from 1

12
π

to 5
12
π, moreover the robot rotation is randomly chosen from a uniform

distribution. During the whole process a Gaussian distributed noise, with
standard deviation=0.02 and mean=0.0, is added to robot actuators.

The evolutionary process is carried out using GAlib simple algorithm
[1], the evolution concerns a population of 20 individuals evolved over 100
generations. At each generation the best individual remains unchanged
(elitism) while the others are selected through a roulette wheel mechanism.
A bit-flip mutation with probability p = 0.02 per bit is applied to gener-
ate the new population, but no crossover operators are used. The fitness
function is defined by minimizing an error value represented by the robot
distance from the light when the trial terminates, averaged over the 5 trials.

The RBNs controlling the robot are composed of 20 nodes (N=20) and
the function of each node depends on the value of 3 other nodes (k=3).
Only two constraints have been applied during the networks generation:
1) the nodes belonging to one node boolean function are different, 2) no
self-connections.

The evolution process concerns only the network truth table, while the
networks physical topology is kept fixed. The genome is composed of a
20x8 bits matrix: one row for each node, one column for every possible
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input nodes combination ( with k=3 there are 23 combinations). Notice
that the rows corresponding to the BN input nodes are kept to maintaining
the model as general as possible, but are never used. Each run of the
experiment involves a RBN, the truth tables of the initial population of 20
individuals are automatically generated with bias = 0.5 (i.e. each bit of the
genome has an equal probability to assume value 0 or 1). During the whole
experiment a total of 30 RBNs have been trained.

Sensors and actuators mapping

Each robot is equipped with 24 light sensors equally distributed around
the Foot-bot body and divided into four groups (see figure 5.2), each group
corresponds to an RBN input node. When the sum of values read by a
group of sensors reach an empirically defined threshold, the corresponding
node state is imposed to 1, otherwise it is set to 0. This configuration makes
possible to have more sensor groups active at the same time, but practically
only two of them can be simultaneously turned on until the robot is really
near to the light. Finally, each of the robot actuators is connected with
an RBN output node, when the node state is 1 the relative wheel moves
forward with a speed of 5 cm/s, when the node state is 0 the wheel is idle.

By convention, sensors have been mapped into the first network nodes
(x0, .., x3), while actuators have been assigned to the last two nodes (x18, x19).
Notice that in an RBN all nodes are equals and there are no hierarchies be-
tween them, neither exists the concept of order. The terms “first nodes”and
“last nodes”are used for ease of description and are the result of a vecto-
rial representation of the network nodes. Any other choice of nodes may
have been made without adding, or losing, any a priori information on the
resulting robots behaviour.
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Figure 5.2: Light sensors configuration employed in phototaxis task, each
yellow dot represents a light sensor.
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5.2 Evolution results

Because of its extreme simplicity, all the trained networks were able to
perform the task successfully.

In figure 5.3 the error value of the best individual of each generation is
reported, averaged over the 30 experiment runs (30 different RBNs). As
can be seen, the evolution process is very fast, and after only 20 generations
almost all the best individuals are capable to finish the task with a distance
from the light source lower than 0.5m. After generation 60 the improvement
is on average of only 2cm in 40 generations, thus the evolution process can
be considered terminated.

During the test phase all the evolved individuals demonstrated to be
able to reproduce good results with regularity.

Figure 5.3: Error value of the best individual of each generation averaged
over the 30 evolved networks.
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Chapter 6

Phototaxis complexity
measures

The analysis of robot dynamics through complexity measures requires, as
first step, to collect the robots trajectories. We performed this trajectories
collection operation simultaneously with the evolution process. Each time
a BN-robot is evaluated by the genetic algorithm its trajectory is recorded,
trajectories deriving from different trials of the same run are saved in sep-
arated files. A particular file naming convention has been adopted to dis-
tinguish trajectories of the same individual from the others. No filters have
been applied during the trajectories recording (e.g. saving only the best
individuals trajectories) to maintain the collected data as complete as pos-
sible. The entire evolution process lasts for 100 generations, each generation
is composed of 20 individuals tested on 5 trials for a total of 10.000 trajec-
tories for each RBN trained, and 300.000 for the whole experiment. Each
trajectory is composed of a sequence of 1.200 states of 20 bits: 4 bits are
used for sensors and were not considered in the analysis.

6.1 Analysis

The analysis has been conduced only on the best individual of each gen-
eration. On the trajectory registered for each trial entropy, disequilibrium,
LMC complexity, average mutual information, and dynamic correlation are
calculated, then an average over all the 5 trials is made. In this section
we report the results obtained for each measure as the average over the 30
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RBNs evolved in the experiment. In addition, also the coefficient of vari-
ation (CV) of such measures, defined as the ratio of standard deviation to
the mean in percentage, is provided.

Following equation 3.2, with k = 3 and p = 0.5 the network should be
initially chaotic, thus is expected to find high entropy and low disequilibrium
values in individuals of first generations even if that equation has been
derived for autonomous RBNs. The idea is that a network in a chaotic
regime keep being chaotic also if few of its nodes value are imposed.

