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Abstract

In questa tesi vengono presentati i più recenti risultati relativi all’estensione della teoria

dei campi localmente covariante a geometrie che permettano di descrivere teorie di campo

supersimmetriche. In particolare, si mostra come la definizione assiomatica possa essere

generalizzata, mettendo in evidenza le problematiche rilevanti e le tecniche utilizzate in

letteratura per giungere ad una loro risoluzione. Dopo un’introduzione alle strutture ma-

tematiche di base, varietà Lorentziane e operatori Green-iperbolici, viene definita l’algebra

delle osservabili per la teoria quantistica del campo scalare. Quindi, costruendo un funto-

re dalla categoria degli spazio-tempo globalmente iperbolici alla categoria delle ∗-algebre,
lo stesso schema viene proposto per le teorie di campo bosoniche, purché definite da un

operatore Green-iperbolico su uno spazio-tempo globalmente iperbolico. Si procede con lo

studio delle supervarietà e alla definizione delle geometrie di background per le super teorie

di campo: le strutture di super-Cartan. Associando canonicamente ad ognuna di esse uno

spazio-tempo ridotto, si introduce la categoria ghsCart delle strutture di super-Cartan il

cui spazio-tempo ridotto è globalmente iperbolico. Quindi, si mostra, in breve, come è

possibile costruire un funtore da una sottocategoria di ghsCart alla categoria delle super

∗-algebre e si conclude presentando l’applicazione dei risultati esposti al caso delle strutture
di super-Cartan in dimensione 2|2.
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Introduction

Quantum field theory played a prominent role in the development of physical models

throughout all the 20th century and continues nowadays. For this reason, growing effort

has been devoted to the research for its mathematical rigorous formulation. A remarkable

success in this direction has been achieved with the Haag-Kastler algebraic formulation of

quantum field theory ([HK64]), which gives a formal description of the quantum fields in

the Heisenberg picture encoding at same time the properties of causality – as intended on

the Minkowski spacetime – and Lorentz covariance. Even though a theory developed on

Minkowski spacetime is enough for all the applications in particle physics, a generalization

to curved backgrounds is required in order to understand the physical problems coming

from condensed matter physics and cosmology. This generalization is exactly what has

been proposed by Brunetti, Fredenhagen and Verch in [BFV03] with the general covariant

locality principle, formulated using the language of category theory, which makes possible

a coherent description of the physics coherently on all the spacetimes, encoding in the

algebra of fields causality and local Lorentz covariance. In particular, once the playground

is defined restricting the class of all Lorentzian manifolds to those objects that are called

globally hyperbolic spacetimes (organized in the category ghs), a quantum field theory is

constructed as a functor from ghs to the category of ∗-algebras, using the properties of the

field operator defining the equations of motion for the classical theory.

It is important to notice that the introduction of a rather abstract mathematical lan-

guage has remarkable practical effects in the development of technical results. First, the

locally covariant approach is essential for the construction of interacting models on non-flat

geometries, proving rigorous results on their renormalization and regularization properties.

On the other hand, a deep understanding of the axiomatic scheme turns out to be funda-

mental for the extension of those results to different branch of physics, playing in different

contexts, such as the supersymmetric extensions of the Standard Model ([DRW81]) or the

superspace formulation of supergravity ([WZ77]). These are only two examples of super-

symmetric models which can be described defining fields playing over exotic objects that

mathematicians call supermanifolds. Hence, supergeometry – the branch of mathematics

vii
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studying supermanifolds and supermanifolds transformations – has not to be intended as

an exercise of pure mathematics, because it can be applied to the research of solution for

some of the open problems of modern physics. Models based on super field theories are

currently used to solve some theoretical pathologies showed by the standard model, in

particular the well known hierarchy problem (see the introduction of [Ait05] for a brief pre-

sentation on the subject). Moreover, in cosmology, the so called superparticles seem to be

good candidates for explaining dark matter. Together with the production of new physics,

one of the sources of interest in super-quantum field theories is due to some regularity

properties showed by interacting supersymmetric models, known as non-renormalization

theorems.

The hope that a rigorous formulation of supersymmetric quantum field theories can shed

light on these results, explains the last attempts to study super-QFT from the viewpoint

of locally covariant quantum field theory ([HHS16], [Dap+15]). These works develop quan-

tum field theory adopting as background geometry the so called super-Cartan structures,

introduced in the superspace formulation of supergravity, with the respective category de-

noted by sCart, whose objects can be canonically associated to an ordinary oriented and

time-oriented Lorentzian manifold. Then, techniques coming form ordinary quantum field

theory can be borrowed in order to reproduce analogous constructions and results. Un-

fortunately, already at the level of non-interacting models the local covariance paradigm

and the category theory language reveal a problematic behaviour when dealing with su-

persymmetry transformations. Indeed, using the ordinary tools of category theory, what

comes out is a synthetic description of both bosonic and fermionic field theories, with the

super-QFT functor failing to mix up the odd and the even components. The solution

proposed by ([HHS16]) is that of clarifying the behaviour of free super-QFTs introducing

advanced tools in category theory (in particular enriched categories and enriched functors)

to obtain a sensible description of supersymmetry transformations, setting the basis for

the perturbative analysis and the study of the renormalization properties.

The main purpose of this thesis is to present an overview of locally covariant quantum

field theory devoting the last part to an exposition of the recent results in the description

of super quantum field theories. Moreover, we propose a study of those super-QFT defined

over 2|2-dimensional super-Cartan structures, for which we give a definition of a suitable

full subcategory of ghsCart, characterizing, in this new formalism, enriched morphisms and

proving some properties of a super differential operator defined for its objects. A remarkable

reason to study 2|2-models in the recent version of LCQFT is that of setting the basis
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for an advanced analysis on the effect that the enriched morphism, i.e. supersymmetry

transformations, could have on the degree of freedom showing up in the definition of super-

Wick polynomials (see [Pin09] for an analogous idea applied to four dimensional conformal

field theory).

Let us outline the content of the thesis. We begin with an introductory chapter exposing

the fundamental mathematical structures for the development of locally covariant quantum

field theory. First of all, we set the playground introducing the concept of Lorentzian

manifold, on which we have to build up a causal structure, that in contrast to what happens

on flat geometries is not naturally defined and has to be given as a datum, leading to the

concept of spacetime (Definition 1.1.7). Yet, this latter notion includes a too wide class of

manifolds in which unwanted frameworks can still be found (see Example 1.1.23). Thus,

searching for additional requirements on the causal structure of the spacetimes, the class

of globally hyperbolic spacetimes is defined and, if the idea of their definition moves from

technical hypothesis on the topological properties of the domain, an useful characterization

allows to understand them as oriented and time oriented Lorentzian manifolds having a

Cauchy surface (Theorem 1.1.22). The importance of this statement relies especially in

the fact that a Cauchy surface is needed to define sensible initial value problems for the

partial linear differential operators encoding the dynamics of the classical fields. Indeed, in

the second part of the chapter we present some results on differential operators, studying

in particular the class of the so called Green-hyperbolic operators (Definition 1.2.9). For

those operators we are able to give a description of the space of solutions, setting the bases

for the construction of the algebra of the observables related to both the classical and the

quantum theory. Then, we conclude analyzing briefly normally hyperbolic operators, which

can be proven to be Green-hyperbolic using existence and uniqueness of solutions to the

respective Cauchy initial value problem (Theorem 1.2.20).

In Chapter 2 we use the instruments developed to construct locally covariant quan-

tum field theories on the line of the axioms proposed in [BFV03]. Before proceeding, we

get some motivation for the axioms and the abstract constructions from the study of the

Klein-Gordon (KG) theory: We set the framework for a sensible definition of the KG op-

erator and, in Section 2.1.1, we use the results on Green-hyperbolic operators to build up

a symplectic space for the classical observables in three different forms. Once equivalence

of those three constructions has been proven (Diagram 2.1.1), we proceed describing two

different schemes of quantization. The first consists of the standard association of a ten-

sor algebra to a given vector space, on which commutator is implemented by equivalence
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relations defined using the symplectic form. The second approach we show is based on a

more recent technique called quantization by deformation, concerning which the algebra

of classical observable is quantized as a space of linear functionals where the pointwise

product (characterizing the classical observables) is deformed, in a precise and rigorous

sense, giving a product admitting canonical commutation relations. These ∗-algebras de-

scribe the quantum theory encoding coherently the property of the underlying spacetime

and hence will be the prototype for the general construction of bosonic field theories in

Section 2.3. Then, in Section 2.2, we show how spinor fields can be treated on curved

Lorentzian manifolds. That exposition turns out to be useful, not only because it provides

an other instructive example, but rather because it presents a simplified approach to Car-

tan description of Lorentzian manifolds, which, based on the notion of Cartan structure

(Definition 2.2.4), provides an useful framework that can be easily extended in order to de-

scribe supergeometric backgrounds for quantum field theories. Finally, using the language

of categories and functors, we describe the axiomatic formulation of quantum field theories

and we give a precise definition of general covariance, showing how the results achieved

for the KG field can be obtained for all Green-hyperbolic operators and coherently for all

globally hyperbolic spacetimes.