As can be seen in fig.6.1(a), individuals from first generations have on
average an higher value of entropy which tends to decrease gradually with
fitness (fig.5.3). On the contrary, the disequilibrium value (fig.6.1(c)) is low
in an early phase of the evolution and increases during the process. This is a
quite obvious result given the fact that entropy and disequilibrium actually
measure two almost complementary phenomena. These trends of entropy
and disequilibrium are an evidence that the adaptive process successfully
achieved generalisation of the task, moving from a more chaotic regime to
a more ordered one, and learning how to efficiently make use of information
coming from the environment.

An interesting result comes from LMC complexity, as shown in fig.6.1(e)
this measure increases during the training process until reaching a stable
value around 0.8. Some works about criticality shown that critical systems
are characterised by a peak of LMC complexity, the result obtained here,
instead, only means that the dynamics of the trained RBNs moved toward
a critical regime, and not that it has been reached, in fact the phototaxis
task we proposed may be not sufficiently challenging to drive networks to
their maximum complexity behaviour. A similar hypothesis, but applied to
autonomous BNs, has been proposed in [5].

Another important result is highlighted from coefficients of variation of
the measures mentioned above, all of them show a clear downward trend.
This is a sign of convergence of the RBN-robots dynamics towards an op-
timal value for this task that does not depend on the specific networks
structures.

Also the average mutual information increases during generations (fig.
6.1(g)) but, contrarily to the other measures, its CV only slightly decreases
during the evolution. Although, we still consider this result enough signi-
ficative to suppose that a faint convergence process took place also for this
measure.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.1: Average values of complexity measures and their coefficients of
variation, both calculated considering the best individual of each generation
in the 30 RBNs trained.
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Finally, dynamic correlation 6.2(a) does not provide useful information
about the robots dynamics, it fluctuates around 0 during the first half of
the process and then has a positive peak that gradually decreases to its
initial values. A major proof that dynamic correlation is not meaningful for
this task is given by its standard deviation, in fact it dramatically increases
in correspondence of the positive peak around generation 50, and values
assumed are about one order of magnitude higher than the correlation ones,
meaning that the result reported is representative of a very sparse values
distribution. Notice that, in this case, we did not report CV because it
tends to really high values when the mean tends to 0.

(a) (b)

Figure 6.2: Average value and standard deviation of dynamic correlation,
calculated considering the best individual of each generation in the 30 RBNs
trained.
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Chapter 7

Obstacle Avoidance task

This chapter describes the second task we implemented for this thesis. As for
the previous one, we will describe the task and qualitative results obtained
here, while complexity measures evaluated on the robots trajectories will
be discussed in the next chapter.

7.1 Task definition

Obstacle avoidance is another classic task in robotics. Here, the robot has
to learn how to move inside a circuit without hitting the walls.

This task shares an important aspect with the photaxis one: it does not
require memory. Once again, a Braitenberg vehicle can accomplish this task
in an efficiently way. A major difference between phototaxis and obstacle
avoidance can be found, instead, in the interaction with the environment:
in the former the robot has to locate and following a fixed reference point,
resulting in a more constant and gradual sensors solicitation, in the latter
it has to react once an obstacle is found, alternating phases of high sensors
activity with idle ones. Moreover, the rapidity with which information
coming from sensors starts to influence actuator actions is crucial.

The specific version of the task we decided to implement is inspired to
the one proposed by Floreano and Mondada in [17]. The robot is put in
an arena consisting in a sort of circular corridor of about 2m x 1.5m (see
fig.7.1). The walls are disposed in order to create some difficult situations
and making the task more challenging, for example the upper-right corner
constitutes a real trap for many robots.
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Figure 7.1: Arena employed in the obstacle avoidance task, the yellow dots
show the others 4 initial positions where the robot can be placed.

The experiment is composed of 5 trials of 60 seconds each; the trial
duration should be sufficient for a robot to perform about an half lap of the
circuit. At each trial, the robot starting position is changed on the bases
of 5 pre-defined locations shown in fig.5.1, moreover the robot rotation is
randomly chosen from a uniform distribution. As for the previous task, a
Gaussian distributed noise, with standard deviation=0.02 and mean=0.0,
is added to robot actuators.

Genetic algorithm parameters are the same employed for photaxis with
an only difference in the algorithm termination criteria, for this task the
evolution is let run for 250 generations.

The fitness function proposed by Floreano and Mondada, thought for
ANNs, is defined as follows:

Φ = V (1−
√
|∆V |)(1− i) (7.1)

where V is the average speed of the wheels, |∆V | is the absolute value
of the wheels speed difference, and i is the highest value read by proximity
sensors (the values range is [0, 1]). Equation 7.1 is evaluated at each tick of
time, the sum of these values constitutes the final robot score. Thus defined,
the fitness function value is maximum when the robot moves straight at
maximum velocity, but every time an obstacle is detected the score decreases
proportionally with the distance from it.
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Due to the restrictions imposed by the boolean logic of RBNs, we mod-
ified the fitness function trying to keep the same concepts. Actuators can
only be active or idle, consequently term V , that now refers to the average
actuators activation, can only assume values 0, 0.5, or 1. The contribute
given by the difference of wheels speed looses relevance because of the few
values it can assume, the information it should give are fully provided by
term V , for this reason term (1 −

√
|∆V |) has been eliminated. Finally,

(1 − i) is kept without any modifications, notice that sensor readings are
continuous values even for a BN-controlled robot. The resulting fitness
function is then defined as:

Φ = V (1− i) (7.2)

As the robot is evaluated 10 times each second, the maximum theoretical
score reachable in each trial is 600. That limit is obviously impossible to
reach because, in the entire arena, does not exist a zone where the robot can
move without running into a wall. The final robot score is then averaged
over the 5 trials.

Sensors and actuators mapping

The sensory set-up is very similar to the one adopted in the phototaxis task
with the only difference that infrared proximity sensors have been employed
instead of light ones (see fig.7.2).

The same groups division has been maintained, but the activation thresh-
old value has been considerably lowered. As said, reaction rapidity is crucial
for this task, and a little threshold value has been introduced only to make
the robot behaviour more robust in case of sensors noise (that has not been
adopted).

7.2 Evolution results

Even if the evolved robot scores are on average good, results obtained show
that not all the RBNs were able to produce well performing individuals.
However this is a quite common result in the field of automatic design, and
there is an high probability that the genetic algorithm remained stuck in
a local maxima. In general, it is unlikely for network topologies having a
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Figure 7.2: Proximity sensors configuration.

major influence on robots performance, the only exception is represented
by pathological cases (e.g. one or more actuators completely disconnected
from sensors).

Considering that the best evolved individual obtained a score of 410, and
the worst achieved 222, a totally arbitrary threshold has been fixed at 300
to distinguish well performing individuals from the others. Only 3 RBNs
did not produce individuals capable to reach such reference score. Figure
7.3 reports the score obtained by the best individual of each generation,
averaged over the 30 experiment runs.

A visual inspection of best individuals confirmed that robot behaviours
are qualitatively good, however even the best individual may sometimes hit
a wall. This problem is mainly caused by the peculiar shape of the arena
and the space for manoeuvre that a robot needs to change its direction
(wheels can not go backwards).
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Figure 7.3: Fitness value of the best individual of each generation averaged
over the 30 evolved networks.
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Chapter 8

Obstacle Avoidance complexity
measures

The same concepts applied to phototaxis trajectories have been applied also
for this task, therefore measures are evaluated on trajectories with states
of 16bits long. In total we recorded 750.000 trajectories, but only the ones
relative to the best individual of each generation has been employed for
complexity measures calculation, therefore data presented are obtained by
the analysis of 37.500 trajectories.

8.1 Analysis

This section reports the results obtained on entropy, disequilibrium, LMC
complexity, average mutual information, and dynamic correlation. Results
will be discussed here, but a comparison with other tasks is demanded at
Chapter11. Once again, the values reported are representative of the 30
trained RBNs.

The first interesting result is given by the initial values of entropy and
disequilibrium. As said, a more chaotic regime is expected in initial gen-
erations, but in a very first phase of the evolution process many RBNs
manifest a more ordered regime. This phenomena can be easily explained
by observing the fitness function definition (eq.7.2) and the arena structure
(fig.7.1). Robots acquire fitness value only if they keep moving, for this
reason at the first generations, when the evolution process may still not had
any effects, robots that only move forward or spin around (i.e. with more
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ordered dynamics) will be able to achieve an higher fitness score and, con-
sequently, being selected as the bests of their generation. Notice that RBNs
that satisfy equation 3.2 have a chaotic behaviour only on average, thus it is
perfectly admissible that some of the randomly generated individuals have
more ordered behaviour than the others.

After some initial heavy oscillations, entropy and disequilibrium values
follow the expected trend: the former decreases while the latter increases.
Also in this case, trends show how evolved and well performing robots tend
to have more ordered dynamics than the ones from earlier generations. LMC
complexity obviously follows the same trend and increases during the evo-
lution process upon reaching an almost stable value at 0.56.

Less clear is the information coming from the standard deviations of such
measures. For disequilibrium and LMC complexity, standard deviations
tend to slightly increase, but their coefficients of variation show a clear
downward trend(fig.8.1(d) and 8.1(f)). Entropy CV shows instead a clear
downward trend until generation 175 when, suddenly, its value increases up
to its initial value. A deeper inspection highlighted that this anomaly is
caused by the values of a single RBN, by considering such network values
as non-representative and eliminating them from the measures analysis, the
peak in entropy CV completely disappears. Figure 8.1(b) reports CV values
with and without considering values deriving from such network.

Average mutual information grows considerably during the first 100 gen-
erations, achieving an increment of about 45% with respect to its initial
value, then starts to decrease until reaching the same values assumed at gen-
eration 15. Neither the CV gives any useful information, it heavily oscillates
without decreasing, and does not provide any element for hypothesizing a
convergence of average mutual information towards an optimal value. Given
these results, we consider that average mutual information does not provide
any kind of correlation with robots fitness for what concerns this task.