Finally, Chapter 3 is devoted to the presentation of the most recent result on the exten-

sion of the general covariance scheme to field theories defined on supermanifolds. At this

stage, what has been shown in Chapter 2 reveals useful as inspiration. On one hand, with

a self-contained exposition on supergeometry we give the minimal instruments in order

to understand the notion of supermanifold and to generalize Cartan structures to super-

Cartan structures (Definition 3.2.2): a series of fundamental definitions and propositions is

given, from the concept of super vector space to more advanced notions such as those of

Berezin integration and super differential forms over supermanifolds. Thus, given a set of

theoretical data needed to fix the amount of supersymmetry and the ordinary geometry to

work on, the basic playground is analyzed, constructing the category ghsCart, consisting of

those super-Cartan structures to which it is possible to associate canonically an ordinary

globally hyperbolic spacetime, from which the notion of causality is borrowed for the treat-

ment of super fields. On the other hand, following the ideas proposed in [HHS16], we sketch

the attempt to reproduce the axiomatic framework of Section 2.3 defining a functor from

a full subcategory of ghsCart to the category of super ∗-algebras. Yet, in this construction

supersymmetry transformations fails to be coherently encoded and hence advanced tech-

niques in category theory should be used in order to solve those problematic behaviours.
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In this part, since the subject could become too technical for the purposes of this thesis, we

preferred to give only an heuristic idea of what has been done and to leave enough space

for the presentation of a concrete model: In fact, only the formula defining enriched mor-

phisms is presented and briefly discussed in order to be used in the following application.

Then, we recollect and apply all the results showing some novel calculations for super field

theory models on super-Cartan supermanifolds of dimension 2|2, defining the category

2|2-sLoc imposing restrictive conditions called supergravity supertorsion constraints (see

[WZ77] and [How79]), giving a classification of first order supersymmetry transformations

and characterizing explicitly their action on the superalgebra of super fields.
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Chapter 1

Basics on Lorentzian geometry and

Green-hyperbolic operators

We begin this thesis with an introductory chapter exposing the fundamental mathematical

structures for the development of locally covariant quantum field theory. After a brief

overview of some remarkable results on Lorentzian manifolds and their properties, we give

the definition of globally hyperbolic spacetime, i.e. an oriented and time-oriented Lorentzian

manifold with a Cauchy surface. These additional requirements are fundamental in order to

define a causal structure on the given manifold and to set differential equations, such as the

equations of motion for the fields, with the respective initial values problem. Moreover, this

special subclass of spacetimes turns out to be a satisfactory trade off between the regularity

of the Minkowski spacetime and the generality we need for a formalism being successful

in the treatment of physically interesting models (e.g. DeSitter spacetimes, Friedmann-

Robertson-Walker spacetimes). In fact, defining the fields as sections of a suitable vector

bundle and introducing the dynamics of the fields via linear differential operators, we find

that a certain regularity on the structure of the framework manifold and the nature of

those operators are crucial for the well-posedness of Cauchy problems. These operators are

called normally hyperbolic operators and their importance does not lie in the fact that they

allow to find explicit solution for the Cauchy problems but rather is due to the possibility of

constructing out implicitly Green’s operators, using existence and uniqueness of solutions.

In conclusion, great attention will be paid to explain how operators admitting advanced and

retarded Green’s operators characterize the space of sections over which they act in order

to establish the preliminary result for a rigorous treatment of the quantization scheme of

the algebra of field, presented in Chapter 2.

1



2 Chapter 1. Basics on Lorentzian geometry and Green-hyperbolic operators

1.1 Lorentzian geometry

In this section we present some notions of Lorentzian geometry. We want to provide the

reader with a brief introduction to this subject, hence definitions and basic results on

differential geometry will be understood.

From Lorentzian manifolds to globally hyperbolic spacetimes

Definition 1.1.1. We call Lorentzian manifold a pair (M, g) where M is a d-dimensional

manifold and g is a metric on M with signature (+,−, . . . ,−).

Even though Lorentzian manifolds themselves are of great mathematical interest, this

definition is too general for our purposes. Indeed, in order to build up a suitable framework

for many physical models, we have to enrich their structure with further requirements.

In particular, a causal structure is of great importance for physically motivated studies

on Lorentzian manifolds. We recall here how it can be achieved on the manifold called

Minkowski spacetime.

Example 1.1.2. Let’s fix M as R4 and g as the Minkowski metric η. As well known, points

in R
4 label physical events. Given two distinct points p, q ∈ R

4, we present a geometric

method to say whether p and q are causally connected and then whether p lies in the future

of q (or viceversa). First we recall that given a vector space endowed with a constant

Lorentzian metric, i.e. a metric with signature as in Definition 1.1.1, vectors v ∈ V can

be classified using the quantity length ‖v‖η := η(v, v): we define the class of causal and

spacelike vectors for which the length ‖v‖η is respectively non negative and negative. Then

causal vectors can be divided in two subclass, that of lightlike vectors with null norm and

that of timelike vectors with strictly positive norm. Then, in R
4 we fix the canonical

base (et, ex, ey, ez) and the standard global coordinates (t, x, y, z) in order to construct two

distinguished regions: given a point q we take the vector vpq connecting it to p and we look

at the time-component and at η(vpq, vpq), defining the two sets:

J+
R4(p) =

{
q ∈ R

4, ‖vpq‖η ≥ 0 and η(et, vpq) > 0
}
∪ {p}

J−
R4(p) =

{
q ∈ R

4, ‖vpq‖η ≥ 0 and η(et, vpq) < 0
}
∪ {p}

In other words, with respect to p, we have divided R
4 in three regions, namely, besides

J+
R4(p) and J

−
R4(p), there exists also the collection of points p for which vpq is spacelike, or,
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equivalently, for which p and q are causally separated. Notice that the point p itself plays a

distinguished and separate role and it is here conventionally assumed to include it in both

J+
R4(p) and J−

R4(p). The regions J+
R4(p) and J−

R4(p) are called the future (resp. past) light

cone, stemming from p.

Looking at this example, we propose a classification of vectors belonging to the tangent

space TpM

Definition 1.1.3. Consider a Lorentzian manifold (M, g). For each point p ∈M and each

tangent vector v ∈ TpM we say that v is

• timelike if gp (v, v) > 0,

• lightlike if gp (v, v) = 0,

• causal if gp (v, v) ≥ 0,

• spacelike if gp (v, v) < 0.

Let’s notice that this classification depends on the given metric, for this reason these

definitions should make explicit reference to that metric (namely g-timelike rather than

timelike). Anyway, often there is no risk of misunderstanding and we will omit this further

specification, unless necessary. Given two points p, q in Minkowski spacetime, in order to

state if they are causally connected we used the fact that R4, as a vector space, is isomorphic

to its tangent space and has a global system of coordinates. Additional structures are

needed to achieve analogous results for a generic Lorentzian manifold.

Definition 1.1.4. We say that a Lorentzian manifold (M, g) is time orientable if there

exists a vector field T ∈ Γ (M,TM) over M such that T (p) is time-like for each p ∈ M .

We call time orientation of the Lorentzian manifold (M, g) a choice of such a vector field

over M and we denote the chosen vector field with t.

A time orientation on a Lorentzian manifold gives a rule to classify curves connecting

two points.

Definition 1.1.5. Consider a Lorentzian manifold (M, g) and a smooth curve γ : I →M ,

where I ⊆ R is an interval, with its tangent vector field at point p, Xγ,p. We say that γ

is timelike, lightlike, causal or spacelike if Xγ,p is respectively timelike, lightlike, causal or

spacelike, for each p along γ. Given a time oriented Lorentzian manifold (M, g, o, t) and a

causal curve γ we say that this curve is: future directed if gp (Xγ,p, t (p)) > 0 for each p

along γ; past directed if gp (Xγ,p, t (p)) < 0 for each p along γ.
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Also here explicit reference to the time orientation chosen should be done; analogously,

we will keep it understood when not necessary. Moreover, concerning curves in M , when a

Lorentzian manifold is endowed with a time orientation, also the notion of inexstensibility

can be slightly generalized to future or past inexstendibility.

Definition 1.1.6. Consider a future (past) directed causal curve γ(s), denoting with s

a parametrisation, then p is a future (past) endpoint if, for every neighbourhood U of p,

there exist an s0 such that γ(s) ∈ U, ∀s > s0.

Now we are ready to define spacetimes, as Lorentzian manifolds regular enough to

avoid some pathological situations from a physical point of view (such as disconnected

backgrounds), and endowed with additional data, starting from which we can construct a

causal structure on it.

Definition 1.1.7. We call spacetime a quadruple (M, g, o, t) where (M, g) is a d-dimensional

smooth, connected, orientable, time-orientable Lorentzian manifold, o is choice for the orien-

tation and t is a choice for time-orientation. Sometimes the quadruple defining a spacetime

will be denoted with the shortand notation M.

We have to inform the reader that the definition of spacetime is not the same throughout

the literature. Sometimes, in physical focused papers, it is restricted to four dimensional

manifolds, but this is not our case; firstly because no further hypothesis on dimension are

needed to achieve the principal results of this section, secondly, because we will work in

this thesis on different models with geometrical backgrounds of various dimensions.

Remark 1.1.8. If the choice of a time orientable manifold has been extensively justified,

connectedness and orientability need a brief explanation. The former, when dealing with

manifolds, entails path connectedness, that plays an important role in the definition of a

causal structure for the spacetime. Indeed, as we will explore in the following, a causal

relation between two points of the manifolds is defined looking at the properties of the

curve connecting them. This practically means that causal structure of different connected

components are not comparable and then, asking for connection, we can endow the manifold

with a global causal structures. Orientability is crucial in all the applications of the Stoke’s

theorem, using integration.