Finally, dynamic correlation confirms its low capacity to predict robot
behaviours. Its mean oscillates without showing any clear trend, and its
standard deviation values are three time higher than the mean ones, even
if it decreases during the evolution.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.1: Average values of complexity measures and their CVs both
calculated considering the best individual of each generation in the 30 RBNs
trained. Figure 8.1(b) also reports the CV evaluated excluding the non-
representative individual (red). 51
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(a) (b)

Figure 8.2: Average value and standard deviation of dynamic correlation
calculated considering the best individual of each generation in the 30 RBNs
trained.
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Chapter 9

T-Maze task

The last task we realized to conduce this investigation is the T-Maze task,
which is indeed more complicated and complex than the previous ones. In
this chapter we describe the task and the variations applied, with respect
to its original formulation, in order to improve robots performance.

9.1 Task definition

Many versions of this task has been proposed in literature, but we chose the
one named Simple T-Maze described by Blynel and Floreano [7]. Despite its
apparent simplicity, this task requires elements like exploration and memory
which are typically desired also in real world applications. The main differ-
ence from the previous tasks is the memory requirement, in fact, contrarily
to phototaxis and obstacle avoidance, the T-Maze task can’t be success-
fully accomplished by a purely reactive robot. Moreover, this task includes
features such as an environment that varies during the experiment, and a
limited time to accomplish the task, which surely contribute to increase the
overall task difficulty.

The T-Maze task is designed to test the capability of a robot to retain
information over successive trials. The most important characteristic of this
experiment is that the “learning”comes from internal network dynamics,
and not from modifications of the network topology or truth table. It can
be said that memory emerges from internal network dynamics. A previous
successful example of memory emergence in a BN-controlled robot dynamic
state can be found in [33].
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Figure 9.1: Arena employed in the T-Maze task, the black square represents
the reward-zone while the yellow sphere is the light source employed as fixed
reference point.

In the Simple T-Maze task a robot is initially positioned at the base of
a T-shaped maze, and his objective is to find and stay on a reward-zone
represented by a black square on the floor.

Each robot is tested for 4 epochs composed of 5 trials each, the reward-
zone position depends on the current epoch, but is guaranteed to have the
reward-zone 2 times on the left maze arm and 2 times on the right arm. At
the beginning of each epoch, the network state is always initialized with the
same values, this means that network state is kept during different trials,
and information about the reward-zone position can be potentially stored
in the network dynamic state.

The first trial (exploration trial) of each epoch is longer than the others
and lasts enough to let the robot exploring all the maze, a well evolved robot
should use this trial to find the reward-zone and memorizing its position.
Successive trials (memory trials) are shorter and the robot can reach the
reward-zone only if it turns in the correct direction at the T-junction, ideally
the choice on where to turn should be based on information collected during
the exploration trial (the reward-zone position do not change during the
same epoch).

The fitness function used to evaluate the robots is simply the number of
times a robot ends a trial on the reward-zone. The maximum fitness value
a robot can obtain is 20 (4 epochs of 5 trials each). Notice that this fitness
function is not designed for obtaining behaviours like fast moving robots or
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obstacle avoidance, thus a very little a priori knowledge is introduced into
solutions.

In a previous work [3], the original task has been tested on BN-robots,
results shown how the impossibility for robots to understand their position
inside the maze heavily influences their behaviours robustness. With the
objective of giving to robots the capability of recognizing left from right in a
more reliable way, a light source has been added on the left arm of the maze
(see fig.9.1). Notice that light position never changes during the experiment,
its purpose is to provide a fixed reference point to identify the left maze
arm, it basically works as the North Star. This choice can be legitimized
by the fact that usage of an external source of information is quite common
in real robot applications (e.g. some kind of markers positioned inside a
warehouse), moreover adding this kind of information to the environment
is usually a cheap operation.

Previous works made use of a light source in a T-Maze task [21][42],
but in these experiments the light purpose was to indicate the right turning
direction, which is a completely different use.

Successive tests, conduced on the modified task, highlighted an incre-
ment in robots performance in terms of robustness and number of individ-
uals capable to reach the maximum score.

The experiment is carried out using GAlib steady-state algorithm with
a population of 30 individuals per generation. At each generation, the best
3 individuals remain unchanged while for the remaining population single-
point crossover, with a 0.1 probability, and bit-flip mutation, with 0.02
probability per bit, are applied. The evolution lasts for 400 generations,
during the whole process the same noise level employed in the previous
tasks is applied to robot actuators.

It is important to specify that the mechanism used by GAlib to imple-
ment elitism does not evaluate best individuals at each generation: if an
individual hit a good score by luck it will not be tested again, and will be
brought through generations even if its behaviour is generally bad. More-
over the fitness function for this task is bounded to a maximum value of 20:
this means that if two individuals reach this limit value they are considered
equivalent, therefore there is no way to distinguish which one is “better”(e.g.
faster, manifests a more robust behaviour, ..).

To partially overcome this problem, the genetic algorithm output is com-
posed of the best 5 individuals encountered throughout the evolution pro-
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cess, during the test phase these individuals are individually tested and the
best one is picked for statistics.