On a spacetime, given a point p ∈ M , or a generic subset Ω, thanks to the previous

definition, we can start defining causal structure labelling some particular subset of the

manifold. These definitions, as we will see, are very helpful in the characterisation of the

causal structure of (M, g, o, t).
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Definition 1.1.9. Consider a spacetime (M, g, o, t) and point p ∈M . We define:

• the chronological future of the point p in M , denoted by I+M (p), as the set of those

point q in M \ {p}, such that there exists a future directed timelike curve from p to

q;

• the causal future of the point p in M , denoted by J+
M (p), as the set of those point

q in M (including p by convention) such that there exists a future directed causal

curve starting from p to q;

Moreover, the chronological and causal past of the point p in M (I−M (p),J−
M (p)) can be

defined with obvious suitable changes. Using these notions for points p ∈M , we can define

the analogous concepts for subsets Ω ⊆ M taking the union over the points in Ω, e.g. we

define the chronological future of the subset Ω in M as I+M (Ω) =
⋃
p∈Ω I

+
M (p), and we

denote the unions I+M (p) ∪ I−M (p) and J+
M (p) ∪ J−

M (p) with IM (p) and respectively with

JM (p). Finally we define the Cauchy development of Ω in M as the subset DM (Ω) of the

points q ∈M such that every inextensible causal curve in M passing through q meets Ω.

Looking now at the proprieties of the chronological future and past of a subset S of a

spacetime we can underline some interesting topological proprieties: future, past, timelike

and spacelike compactness.

Definition 1.1.10. Let (M, g, o, t) be a spacetime and let U be a subset ofM . We say that

U is future compact, resp. past compact if S∩J+
M (p), resp. S∩J−

M (p) is a compact set for

every p ∈M . We call S timelike compact if S ∩JM (p) is compact for each p ∈M . Finally

we will define as spacelike compact, those subset S such that exist a compact K ⊆ M for

which the inclusion S ⊆ JM (K) holds.

Chronological future and past allow us to establish when there is causal connection

between two different subsets. This notion is crucial in general relativity and we will pay

great attention when implementing it in the construction of quantum and classical field

theories.

Definition 1.1.11. Let (M, g, o, t) be a spacetime. We say that two subsets U1 and U2 of

M are causally separated if the intersection JM (U1) ∩ U2 is the empty set.

Remark 1.1.12. Sometimes we may say that U1 and U2 are causally separated (or equiva-

lently that U1 is causally separated from U2), meaning that there is no point of U1 from

which start a causal curve going to a point of U2. These conditions are equivalent: a proof

can be found in [Ben11, Remark 1.2.8]
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An open connected subset Ω of a spacetime is a spacetime in its own right. For example

take the d-dimensional spacetime (M, g, o, t) and let Ω be a connected open subset of M .

Then undoubtedly Ω can be seen as a d-dimensional submanifold of M and hence a d-

dimensional manifold in its own right. Moreover it becomes a spacetime when suitable

concepts of restriction for metric, orientation and time orientation are provided g|Ω, o|Ω
and t|Ω. Denoting this spacetime with (Ω, g|Ω , o|Ω , t|Ω), we can define the domain of

dependence in Ω for all its points, JΩ (p). This set could not coincide with the restriction

to the subset of the domain of dependence of the point p in the whole spacetime. This

bring us to the definition of causal compatibility.

Definition 1.1.13. Let (M, g, o, t) be a spacetime and let S be an open subset ofM . Then

S is causally compatible if J±
S (p) = J±

M (p) ∩ S for each p ∈ S.

We underline the fact that each causal curve that is contained in S ⊆ M can be

directly seen also as a causal curve contained in M , hence it always holds the inclusion

JS (p) ⊆ JM (p) ∩ S for each p ∈ S and then the real condition of causal compatibility is

the other inclusion.

When a causal structure is defined, also notions such as convexity, of great impor-

tance when working with analytical techniques, need to be generalised. In the context of

Lorentzian geometry a meaningful notion is that of causal convexity.

Definition 1.1.14. Let (M, g, o, t) be a spacetime and let S be a subset of M . We say

that S is causally convex if each causal curve in M that with endpoints in S is entirely

contained in S.

Remark 1.1.15. It can be trivially proven that causal convexity of subset U ⊆ M implies

causal compatibility (see [Ben11, Remark 1.2.10]).

Now that all these notions have been introduced, the meaning of map between space-

times preserving the causal structure can be fixed.

Remark 1.1.16. When dealing with smooth maps between manifolds we can select a class

of functions preserving some additional structures. For example, given two Riemmanian

manifolds (M, g) and (N, h), we may pick out from the class of smooth maps the class of

isometric embeddings, i.e. embeddings χ :M ← N such that χ∗h = g. Under this condition

we can identify the manifold M and its Riemannian structure with its image χ(M) ⊆ N ,

submanifold of N , endowed with the induced metric h|χ(M). When dealing with spacetimes,

preservation of the additional causal structure plays a key role. Then we ask for maps ψ
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that, given two spacetimes (M, g, o, t) and (N, h, u, l), is an isometric embedding ofM in N ,

orientation and time-orientation are preserved when pushed forward and ψ(M) is causally

compatible in N . Formally, we ask for the further conditions ψ∗o = u|ψ(M) and ψ∗t = l|ψ(M).

Concluding this remark, let’s notice that once one asks for open embeddings, i.e. maps

with the image that is an open subset of the target manifold, thanks to Remark 1.1.15, the

hypothesis of causal compatibility can be achieved asking the image to be causally convex.

Even if we restricted the whole class of Lorentzian manifolds to those for which is

possible to define an orientation and a time orientation, we are still working with a too large

set. Indeed, generic spacetime can show in some cases properties which are pathological

from a physical point of view: the classical example is the famous Gödel spacetime, whose

causal structure admits closed causal curves.

Example 1.1.17. 1 Let’s fixM = R
4 and define the metric, heuristically, by the line element,

using global coordinates (t, x, y, z) reads:

ds2 = −
(
dt+ e2kydx

)2
+ dy2 +

e4ky

2
dx2 + dz2,

where k ∈ R (constant). Changing coordinates by:

e2ky = cosh(2kr) + sinh(2kr) cosϕ,
√
2kxe2ky = sinh(2kr) sinϕ,

kt√
2
=
kt′√
2
− ϕ

2
+ arctan

(
e−2kr tan

ϕ

2

)
,

where |k(t− t′)| < π√
2
, r ∈ [0,∞) and ϕ ∈ [0, 2π), then

ds2 = −dt′2 + dr2 + dz2 −
√
8

k
sinh2(kr)dϕdt′ +

1

k2
(
sinh2(kr)− sinh4(kr)

)
dϕ2.

If one takes the any curve of the form γ(ϕ) = (t̃′, z̃, r̃, ϕ), where t̃′, z̃ are arbitrary

constants, r̃ ≥ (1/k)ln(1 +
√
2) and ϕ ∈ I ⊆ [0, 2π), is a closed causal curve.

As a first attempt to avoid this pathological situations, one could think to exclude from

the class of spacetimes those admitting closed causal curves. In this case the spacetime

is said to satisfy the causality condition. However, even if a spacetime satisfies the latter

condition, it can show unpleasant properties; this is clear when one has to work with

spacetimes for which the metric could be slightly perturbed, indeed, in this situation,

1We show this example as proposed by [BDH13]
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“almost closed” causal curves become closed (see [Wal10, pg. 197] for an example). With

this in mind, we can now define the so called strong causality condition

Definition 1.1.18. A spacetime (M, g, o, t) is said to satisfy the strong causality condition

if for each point p ∈M and for each open neighbourhood U of p in M there exists an open

neighbourhood V ⊆ U of p in M such that each future directed (or equivalently past

directed) causal curve which starts and ends in V must be entirely contained in U .

However, the discussion on causality is far more deep and many shades of causality can

be proposed and their relations investigated. Authors like Bernal, Sanchez and Minguzzi

wrote thorough papers on these arguments, like [MS08] and [BS07]. In the latter was

showed how causality and strong causality can be equivalent when an additional hypothesis

holds.

Proposition 1.1.19. Given a spacetime (M, g, t, o), assume that for all p, q ∈M
J+(p) ∩ J−(q) is compact, then the following two conditions are equivalent:

i) (M, g) is causal, i.e., there are no closed causal curves.

ii) (M, g) is strongly causal, i.e., for any p ∈ M , given any neighbourhood U of p there

exists a neighbourhood V ⊂ U , p ∈ V , such that any future-directed (and hence also

any past-directed) causal curve γ : [a, b]→M with endpoints at V is entirely contained

in U .

Now, we recall that the dynamics for field theories shall be discussed in terms of an

initial value problem for differential equations ruled by suitable operators. Indeed, what

we need is a framework where Cauchy problems are well posed. Going on towards this

aim we will firstly define Cauchy surfaces (together with a preliminary useful notion), as

special subset of our spacetimes, that seem to be the candidates for defining initial data of

a Cauchy problem.

Definition 1.1.20. Let (M, g, o, t) be a spacetime. U ⊆M is said to be achronal (acausal)

inM if each timelike (causal) curve inM meets it at most once. We say that Σ is a Cauchy

surface of M if it is an achronal subset of M and DM(Σ) =M

Now, all the ingredient are ready for the definition of the class of ‘good enough’ space-

times: Globally Hyperbolic Spacetimes (GHST).
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Definition 1.1.21. A spacetime (M, g, o, t) is said globally hyperbolic if the following

conditions hold:

i) M fulfils the strong causality condition;

ii) J+ (p) ∩ J− (q) is a compact subset of M for all pairs of points (p, q) in M .

Throughout the literature many different definitions of GHST are presented, hence we

give here a characterization theorem for GHST (as reported essentially in [BGP07]).

Theorem 1.1.22. Let M be a spacetime. Then the following conditions are equivalent:

i) M is globally hyperbolic;

ii) M has a Cauchy surface Σ ;

iii) there exists an isometric embedding from the Lorentzian manifold (M, g) to (R ×
Σ,−βdt2 + gt), where Σ is a (d− 1)-dimensional manifold and β is a smooth strictly

positive function, gt is a family of Riemannian metric on {t}×Σ varying smoothly with

t. Moreover we have that for each t ∈ R, {t} × Σ is the image through the isometric

embedding of a smooth spacelike Cauchy surface of M.

Globally hyperpolic spacetimes seem to solve the problem of finding a physically sensible

class of spacetimes that is not too much restrictive. Moreover, they are a safe harbour also

from a mathematical point of view. Once fields are interpreted as solution of equations of

motion ruled by suitable operators, existence and global well-definiteness can be achieved

in this framework. Unfortunately, there are some cases in which physically interesting

manifolds are not part of this class. The most famous example is given by the so called

anti-de Sitter spacetime. As for the Gödel spacetime, the latter admits closed causal curves.

Example 1.1.23. We briefly present here a description of the AdSn spacetime2. It can be

defined as a locus of points of Rn+1 using the set of coordinates (u, v, x1, . . . , xn−1)

M =
{
(u, v, x1, . . . , xn−1) ∈ R

n+1 | x21 + · · ·+ x2n−1 − u2 − v2 = −R2
}

(1.1.1)

From a topological point of view, this manifold is homeomorphic to S1×Rn−1 and, when

the ambient space Rn+1 is endowed with the metric g = diag(1, 1,−1, . . . ,−1), the induced
metric h := g|M has Lorentzian signature. Since also orientability and time-orientability

2As reported in [BD15]
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holds, we can choose a non degenearate volume form and a timelike vector field and build

up the anti-de Sitter spacetime over the base manifold M . Moreover, when n > 2, (M,h)

is a maximally symmetric solution to the Einstein’s equation with a negative cosmological

constant Λ. In other words it is a manifold of constant curvature R = 2n
n−2

Λ. The curve

γ : R→ R
n+1

γ(s) = (R sin(s), R cos(s), 0, . . . , 0) (1.1.2)

is closed, a circle in particular, whose tangent vector is everywhere time-like with respect

to the induced metric.

Treating this particular situation special results shall be proven, because the general

framework we are going to present is heavily based on the property of global hyperbolicity.

Now, we want to know how key proprieties such as global hypebolicity persist when we

take subsets of a given spacetime.

Proposition 1.1.24. Let (M, g, o, t) be a globally hyperbolic spacetime and let S be a subset

of M . If S is causally convex, then it is also globally hyperbolic.

Proof. We follow here the proof by [Ben11]. Since (M, g, o, t) is a globally hyperbolic

spacetime, then S trivially satisfy the strong causality condition. Then we have to show

that with the induced spacetime structure (S, g|S, o|S.t|S), the set

J+
S (p) ∩ J−

S (q) := CS (p, q) (1.1.3)

is compact for each p and q in S. We know that for each couple of point in M , CM (p, q)

is compact and we shall use the fact that causal convexity entails causal compatibility to

prove the compactness of CS (p, q). We fix p, q ∈ S. Since causal compatibility holds, we

have that J±
S (r) = J±

M (r) ∩ S, for each r ∈ S. It follows that

J+
S (p) ∩ J−

S (q) = J+
M (p) ∩ J−

M (q) ∩ S.

Since M is globally hyperbolic, we deduce that J+
M (p)∩ J−

M (q) is compact with respect to

the topology of M . But CM (p, q) is also fully contained in S. Taking an arbitrary point

r in J+
M (p) ∩ J−

M (q) we can always find a future directed causal curve in M from p to r

and a past directed causal curve in M from q to r. Joining, after a suitable chancing in

the parametrization of the latter, the two curves can be joined to obtain a future directed

causal curve γ in M from p to q, that is entirely contained in S because its endpoints

p, q ∈ S and S is causally convex. Then the inclusion CM (p, q) (q) ⊆ S actually holds
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together with

CS (p, q) = CM (p, q) ∩ S = CM (p, q)

This chain of equalities complete the proof.

The real importance of this proposition will be clear in the following: when dealing with

GHST we have sufficient conditions to embed it, in the sense showed in Remark 1.1.16, and

understand its image as globally hyperbolic subspacetime of the target spacetime and this

will be crucial when understanding quantum field theories in the framework of category

theory.

1.2 Green-hyperbolic operators

Once properties of the framework have been fixed, we can proceed understanding which

operators and which equations are suitable to regulate the dynamics of our models. Fur-

thermore, for this class of operators, we shall prove the well-posedness of initial value

problems (uniqueness and existence of solutions). Throughout this Section we will set all

the mathematical details and we will show how the space of solutions of a given operator

can be enriched with a nice structure.

Often those operators are called wave operators, or wave-like operator, but actually these

labels describe a wider class of equations than those which usually people refer to with the

same name. We start defining the space of sections of a vector bundle.

Definition 1.2.1. Let π : E → M be a vector bundle over M . A smooth section of E is

a smooth function s from M to E such that π ◦ s = idM . The space of (smooth) sections

Γ (M,E) consist of all the smooth sections of E and the space of smooth sections with

compact support Γc (M,E) is the set of all the compactly supported smooth sections of E.

Remark 1.2.2. Let’s notice that one can use trivial vector bundles to give a different char-

acterization of vector valued functions on a manifold. Suppose we are given a function

f :M → V , taking into account the trivial vector bundle (M × V, π1,M, V ) and denoting

with π1,2 the projection with respect to the first and second coordinate, we can define a

section f̃ :M →M × V such that the following diagram commutes
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M M × V

V

f̃

f
π2

This shows that f̃ is a section of the trivial bundle M × V a that it’s possible to find a

bijection between C∞(M,V ) and Γ(M,M × V ).

Then we shall proceed enriching the structure of vector bundles with a non degenerate

bilinear form.

Definition 1.2.3. Let (E, π,M, V ) be a real vector bundle. A Bosonic (Fermionic) non-

degenerate bilinear form on E is a smooth map, denoted by 〈·, ·〉E, acting on the vector

bundle E ⊗ E, being fiberwise symmetric (antisymmetric) and non degenerate, i.e.:

(i) for each p ∈M , 〈·, ·〉E is a symmetric (antisymmetric) bilinear form;

(ii) for each p ∈M , taking v ∈ Ep is such that 〈v, w〉E = 0 for each w ∈ Ep, then v = 0.

The explicit reference to the vector bundle E will be removed when clear from the

context. Since we consider spacetimes for which an orientation is given, we can pick out

the metric induced volume form to define integration for compactly supported functions

defined on the base manifold M . Via integration, inner products, like those of Definition

1.2.3, induce a non degenerate pairing between smooth sections and compactly supported

smooth sections of a given vector bundle E.

Definition 1.2.4. Let (E, π,M, V ) be a real vector bundle. We define the non degenerate

pairing induced by the non degenerate bilinear form 〈·, ·〉E as the map

(·, ·)E : Γ0(M,E)× Γ(M,E)→ R (σ, τ) 7→
∫

M

〈σ, τ〉E dvolM . (1.2.1)

Notice that, for (1.2.1) to be meaningful, we could consider both τ, σ ∈ Γ(M,E) provided

that supp(τ) ∩ supp(σ) is compact

Now we are ready to present some results on linear partial differential operators acting

on sections of a given vector bundle.
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Definition 1.2.5. Let (E, π,M, V ), (F, ρ,M,W ) be two vector bundles over the same d-

dimensional manifoldM . A linear partial differential operator of order at most k is a linear

map P : Γ(M,E)→ Γ(M,F ) that can be written locally (in charts) as

P =
k∑

i=0

d∑

j1,...,ji=1

Aj1,...,ji∂j1 · · · ∂ji (1.2.2)

where {Aj1,...,ji} are smooth Hom(V,W )-valued functions and {∂i} denotes the partial

derivatives

We shall briefly note that partial differential operators don’t change supports of sections,

in particular they induce linear map P : Γc (M,E)→ Γc (M,E). Before introducing further

objects for the development of field theories, we give here the definition of principal symbol

useful in many concrete applications. It can be used to provide characterization of certain

classes of partial differential operator because it is an useful and simple notion that can be

associated also to differential operators defined by complicated expressions.