Sensors and actuators mapping

For this task, robots were equipped with three different kind of sensors (see
fig.9.2):

• ground sensor: this sensor, placed below the robot, detects the floor
colour. When the robot steps on the reward-zone the corresponding
node state is set to 1, in all the other cases is set to 0;

• proximity sensors: 3 groups of 6 sensors are placed on the front and
sides of the robot. The corresponding nodes activation criteria are the
same employed in the obstacle avoidance task;

• light sensors: all the 24 light sensors are used, the highest value read
is compared to a threshold value representing the middle of the maze,
if the value read is higher than the threshold means that the robot
is near the light (left arm of the maze), if lower means that it is far
(right arm);

9.2 Evolution results

The results obtained during the training phase are the following:

• 19 BNs reached the maximum fitness value of 20/20;

• 1 BN reached 19/20;

• 4 BNs reached 18/20;

• 2 BNs reached 16/20;

• 1 BN reached 15/20;

• 3 BNs reached 12/20;
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Figure 9.2: Proximity and light sensors configuration employed in the T-
Maze task.

A considerable number of RBNs were able to produce individuals with high
fitness values, and about 63% of them achieved the maximum value of 20/20.
All evolved individuals manifest a preferred turning direction once arrived
at the T-junction: this means that when no information about the reward-
zone position has been collected (e.g during the exploration trial) the robot
always turns on the same side. From now on, for ease of description, when
an epoch has the reward-zone on robot preferred side it will be called “con-
cordant epoch”, when the reward-zone is placed on the opposite side it will
be called “discordant epoch”.

Results from training phase are obtained from one single run of the ex-
periment, to verify the robustness of robots behaviour and the truthfulness
of the obtained results, a test on the best individual of each RBN has been
performed. The test consists in 30 runs of the experiment, results obtained
are then reported as box-plots in figure 9.3. Notice that the best robot of
each network is chosen after a preliminary analysis from the best 5 returned
by the genetic algorithm.

Test results highlight how some individuals are capable to reproduce
its scores on almost all the 30 runs, while others obtain results that may
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Figure 9.3: Results of the best robot of each RBN obtained during the
test phase and ordered by mean. Each box-plot represents 30 runs of the
experiment.

vary in a wide range. The formers developed a solid strategy that gives
origin to robust behaviours, e.g. individuals with an highest score of 12/20
simply perform wall following, this simple strategy allow them to always
reach the reward-zone during concordant epochs, and scoring one point in
the exploration trial of discordant ones. The latter did not developed a
precise strategy, and their behaviours are heavily influenced by actuators
noise. These last individuals may be the result of GAlib elitism mechanism
combined with the limit imposed to the fitness function maximum value.
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T-Maze complexity measures

Given the different formulation of this task, some changes in the trajecto-
ries structure have been necessary. Trajectories from different trials of the
same epoch are saved in the same file, but separated by an identifier. At
each epoch corresponds a trajectory file, therefore there are 120 files per
generation, 48.000 per network trained, and a total of 1.440.000 for the
whole experiment each one containing 5 trials. The sensors configuration
employed for this task required 5 BN input nodes, thus complexity measures
are calculated on trajectories with states of 15bits.

It is important to point out that T-Maze is a composite task:

• first trial differs from successive trials, the former is based on explo-
ration while the latter relies on memory;

• each trial can be divided into two phases where, in the first, the robot
has to find the reward-zone and, in the second, it has to maintain his
position. Also in this case, the dynamics characterizing these phases
can be different;

• all evolved robots manifest a preferred turning direction and, for this
reason, the difference between concordant and discordant epochs con-
stitutes another distinction element;

Given these differences in the task structure, we performed three different
typologies of analysis to better and deeper investigate robot dynamics. In
the following sections, a description of the analysis performed and a discus-
sion of the results obtained are provided.
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10.1 Evolution analysis

This analysis is the same performed for the other tasks: complexity mea-
sures are evaluated during the whole evolution process, and results reported
are the average values over the best individuals of trained RBNs. Notice
that we decided to include in the analysis only those networks that reached
at least a score of 18/20 (24 in total).

As previously said, each trial is composed of a searching phase and a po-
sition maintaining phase which potentially require really different dynamics.
Moreover, the duration of each phase depends on the robot under observa-
tion and on the specific path followed during the trial. With the objective
of providing clearer information about robot dynamics, we decided to limit
the measures evaluation at the first phase of each trial, therefore states col-
lected after the reward-zone is found are discarded during the trajectories
analysis. Some preliminary analysis were performed including also the po-
sition maintaining phase, results obtained shown how it badly influences
information deriving from complexity measures. In addition, also the ex-
ploration trial has been discarded from this analysis, a direct comparison
between exploration trial and memory trials will be provided in the next
section.

Complexity measures are calculated on each trial separately, and an
average over all the 4 epochs composing a run (i.e. 16 trials) is performed.
We also performed an analysis variation where the trials of each epoch were
considered as a unique trajectory, results obtained does not present any
appreciable difference from the other ones, therefore only the first version
of the analysis is reported in the following.

Results do not provide clear information as in the previous tasks, but
some interesting considerations can be made anyway. The first observation
concerns the measures CV values which, despite the oscillating measures
means, show evident downward trends (see figures 10.1(b)10.1(d)10.1(h))
with the only exception of LMC complexity (fig.10.1(f)). Once again, results
highlight a convergence of robot dynamics towards what can be considered
an optimal value, conjectures about this phenomena will be provided in the
next Chapter.

How can be seen in figures 10.1(a)10.1(c)10.1(e), trends of entropy, dise-
quilibrium and LMC complexity are characterised by an irregularity around
generation 100. After having inspected all individuals singularly, we discov-
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ered that such irregularity is correlated with two particular evolutionary
path followed by some networks. First of all, the importance of a fitness
score of 12/20 must be pointed out. This score is in fact the highest value
reachable, with regularity, without memory, and may represent a strict divi-
sion in a network evolution process. Some early generation individuals base
their strategies on simple behaviours that require more ordered regimes, e.g
turning always in the same direction without caring of sensor readings, or
performing wall following. Thus, a slight increment in the fitness value after
a score of 12/20 may mean a sharp change in the robot dynamics towards
a more chaotic regime.

On the contrary, many individuals present a very chaotic dynamics dur-
ing first generations, meaning that their behaviours are heavily influenced
by actuators noise, and their results are consequences of lucky runs. The
development of a more performing strategy requires the presence of some
kind of pattern in the robots behaviour, thus a more ordered regime. The
different timing with which these changes happen, and the sharp variations
they cause in robot dynamics, give origin to the observable irregularity in
complexity measure means.

Finally, we decided to not report dynamic correlation because, as in the
previous tasks, it did not provide any useful information.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.1: Average values of complexity measures and their coefficients of
variation, both calculated considering the best individual of each generation
in the 24 RBNs selected for the analysis.
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10.2 Single run analysis

This kind of analysis aims to detect potential differences in robot dynamics
that may be present between concordant and discordant epochs in both,
well performing individuals and poor performing ones. To provide this
distinction, a group composed of 10 individuals that achieve the best results
during the test phase has been selected, and their behaviours have been
visually inspected to determine their preferred turning direction. Then, a
complete run (i.e. 4 epochs) for each individual has been performed and
relative trajectories collected. Knowing the reward-zone position and the
preferred turning direction of each robot, epochs have been divided into
concordant and discordant ones. Finally, complexity measures have been
calculated separately for these two groups.

Poorly performing individuals have been selected to provide a wide range
of possible undesired behaviours. In this group there are individuals that
achieved a fairly-high result but were not able to reproduce it during tests,
individuals with low maximum results, and also individuals with a maximum
score of 0 or 1.

Moreover, with the objective of giving more detailed information, we
decided to separate exploration trials from memory trials providing two
different analysis. As previously done, we considered only states collected
before the reward-zone is found.

Graphs presented in the following report complexity measures values
evaluated during concordant and discordant epochs. Each point on the
graph corresponds to the value obtained by a robot, and is calculated as the
average of 2 epochs (two epochs are concordant e two discordant). Notice
that some of the bad individuals examined did not developed the concept
of preferred turning direction, in this case, by convention, we treated them
as if they prefer turning left, but no qualitative differences were visible in
their behaviours among epochs.

Analysis on the exploring trials shows how, for well performing indi-
viduals, there are apparently no differences in the robot dynamics between
concordant and discordant epochs. We hypothesized that this result can be
explained by the fact that no real changes of behaviour occur between the
two types of epochs, i.e. robots always explore the maze, but in the case
of a discordant epoch they just need more time. Notice that values slightly
change when passing from a category of epoch to the other, but they do it
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in an uncoordinated manner remaining stable on average (i.e. for a robot
increase while for another decrase).

Another result comes from a strange but well performing individual,
which exhibits an incredibly ordered regime. This result, observed in en-
tropy and disequilibrium (see fig.10.2(a)), has been confirmed by visually
inspecting its behaviour. This particular robot moves straight until reach-
ing the wall, then turns right of 90 degrees and proceeds to the end of the
maze: if it does not find the reward-zone, it performs a U turn and follows
the wall until the opposite side.

A great result comes from the analysis of memory trials. In this case,
all the four complexity measures emphasize a difference between concor-
dant and discordant epochs. We consider this result particularly interesting
because shows how a qualitative behaviour change is reflected into the com-
plexity measures proposed. Moreover, during concordant epochs, measure
values are very similar to the ones observed in exploring trials, we hypothe-
sized that, in those epochs, robots are still performing the same exploration
behaviour. Confirming this hypothesis, entropy and disequilibrium of the
strange individual maintain the same values assumed during exploration
trials. On the contrary, during memory trials, entropy and disequilibrium
of such individual changed drastically highlighting a behaviour change. We
conjectured that discordant epochs show a more ordered regime because, in
this case, networks have to adopt a sort of reactive-like behaviour that is
usually associated to a lower richness of dynamics.

Also average mutual information highlights fairly well, with the excep-
tion of a single individual, the change of behaviour between concordant and
discordant epochs, and it is also the only measure that always increases in
this transition.