Definition 1.2.6. Given a spacetime (M, g, o, t) and a vector bundle E over M , let be P

be a differential operator defined on the space of section section Γ(M,E) by the Equation

(1.2.2), then the principal symbol at the point p is the polynomial in the variable ξ ∈ R
d

σP (p, ξ) =
d∑

j1,...,jk=1

Aj1,...,ji(p)ξ
j1 . . . ξjk . (1.2.3)

Remark 1.2.7. Sometimes the defintion of linear partial differential operator is given using

the multi-index notation (α), in this case the Example 1.2.3 takes the form

σP (p, ξ) =
∑

|α|=k
Aα(p)ξ

α.

Not all operators in the LPDOs’ class are of physical interest or allow a mathematical

and rigorous formulation of quantum field theories on GHST. Pairings induced by non

degenerate inner products will be useful to define the formal adjoint operator of a given

LPDO and, in the following, to endow our space of solution with appropriate and physically

meaningful symplectic forms (for Bosonic bilinear forms) and inner products (for Fermionic

ones).
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Definition 1.2.8. Given a linear partial differential operator P : Γ(M,E)→ Γ(M,F ), its

formal adjoint P ∗ : Γ(M,F ) → Γ(M,E) is a linear partial differential operator such that,

taking the non-degenerate pairings of Eq. (1.2.1) for E and respectively F , (P ∗f, g)E =

(f, Pg)F for each f ∈ Γ(M,F ) and g ∈ Γ(M,E), satisfying supp(f) ∩ supp(g) compact.

A linear partial differential operator P : Γ(M,E) → Γ(M,E) is formally self-adjoint if

P ∗ = P .

Now we have all the basic tools to define and to deal with Green’s operators: accord-

ing to our aims, they have a central role in the study of the structure of the space of

solution, when the equation of motion is ruled by a particular class of operators called

Green-hyperbolic operators (GHOs).

Definition 1.2.9. Let consider a spacetime (M, g, o, t), a vector bundle E over M and a

linear partial differential operator P : Γ(M,E)→ Γ(M,E). A linear mapG± : Γc(M,E)→
Γ(M,E) is an retarded/advanced Green’s operator for P if for each f ∈ Γc(M,E):

(i) PG±f = f ;

(ii) G±Pf = f ;

(iii) supp(G±f) ⊆ J±
M(supp(f)).

A linear partial differential operator P admitting both advanced and retarder Green’s

operator is called Green-hyperbolic.

The study of GHOs is the main subject of this section and will be the starting point

for the construction of classical and quantum field theories. The first question one usu-

ally wants to answer is whether, given a GHO, its Green’s operators are unique. Still in

the recent past, authors believed that proving uniqueness required green hyperbolicity of

the adjoint operator (see [BDH13]), but as showed by [Bär14] this condition is not neces-

sary. We recall these results, starting from the proof that Green’s operators admits unique

extensions to wider space of sections.

Theorem 1.2.10. There exist unique linear continuous extensions

G
+
: Γpc(M,E)→ Γpc(M,E) and G

−
: Γfc(M,E)→ Γfc(M,E)

of G+ and G− respectively, such that

(i) G
+
Pf = f for all f ∈ Γpc(M,E);
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(ii) PG
+
f = f for all f ∈ Γpc(M,E);

(iii) supp(G
+
f) ⊂ J+

M(suppf) for all f ∈ Γpc(M,E);

and similarly for G
−
.

Proof. Reporting the proof proposed by [Bär14], we only show how G
+

is defined, the

steps for G
−
being analogous. Given f ∈ Γpc(M.E) and a point x ∈M we define (G+f)(x)

as follows: Since J−(x) ∩ suppf is compact we can choose a cutoff function such that

χf ∈ Γc(M,R) with χ ≡ 1 on a neighbourhood of J−(x) ∩ suppf . Now we put

(G
+
f)(x) := (G+(χf))(x). (1.2.4)

This is clearly an extension of G+: when f ∈ Γc(M,E) then the choice χ ≡ 1 on the

whole manifold gives what we need. First we show that this definition is independent of

the choice of χ. Namely, let χ′ be another function such that χ′f has compact support, we

show that for each x ∈M , (G+((χ− χ′)f))(x) = 0. In order to achieve this result, we use

the third property of Definition 1.2.9 for which

x ∈ supp(G+((χ− χ′)f)) ⊂ J+(supp((χ− χ′)f))

The latter means that there exists a causal curve from the supp((χ − χ′)f) to x and

supp((χ− χ′)f) ∩ J−(x) is nonempty. On the other hand,

supp((χ− χ′)f) ∩ J−
M(x) = supp(χ− χ′) ∩ suppf ∩ J−

M(x).

But on suppf ∩ J−
M(x), χ = χ′ ≡ 1 and then the intersection on the right end side is

the empty set. This lead to a contradiction with the previous sentence. Now, we have to

prove that the target space of the map defined by (1.2.4) is Γsc(M,E). Since the support

of G
+
f depends on G+, we shall prove only that is a smooth function. Given x ∈ M the

smoothness is trivial for each point in I−M(x), indeed, a unique χ can be fixed and we have

G
+
f = G+(χf) that is a smooth function because it lies on the codomain of G+. Noticing

each point x′ ∈ M is in a set of the type I−M(y) for some y, we can conclude that G
+
f is

smooth on the whole M .

Linearity of the operator G
+
is a matter of choosing a suitable χ. Let f1, f2 ∈ Γpc(M,E),

let’s take a smooth function χ such that χf1, χf2 have compact support and χ ≡ 1 on
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neighbourhoods of both supp(f1) ∩ J−(x) and supp(f2) ∩ J−(x). Then also χ(f1 + f2) ∈
Γc(M,E) and χ ≡ 1 on neighbourhoods of both supp(f1 + f2) ∩ J−(x). Then all the

following equivalences are well defined

(G+(f1 + f2))(x) = (G+(χf1 + χf2))(x)

= (G+(χf1)(x) + (G+(χf2))(x)

= (G+f1)(x) + (G+f2))(x).

We shall proceed with the prove of the three properties. i.) Let x ∈M and χ as before. In

particular, we may choose χ ≡ 1 also on a neighbourhood of x, showing (ii).

(PG+f)(x) = (PG+(χf))(x) = (χf)(x) = f(x).

ii.) Proving (i) is a bit more complicated. Let’s start computing

(G+Pf)(x) = (G+(χ · Pf))(x)
= (G+P (χf))(x) + (G+([χ, P ]f))(x)

= f(x) + (G+([χ, P ]f))(x).

Using the same trick as before, we simply show that x /∈ supp(G+([χ, P ]f)). The coeffi-

cients of the differential operator [χ, P ] vanish where χ is locally constant, in particular on

suppf ∩ J−(x) where χ ≡ 1 Now we find

supp(G+([χ, P ]f)) ⊂ J+(supp([χ, P ]f))

⊂ J+(suppf \ J−(x))

⊂ J+(suppf) \ {x}

and therefore x /∈ supp(G+([χ, P ]f)).

iii.) For the last we see that given f ∈ Γpc(M,E)

supp(G+f) ⊂
⋃

χ

supp(G+(χf)) ⊂
⋃

χ

J+(supp(χf)) ⊂ J+(suppf).

Here the union is taken over all χ such that χf ∈ Γc(M,R).
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Now we are going to prove that operations such as composition or direct sum preserve

properties of GHOs. The importance of these results relies in the fact that we are able

to prove Green-hyperbolicity for a wide class of interesting operators (normally hyperbolic

operators), and we can understand physically interesting operators out of this class as com-

position or direct sum of normally hyperbolic operator. The direct sum and composition

of two Green-hyperbolic operators is again Green hyperbolic.

Proposition 1.2.11. Let P, P ′ : Γ(M,E) → Γ(M,E) and Q : Γ(M,F ) → Γ(M,F ) be

Green hyperbolic. Then the operators

i) P ⊕Q : Γ(M,E ⊕ F )→ Γ(M,E ⊕ F )

ii) P ◦ P ′ : Γ(M,E)→ Γ(M,E)

are also Green hyperbolic.

Proof. Proving the first is highly trivial. Denoting with G±
P and G±

Q are the Green’s op-

erators for P and Q respectively, then the direct sum G±
P ⊕ G±

Q defines Green’s opera-

tor for P ⊕ Q. When dealing with the proof of the second statement, one should think

simply to compose Green’s operator in reverse order, but unfortunately this composition

doesn’t make sense: this problem is solved using extensions G
±
. The Green’s operator

G+ : Γc(M,E)→ Γ(M,E) is defined as follows:

G+
P◦P ′ := ιpc ◦G±

P ′ ◦G±
P ◦ ιc

where we used the inclusions ιc : Γc(M,E) →֒ Γpc(M,E) and ιpc : Γpc(M,E) →֒ Γ(M,E).

Now, we shall present two results that seem to invert the previous proposition. As we

will show, when Green-hyperbolicity can’t be proven directly for a linear partial differential

operator, could be useful relating them to operators for which this property is already

known: tools like these are typically used when dealing with Dirac type operators.

Proposition 1.2.12. Let P : Γ(M,E)→ Γ(M,E) be a differential operator and let E carry

a non-degenerate bilinear form. If P 2 is Green-hyperbolic, so is P . Let P ∗ : Γ(M,E) →
Γ(M,E) be the formally adjoint operator. If P ∗P and PP ∗ are Green hyperbolic, then P

and P ∗ are Green-hyperbolic too.