One last observation must be done on LMC complexity, it is on average
higher for good individuals, and reaches its maximum during discordant
epochs, which surely represent the most difficult part of the task.
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(a)

(b)

Figure 10.2: Measures obtained by well performing (good) and poorly per-
forming (bad) individuals during exploration trials. Each point is represen-
tative of a single robot, and measures have been separated between concor-
dant and discordant epochs.
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(a)

(b)

Figure 10.3: Measures obtained during memory trials separated between
concordant and discordant epochs.
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10.3 Sliding window analysis

We performed one last type on analysis aimed to investigate what happen
in the robot dynamics, at each instant of time, during the task execution.
Contrarily to the previous analysis, we do not calculate measures on the
entire robot trajectory, but we evaluate them through a sliding window. The
idea is to look at the dynamics associated to a short time period, evaluating
complexity measures on it, and then moving to the successive period. This
process can be though as a window sliding through the trajectory.

Fundamental parameters for sliding window analysis are:

• window width: this is the number of states considered at each mea-
sures evaluation. Basically, measures are calculated on a sequence of
“mini”trajectories whose lengths are determined by this parameter;

• offset : determines of how many states the window must be moved
forward between evaluations. If smaller than window width, successive
windows will partially overlap;

A good parameters selection is crucial, therefore we repeated this analysis
with 2 different parameters sets:

• width=50 and offset=30;

• width=20 and offset=10;

Notice that we want windows to overlap because this situation let us to
capture events that, without overlapping, would have been split between
successive windows.

For this analysis, trajectories deriving from 7 individuals with different
performance levels have been selected. For each measure and individual, a
graph reporting the value of such measure during the 2 epochs (one concor-
dant and one discordant) has been plotted. After having inspected a total of
70 graphs, no useful information have been discovered, therefore we decided
to only report on of them as example of the work performed (see fig.10.4).
Despite the poor results, this analysis provided us a deeper understanding
of robot dynamics during the task highlighting how it is heavily influenced
by sensor activities.

Finally, we want to mention that the same analysis has been performed
considering only states relative to sensors and actuators. Also in this case
we did not obtain any interesting result.
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Figure 10.4: Example of entropy values evaluated during the run of a well
performing robot with window width=50 and offset=30. This graph is
representative of 2 epochs (10 trials): the first is concordant and the second
discordant. Each spike represents a change in sensor readings.
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Chapter 11

Comparison and considerations

In previous chapters, we presented the experiments made to investigate the
correlation between complexity measures and robots fitness. Moreover, we
discussed results obtained for each task separately. The objective of this
chapter is to provide a comparison between results of all the three tasks
proposed, discussing how they have been affected by tasks differences, and
looking for phenomena that could not be discovered by observing tasks
separately.

Given the extremely poor results of dynamic correlation, we decided
to exclude such measure from our comparison, thus all the considerations
we will make in the following refer only to entropy, disequilibrium, LMC
complexity, and average mutual information.

The first observation we can do concerns the correlation between com-
plexity measures proposed and robots fitness, assumed during the training
process, among the three tasks. In general, all measures have an extremely
significant correlation with fitness during the phototaxis task, they show
clear trends in both, average values and coefficients of variation. In the
obstacle avoidance task, all measures tend to have less clear CV trends, and
the average mutual information does not show any correlation with fitness
at all. Finally, in the T-Maze task only entropy, disequilibrium and aver-
age mutual information showed a faint correlation with fitness and fairly
good CV trends, but more significant results emerged from a more detailed
analysis. We conjectured that this gradual, and general, loss of clearness in
measure graphs may be owed to the increasingly composite nature of the
tasks, i.e. tasks require the alternating of different kind of behaviours. This
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conjecture is supported by the significant results obtained from separating
T-Maze trials.

Another comparison can be made on the dynamical regimes adopted
from robots to accomplish the different tasks proposed. As we would expect,
robots performing phototaxis exhibit a much more ordered regime than the
others. This result derives, with any probability, from the extreme task
simplicity and from the low necessity to rapidly react to sensor solicitations.
On the contrary, robots performing obstacle avoidance show more chaotic
dynamics. The obtained results perfectly fit with the idea that a more
chaotic system has an higher sensitivity to external stimuli, thus robots
evolved towards such desired condition. Comparing results obtained from
the T-Maze task is not trivial. On average, evolved individuals shown the
most chaotic dynamics over the three tasks, but results deriving from single
run analisys have shown that, during memory trials of discordant epochs,
robots assume a dynamical regime at least as ordered as the one assumed
during obstacle avoidance. This suggests that a robot may vary its dynamics
if the task requires it.

We highlighted how, with only few exceptions, all the complexity mea-
sures coefficients of variation tend to decrease during the evolution. This
result leads us to hypothesize the existence of a sort of “optimal value”,
towards which networks converge, that characterises the task itself (i.e. the
behaviour necessary to successfully accomplish it). Notice that when we
speak about “convergence”, we are not referring to the convergence of a
genetic algorithm towards an homogeneous population, but we are referring
to a group of different networks that evolve independently from each other,
and that tend to expose the same properties.