As the last of this group of results, we present one that allows to compute Green’s

operators of the formal adjoint.
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Proposition 1.2.13. Let consider a globally hyperbolic spacetime M and a vector bundle

E defined over M . Taking P : Γ(M,E)→ Γ(M,E) Green-hyperbolic operator, with Green-

hyperbolic formal adjoint P ∗ : Γ(M,E) → Γ(M,E), denoting the retarded and advanced

Green’s operators respectively G± and G⋆±. Then, for all σ, τ ∈ Γc(M,E), it holds that

(G∗∓τ, σ)E = (τ,G±σ)E

i.e. (G±)
∗
= (G∗)∓.

Proof. Let’s prove this statement for G+. By Definition 1.2.9 of Green’s operator we know

that PG+ = idΓc(M,E) and then

(G∗−τ, σ)E = (G∗−τ, PG+σ)E = (P ∗G∗−τ,G+σ)E = (τ,G+σ)E

holds true for arbitrary σ ∈ Γc(M,E) and τ ∈ Γc(M,E), because the set

supp
(
G∗−τ

)
∩ supp

(
G+σ

)

is compact and the chain of equalities is well-defined at every step.

We now introduce the causal propagator G of an operator P , built up from its Green’s

operators.

Definition 1.2.14. Let E be a vector bundle over a spacetime (M, g, o, t) and P be a

Green-hyperbolic operator on Γ(M,E). Then G = G+ − G− is the causal propagator for

P defined by G±.

The properties of G can be obtained directly from those of Definition 1.2.9. For τ ∈
Γc(M,E):

(i) PGτ = 0;

(ii) GPτ = 0;

(iii) supp(Gf) ⊆ JM(supp(f)).

Starting from the latter, we are ready to prove the central theorem of this section in order

to understand the theory of solution of the equation ruled by a given Green-hyperbolic

operator P .
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Theorem 1.2.15. Let (M, g, o, t) be a spacetime and E a vector bundle defined over M .

Let’s take an operator P : Γ(M,E) → Γ(M,E) being Green-hyperbolic. Denoting with G

its causal propagator, then

{0} → Γc(M,E)
P−→ Γc(M,E)

G−→ Γsc(M,E)
P−→ Γsc(M,E)→ {0} (1.2.5)

is an exact sequence, i.e. each kernel of the arrows depicted above coincides with the image

of the previous map.

Proof. We prove the theorem going step by step from left to right.

(i) the first step means injectivity of P . Let’s take f ∈ Γc(M,E), we have that

Pf = 0 ⇒ G+Pf = 0 ⇒ f = 0.

(ii) Let’s show now that Im P |Γc(M,E) = Ker G|Γc(M,E). We take f ∈ Γc(M,E) ∩
Im P |Γc(M,E), i.e. f = Pu with u ∈ Γc(M,E), for the second of the properties

listed above

Gf = GPu = 0.

Now, taking h s.t. Gh = 0 and splitting the causal propagator, we have G+h =

G−h = h0. Let’s notice that supph0 ⊆ J+(supph) ∩ J−(supph), and for this reason

is compact. Then, we can write

h = PG+h = Ph0.

(iii) In order to prove that KerP |Γsc(M,E) = ImG|Γc(M,E), we take u such that Pu = 0

and its support is spacelike-compact and consider u+ = χ+u and u− = χ−u, where

{χ+, χ−} is a partition of unity subordinate to the open cover {I+M(Σ−), I
−
M(Σ+)}

and Σ+,Σ− are disjoint spacelike Cauchy surfaces, with Σ+ lying in the future of

Σ−. Per linearity Pu+ + Pu− = Pu = 0. Together with the support properties of u

(spacelike-compact support) and χ+, χ− (past-compact, respectively future-compact,

support), this identity entails that Pu+ = −Pu− has compact support, hence we can

define f = ±Pu±. We show that u = GPu+. Indeed, using the extension of Green’s

hyperbolc operators in order to define the linear operator G := G
+ −G−

we get

Gf = G
+
f −G−

f = u+ + u− = u.
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But, because f ∈ Γc(M,E), the extended propagator match the causal propagator

and we have u = Ḡf = Gf . Let’s prove the other inclusion, taking a section of the

form Gv in Γsc(M,E), easily PGv = 0, then Gv ∈ Ker G|Γsc(M,E).

(iv) Surjectivity of the operator P acting on Γsc(M,E) comes from the fact that given

u ∈ Γsc(M,E) and a partition of unity defined like at the previous point, we take the

section v = G
+
u+ +G

−
u− and we get

Pv = PG
+
u+ + PG

−
u− = u+ + u− = u

and the latter point concludes the proof.

Using the extensions of Green’s operator we can prove a similar sequence involving

different spaces of sections. We do not give explicit proof of this proposition here, because

it’s essentially a reproduction of ideas and techniques used in the latter.

Proposition 1.2.16. Let (M, g, o, t) be a spacetime and E a vector bundle defined over

M . Let’s take an operator P : Γ(M,E)→ Γ(M,E) being Green-hyperbolic. Denoting with

G its extended causal propagator, then

G = G
+ −G−

(1.2.6)

Then

{0} → Γtc(M,E)
P−→ Γtc(M,E)

G−→ Γ(M,E)
P−→ Γ(M,E)→ {0} (1.2.7)

is an exact sequence.

Now, we can introduce the class of normally hyperbolic operators. As anticipated above

this is a set of LPDOs distinguished from a physical point of view: for those operators we

are able to prove Green-hyperbolicity, using the fact that a Cauchy problem ruled by the

operator admits unique and global solutions. Concluding this chapter we will make precise

what we’ve just said.

Definition 1.2.17. Let (E, π,M, V ) be a real vector bundle over a d-dimensional Lorentzian

manifold (M, g). We say that a partial differential operator P : Γ(M,E) → Γ(M,E) of
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second order is normally hyperbolic if it can be locally written

P = −
d∑

i,j=1

gij∂i∂j +
d∑

i=1

Ai∂i + A . (1.2.8)

Given a section J of a vector bundle E, called source, and a differential operator P taking

values on Γ(M,E), we say that a partial differential equation Pσ = J is a wave equation

if P is normally hyperbolic.

Remark 1.2.18. Formal adjoint operators of normally hyperbolic operator are normally

hyperbolic. Then all results we prove for NHOs hold true for the formal adjoint too.

Theorem 1.2.19. Let (M, g, o, t) be a globally hyperbolic spacetime. Consider Σ ⊆ M

being a Cauchy surface for M, whit a normal future-pointing vector denoted by n. Then,

take a vector bundle (E, π,M, V ), endowed with a connection ∇, a normally hyperbolic

operator P acting on sections of Γ(M,E). For each initial data u0, u1 ∈ Γc(Σ, E) and each

source f ∈ Γc(M,E), the Cauchy problem

Pu = f on M, u = u0, ∇nu = u1 on Σ, (1.2.9)

has a unique solution u ∈ Γ(M,E).

Moreover, the support of u satisfies the following property

supp(u) ⊆ JM(supp(u0) ∪ supp(u1) ∪ supp(f)) , (1.2.10)

and the map Γc(Σ, E)× Γc(Σ, E)× Γc(M,E)→ Γ(M,E), (u0, , u1, f) 7→ u, taking a set of

initial data and source and assigning the unique solution of respective Cauchy problem, is

linear and continuous.

We skip the technicalities of the proof here, but we suggest the interested reader to refer

to [Bär14] for a complete exposition on Cauchy problems for normally hyperbolic operators,

with thorough proofs and useful insights. What is of central importance is the fact that

from existence and uniqueness of a global solution we can build up Green’s operators for

a NHO.

Theorem 1.2.20. Let’s take a spacetime (M, g, o, t) and E, vector bundle over M . Given

a normally hyperbolic operator P acting on section of Γ(M,E), then P is Green-hyperbolic.
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Proof. We have to explicitly construct Green’s operator satisfying conditions of definition

1.2.9 (we show here only the construction for G±). Given a compactly supported section

f we solve the Cauchy problem:

Pu = f on M, u = 0 on Σ−, (1.2.11)

where Σ− is a Cauchy surface s.t suppf ⊆ J(Σ−) and suppf ∩ Σ− = ∅, and we denote its

unique solution with uf . We claim that a Green’s operator G+ for P is the map

f 7→ G+f := uf (1.2.12)

Let’s check first whether supp(G+f) ⊆ J+(suppf), and whether this map does not

depend on the choice of the Cauchy surface. We define the manifold M̃ =M \ J+(suppf)

and, noticing that Σ− is fully included in M̃ , we solve the Cauchy problem 1.2.11 in M̃ ,

where f |M̃ is the null function. The solution of a Cauchy problem with null initial data

is u = 0, but by construction also uf solves it. We conclude that uf |M̃ = 0 and then

suppG+f = suppuf ⊆ J+(suppf). Let’s take now another Cauchy surface Σ′
−, still disjoint

from suppf and such that suppf ⊆ J(Σ′
−), the map (1.2.12) defines a function u′f that

coincide with uf on Σ− and then is also solution of the Cauchy problem with initial data

on Σ−, but by uniqueness they are the same function on whole M . Concerning the first

property of the definition of Green’s operator, this map trivially satisfy

PG+f = Puf = f

The second property follows since, for any space-like Cauchy surface Σ disjoint from the

causal future of the support of Pf , uPf is a solution of the Cauchy problem PuPf = Pf

with vanishing initial data on Σ. Consequently uPf − f is a solution of a Cauchy problem

with vanishing initial data on Σ and vanishing source, meaning that uPf − f = 0. Hence

the map f 7→ uf is a Green’s operator for P .



Chapter 2

Locally covariant quantum

field theory

In this chapter we use all the tools developed to build up quantum field theories in a

mathematical rigorous framework. In Section 2.1, in order to get motivations for the

introduction of the axioms and the formal language of the last section, we present a scheme

for the quantization of the Klein-Gordon theory. We prove that the KG operator is normally

hyperbolic, hence, using Theorem 1.2.15, we associate a symplectic space to the operator

with three different, but equivalent, methods, constructing the space of linear observables

for the classical field theory. We proceed then to algebraic quantization, which analogously

can be achieved working via two different paths. The first consist in the definition of the

tensor algebra out of a symplectic space, imposing the canonical commutation relations by

quotient of a suitable ideal. The second scheme is know as quantization by deformation and

provides an algebra of observable working on linear functionals and deforming, in a precise

and rigorous sense, the pointwise product in a product admitting canonical commutators.

These ∗-algebras describe the quantum theory encoding coherently the property of the

underlying spacetime: locality and causality are correctly implemented, together with the

less-known time slice axiom. Then, in Section 2.2, we show how spinor fields can be

treated on curved Lorentzian manifold. This part is useful because it comprehends a simple

introduction on Cartan geometry, which allows to describe Lorentzian manifolds in term

of Cartan structure and provide a framework which can be extended for the description

of field theories on supermanifolds (or, more precisely, super-Cartan structures). Finally,

using the language of categories and functors, we describe the axiomatic formulation of

quantum field theories and we give a precise definition of general covariance, showing how

the results achieved for the KG field can be obtained for all Green-hyperbolic operators

and coeherently for all globally hyperbolic spacetimes.

23
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2.1 A first example: the Klein-Gordon field

We start our discussion with the simplest example of a classical field: the free scalar field.

Despite this field is the least relevant from a physical point of view, it is an important

prototype for a deep understanding of quantum field theories in curved backgrounds. Fur-

thermore, the generalisation of the results of this chapter to the case of super free scalar

fields is the final aim of this theory.

In order to write a generalized version of the well known Klein-Gordon equation, we

can invoke two heuristic rules:

a) the principle of general covariance, for which equations of physics are derived from those

on Minkowski spacetime substituting any mathematical object derived from the metric

η with the analogous object built up on the general curved metric g;

b) the requirement that in the limit g → η, equations reduce to that valid in special

relativity.

Naturally, these two rules, the first in particular, are not well defined and, in general,

when used alone, they hardly lead to the correct physical model. Let’s see how they work

when applied to the case of our concern: the massive scalar field. The equation of motion

in (Rd, η), in the general global coordinates {xi}i=1,...,d already used in Example 1.1.2, using

the Einstein convention looks like:

(ηij∂i∂j +m2)φ = 0 (2.1.1)

Hence, with the substitution η → g, we get:

(gij∇i∇j +m2)φ = 0 (2.1.2)

where ∇i is the covariant derivative associated to the Levi-Civita connection. Unfortu-

nately, there are many other generalisations of (2.1.1) compatible with this procedure,

namely all the equations of the form:

(
✷∇ + f(R) +m2

)
φ = 0 (2.1.3)

where f is an analytic function and ✷∇ is the short notation for the D’Alembert operator

associated to the Levi-Civita connection. This regularity condition for f is reasonable and
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turns out to be fundamental when studying renormalization properties of the quantum

scalar field (see [HW01]). A thorough discussion of all the possible forms for the function

f is not of our concern. We take f = ξR where ξ is constant. We label the field operator

with:

Kg
ξ,m = (✷∇ + ξR +m2) (2.1.4)

where we choose the notation in order to make clear the dependence on the metric and

we call minimal coupling the case ξ = 0 and conformal coupling that for which ξ = d−2
4(d−1)

.

Let’s notice that when dealing with 2D models conformal and minimal coupling coincide.

Remark 2.1.1. Let’s show how solutions of the conformal coupled scalar field operator,

with m = 0, behave under conformal transformations of the spacetime. Given two d-

dimensional Lorentzian manifold (M, g) and (M̃, g̃) and a diffeomorphism χ : M → M̃

such that χ∗g̃ = S2g, denoting with R̃ and ∇̃ the quantities related to the metric of the

target space, we can relate solutions of the transformed equation to the untransformed

field. Indeed, writing the never vanishing factor S2 = e2ϕ, for the sake of simplicity, and

recalling the formulas

✷∇̃φ = e−2ϕ (✷∇φ+ (d− 2)gµν∂νϕ∂µφ) (2.1.5)

R̃ = e−2ϕ

[
R +

4(d− 1)

(d− 2)
e−(d−2)ϕ/2

✷

(
e(d−2)ϕ/2

)]
(2.1.6)

we get

(
✷∇̃ + ξdR̃

)
φ =

e−2ϕ


✷∇φ+ (d− 2)gij∂iϕ∂jφ+ e−(d−2)ϕ/2φ✷

(
e(d−2)ϕ/2

)
︸ ︷︷ ︸

=e−2αφ✷∇(e2αϕ)φ

+
d− 2

4(d− 1)
Rφ


 ,

with the equivalence in the underbrace justified by the calculation

e−2αϕ
✷∇
(
e2αϕ

)
φ =e−2αϕ∇µ∇µ

(
e2αϕ

)
φ

=e−2αϕ
{
∇µ
[
∂µ
(
e2αϕφ

)]
+∇µ

[(
e2αϕ

)
∂µφ
]}

=e−2αϕ
[
✷∇
(
e2αϕ

)
φ+ 4αe2αϕ∂µϕ∂µφ+ e2αϕ✷naφ

]
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where α = −d−2
4
. Then, we conclude that

(
✷∇̃ + ξdR̃

)
φ̃ = S(

d−6
2 ) ((✷∇ + ξdR))S

(− d−2
2 )φ̃ (2.1.7)

the field φ̃ = S(
d−2
2 )φ solving the transformed equation.

Now we have defined an equation of motion and before proceeding we remind the reader

that equations like that of the massive scalar field could come both from heuristic argu-

ments and from Lagrangian densities generalized to curved backgrounds. Here we are ready

to understand the scalar field operator using the formalism developed in Chapter 1. Given

a manifold M , we define K as an operator acting on the space of section Γ(M,M × R),

where the vector bundle is taken to be (M×R, prM ,M,R). As we showed in Remark 1.2.2,

the sections of this vector bundle are in bijective correspondence with the space of real

smooth functions C∞(M). Moreover, we can define a bilinear form integrating the point-

wise product of sections

(·, ·)
R
: C∞(M)× C∞(M)→ R (f, g) 7→

∫

M

f · g dvolM , (2.1.8)

where f and g are taken to be smooth real sections with supports intersecting on a compact

set.

Remark 2.1.2. Here we introduce quickly another formalism which is often convenient to

work with, for the development of quantum field theory. Using the definition of differential

forms over a manifold, with notions and notations used in [Tay96, ch. 9,10], we can define

the Hodge-d’Alembert operator

✷H,k : Λ
k(M)→ Λk(M) ✷H,k := dδ + δd (2.1.9)

where Λk(M) is the vector space of the k-forms on M . The operator (2.1.9) shows up in

many general contexts, but for our aims is enough to notice that, since Λ0(M) = C∞(M),

✷H,0 := δd (2.1.10)

is an operator acting on the space of the smooth functions on M . The second term of the

sum disappeared in (2.1.10) because δ is the null operator when acting on Λ0(M). Now

we can see how the operator (2.1.10) is related to the operator ✷∇ used before. Taking
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f ∈ C∞(M), using the multi-index notation, we get

✷H,0u =dδu+ δ du = δ du = δ ∂iu dx
i = ⋆d ⋆ (∂iu dx

i)

=
1

(n− 1)!
⋆ d
(
εj,j1,...,jn−1

√
|g|gjl∂lu dxj1 ∧ . . . dxjn−1

)

=
1

(n− 1)!
⋆
(
εj,j1,...,jn−1∂i

(√
|g|gjl∂lu

)
dxi ∧ dxj1 ∧ . . . dxjn−1

)

=
1

(n− 1)!

1√
|g|
εi,j1,...,jn−1εj,j1,...,jn−1∂i

(√
|g|gjl∂lu

)
dxi ∧ dxj1 ∧ . . . dxjn−1

=− 1√
|g|

∂i(
√
|g| gil∂lu) (2.1.11)

proving with this chain of equivalence that ✷H,0 = −✷∇

In the following, the group of results at the end of the previous chapter will be crucial

in the construction of quantum field theories. Hence, we show here that Kg
ξ,m is normally

hyperbolic and hence Green-hyperbolic.

Proposition 2.1.3. Given a globally hyperbolic spacetime (M, g, o, t) and the vector bundle

(M×R, prM ,M,R), the linear partial differential operator, acting on sections Γ(M,M×R),
defined by

Kg
ξ,m = (✷∇ + ξR +m2) (2.1.12)

where ✷∇ is the d’Alembert operator associated to the Levi-Civita connection is normally

hyperbolic

Proof. Locally we can rewrite equation (2.1.12) as

Kg
ξ,mφ =

(
∇i∇i + ξR +m2

)
φ

=
(
gij∂i∂j + gijΓkij∂k + ξR +m2

)
φ

that perfectly fits the Definition 1.2.17 of normally hyperbolic operator.