Some final dedicated observations can be made on measures adopted:

• entropy and disequilibrium: these measures always demonstrated a
tight correlation with robots fitness, with a little exception in the T-
Maze task explained in Section 10.1. For this reason, between the
complexity measures proposed, we consider them to be the best ones
to identify qualitative changes in robots behaviour. Despite this result,
we do not consider these measures to be a viable option for a possible
employment, in an automatic design process, as task-independent util-
ity functions. The main reason is that they do not identify a desirable
network dynamics but they simply describe it, thus their maximiza-
tion (or minimization) will lead to an highly undesired result.

70



CHAPTER 11. COMPARISON AND CONSIDERATIONS 71

• LMC complexity : this measures gave useful information about robots
fitness in phototaxis and obstacle avoidance, but behaved poorly in
the T-Maze evolution analysis. This last result highlights how this
measure is sensible to task composed of different kind of behaviours.
Despite everything, we think that it is one of the most promising
measures, between the ones proposed, to be employed combined with
task-dependent fitness function. We hypothesize that results have
been highly influenced from the analysis typology we performed. This
hypothesis is supported by results deriving from single run analysis
(see Section 10.2). Notice that an higher value of LMC complexity
does not mean an higher intrinsic task complexity, and should not be
used to perform comparisons between different tasks.

• average mutual information: despite this measure performed fairly
bad on average, its values are more significant in the T-Maze task
than in obstacle avoidance, which is a unexpected result. Moreover, it
is the one that more clearly shown the difference between concordant
and discordant epochs in the T-Maze single run analysis. A deeper in-
spection, based on data deriving from the three tasks, shows how this
measure tends to be higher in ordered regimes and follows the dise-
quilibrium graphs, but in the T-Maze task it starts to increase against
disequilibrium exactly in the moment we hypothesized corresponding
to the emergence of memory in the majority of individuals.
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Conclusion

In this thesis we investigated the correlation between a group of complexity
measures we selected and robots fitness. The motivation for such inves-
tigation derives from the application of complexity measures, designed in
information theory, to quantify complex systems properties, and from the
successive idea of employing such measures in robotics to quantify properties
of robots behaviour.

The objective was to understand how these measures can be used to im-
prove the analysis, by providing an evaluation criteria that does not depend
on subjective interpretations of behaviours, and synthesis of robot control
systems, by adopting such measures as an high-level task-independent util-
ity functions to be employed alone, or in combination with classical task-
dependent ones.

To do so, we applied an automatic design methodology (Chapter 2),
based on genetic algorithms, in order to develop robot controllers for three
different tasks implemented specifically for this thesis. Boolean networks
(Chapter 3), more precisely random boolean networks, has been chosen
as evolvable controller for our robots due to their extreme simplicity and
richness of dynamics.

We analysed trajectories collected on three tasks of increasing complex-
ity: phototaxis, obstacle avoidance, and T-maze. The last one, is a com-
posite task that requires the emergence of memory in the internal network
dynamics to be successfully accomplished.

While dynamic correlation immediately showed to be not employable for
our purposes, entropy and disequilibrium showed instead a tight correlation
with robots fitness during the whole training process in all the experiments
conduced: they increase (or decrease) coherently with the average fitness of
individuals examined.

Results obtained by LMC complexity during the T-maze task suggested
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that a too general analysis may not capture all the robot dynamics proper-
ties in case of composite tasks. For this reason we performed two additional
analysis, the first (see Section 10.2) aimed to capture differences that may
be present between different trials of the same experiment, the second (see
Section 10.3) focused on studying the robot dynamics, at different time
instants, during the task execution by means of a sliding window analy-
sis. Single run analysis highlighted some important differences in robot
dynamics between concordant epochs, where robots are free to follow their
internal dynamics, and discordant epochs, where they must adopt another
behaviour based on memory. On the contrary, sliding window analysis did
not provide any significant results. On the basis of what has been observed,
we think that the choice of the analysis detail level is crucial when applying
complexity measures to robotics.

Average mutual information gave bad results in obstacle avoidance but
shown an interesting possible correlation with the emergence of memory in
the robot dynamics. This conjecture obviously need further investigations.

We believe that this thesis can provide insights for some future works.
A first option concerns the employment of LMC complexity, or average
mutual information, as part of the fitness function in an automatic design
process of robot controllers. For example, in Chapter 10 we pointed out how
the combination of GAlib elitism mechanism, jointed with the bounded
fitness function of T-maze task, makes impossible to distinguish between
two robots which reached a score of 20/20, resulting in some evolved robots
with a poor behaviour robustness. A possible future work may investigate
if the integration of a complexity measure into the fitness function improves
the evolutionary process in terms of robots robustness, number of network
able to reach the maximum score, or even number of generations needed to
generate well-performing individuals.

Another future work will be focused on studying how tasks composed
of heterogeneous phases affect robot dynamics. This kind of analysis may
provide useful information on how employing complexity measures more
effectively.

As final consideration, we want to point out that in this work we studied
complexity measures on BN-controlled robot, but, given the fact that such
measure are based on information theory, all the results obtained and con-
siderations done may be extended to other types of robot control systems.
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