We know from the previous chapter that normal hyperbolicity of the operator entails

Green-hyperbolicity, using the existence and uniqueness of a proper Cauchy problem. In

some cases, Green’s operators can be explicitly computed and this is the case for the

Klein-Gordon operator in flat spacetimes.
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Example 2.1.4. Let’s write the operator of Definition 2.1.4 for the flat spacetime using the

system of global coordinates and the greek index notation {xµ}µ=0,..,3

Kη
ξ,m = ηµν∂µ∂νφ+m2φ = 0 (2.1.13)

We know that the Green’s operators are given by

G± : C∞
c (M)→ C∞

sc (M) f 7→ G±f := lim
ǫ→0

∫

R4

dy f(y)G±
ǫ (x, y) (2.1.14)

where, as in Definition 1.2.9, the retarded Green’s operator is G+ and the advanced is the

other one. The function G±
ǫ is defined via integration over the “momentum space”:

G±
ǫ (x, y) =

∫

R4

dvolR4

e−iη(p,(x−y))

m2 + p · p− (p0 ± iǫ)2
(2.1.15)

The support of the distributions G± imply the inclusion G±f ⊆ J±
R4(suppf), and hence we

recovered the construction used in books like [PS95]

Once the theory of scalar field has been put in a rigorous framework, we can study the

possible methods to achieve quantization in generic curved backgrounds. We will try to

give a useful introduction to some of this techniques, following the scheme of [Hac10].

2.1.1 The space of classical observables

Given an equation of motion, a physical system is described by the space of observables

associated to that equation, usually described in mathematical terms as a commuting

algebra A endowed with a Poisson structure, i.e. a binary operation {·, ·} : A × A → A
satisfying the following three conditions:

Skew symmetry {a, b} = −{b, a};

Jacobi identity {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0;

Leibniz’s Rule {ab, c} = a{b, c}+ b{a, c};

for a, b, c ∈ A. The scope of this paragraph is to explain how such an association can

be concretely obtained in a framework compatible with general relativity. This means,

mathematically speaking, that the brackets defining the Poisson structure shall be coherent
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with the principle of general covariance. The existence of such covariant Poisson bracket

has been proven for the first time by [Pei52].

We start our discussion with one of the key results of all the chapter that is a char-

acterisation of the space of the compactly supported smooth functions on a GHST. This

proposition is the starting point for the definition of a space of observables and the im-

plementation of the ‘quantization machinery’. From now on we will simplify the notation,

removing superscripts and subscripts from the symbol of the scalar field operator. Refer-

ences to the mass term and to the coupling function are not needed in general. One can

use Theorem 1.2.15 in order to build up a symplectic space structure from C∞
c (M): due

to the exactness of the sequence of (1.2.5) the quotient space

EK (M) := C∞
c (M)/K(C∞

c (M)) (2.1.16)

is well defined. Moreover we can find an isomorphism to the space of space-like compact

solution of equation (2.1.3). First we notice that the space SolKsc(M) of solutions with

spacelike-compact support of the equation Ku = 0 on M , coincides with the kernel of K

restricted to spacelike-like compact smooth functions, which is a trivial fact. Then one can

apply the sequence in order to construct explicitly the isomorphism.

Proposition 2.1.5. Consider the space of functions C∞(M) over a globally hyperbolic

spacetime (M, g, o, t). Let K : C∞(M) → C∞(M) be the scalar operator with Green’s

operator GK±. Then the space SolKsc(M) of solutions with spacelike-compact support defined

by

SolKsc (M) :=
{
ψ ∈ C∞

sc (M) : Kψ = 0
}

isomorphic to the quotient space E := C∞
c (M)/K(C∞

c (M)) via the map

GK : C∞(M)/K(C∞(M))→ SolKsc(M) [f ] 7→ GKf (2.1.17)

Proof. For this proposition we give a schematic proof:

i) GK is a well defined map. Given two elements of a class [f ], f and f ′ = f +Kh. We

calculate

GK([f ′]) = Gf +GKh = Gf = GK([f ]) .

ii) GK is an injective map. GK([f ]) = 0 ⇒ Gf = 0. That is f ∈ KerGK, but KerGK =

ImK|C∞
c (M), hence f = Kh⇒ [f ] = [0]
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iii) GK is an surjective map. Given ψ ∈ SolKsc, ψ ∈ KerK|C∞
sc (M) = ImGK|C∞

c (M), hence

ψ = GKf with f ∈ C∞
c (M)

Besides its mathematical characterisation, also the physical interpretation of SolKsc(M)

is noteworthy. As we will see in the following, it plays the role of the classical phase space

of the theory. This fact becomes clear once additional structure is provided for the space

of solution, in fact this structure is a skew-symmetric, non degenerate bilinear form that

can be defined directly on SolKsc (M) or at the level of the space EK (M). The connection

between these two structures will be proven in the following. Here we first endow EK (M)

with a symplectic form defined using the pairing between smooth sections and the causal

propagator associated to K.

Proposition 2.1.6. Let (M, g, o, t) be a globally hyperbolic spacetime. Let K : C∞(M)→
C∞(M) be the Klein-Gordon operator and denote with GK the associated advanced-minus-

retarded operator. Then the map presented below defines a non-degenerate bilinear form:

τK

M
: EK (M)× EK (M)→ R, ([f ], [h]) 7→ τK

M
([f ], [h]) := (f,GKh)R (2.1.18)

where f ∈ [f ] and h ∈ [h] are two arbitrary representatives. Furthermore, τK

M
is skew-

symmetric, and then defines a symplectic form on EK (M).

Proof. The definition of τK

M
given by (2.1.18) doesn’t depend on the representatives. Taking

indeed f ′ = f +Ku, h′ = h+Kv

τK

M
([f ′], [h′]) =(f +Ku,GK(h+Kv))

R

=(f,GKh)
R
+ (Ku,GKh)

R
= τK

M
([f ], [h])

where we used that GKKu = 0 for u ∈ C∞
c (M) and secondly that GK∗ = −GK. Bilinearity

is clear by definition and so we can concentrate on non-degeneracy. We take [f ] ∈ EK (M)

such that

τK

M
([f ′], [f ]) = 0 ∀[f ′] ∈ EK

this entails that (f ′, GKf)
R
= 0, ∀f ′ ∈ C∞

c (M) and that GKf = 0, for the non-degeneracy

of the pairing (·, ·)R. Hence f ∈ KerGK that coincides with ImK|C∞
c (M), and so is another

way to label the class [0] generated by all the elements of the for Ku with u ∈ C∞
c (M).
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The symplectic space (EK (M) , τK

M
) induces a symplectic structure on SolKsc (M) via the

standard push-forward of tensors associated to the map GK. Indeed, it can be easily proven

that

GK

∗ τ
K

M
:= τK

M
◦
(
(GK)−1 ⊗ (GK)−1

)
: SolKsc (M)× SolKsc (M)→ R

GK

∗ τ
K

M
(φ1, φ2) = τK

M

(
(GK)−1 (φ1), (GK)−1 (φ2)

)

is a non degenerate, antisymmetric bilinear form on the space of spacelike compatcly sup-

ported solutions, once two elements of SolKsc (M) are interpreted as images of two elements

in EK (M). Unfortunately, despite the induced structure is enough to proceed with theo-

retical presentation of the classical and quantum scalar field theory, we shall find a more

practical version of the symplectic form. This will turn out to be useful when dealing with

explicit computations and in order to give a physically meaningful interpretation. Adapting

ideas and methods of [HS13] to our context, let us show how an alternative but equiva-

lent structure can be defined on SolKsc (M): for each element φ we know that there exist a

compact set C such that supp(φ) ⊆ J± (C) and we can rewrite this function as the sum

φ = φ+ + φ−. This splitting is not unique but for our purpose we have just to notice that

given another splitting φ+′

+ φ−′

, the function ρ := φ+′ − φ+ = φ− − φ−′

is a compactly

supported function and supp(ρ) ⊆ C. Given such a decomposition, we can define the map

σK : SolKsc (M)× SolKsc (M)→ R σK (φ1, φ2) = (Kφ+
1 , φ2)R (2.1.19)

The integral defining this bilinear form exists once φ1 and φ2 are solutions: from Kφ1 = 0,

as stressed in the proof of Theorem 1.2.15, we deduce that Kφ+
1 = −Kφ−

1 is a compactly

supported function, hence integration is sensible in (2.1.19). Moreover, due to the consid-

eration above, we can prove the independence on the splitting. Given another splitting for

φ1,

(Kφ+′

1 , φ2)R =(Kφ+
1 , φ2)R + (Kρ, φ2)R

=(Kφ+
1 , φ2)R + (ρ,Kφ2)R = (Kφ+

1 , φ2)R, (2.1.20)

where the last equivalence is due to self-adjointness of K and to the fact that Kφ2 = 0.

After seeing this proof, one should be tempted to integrate by parts directly in the definition

(2.1.19) and then claim that the map is trivial, but actually, since φ+
1 and φ2 do not have

compact overlapping supports integration by parts is not allowed. The properties needed
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to proceed with the construction of the symplectic space should be checked: here we sketch

the proof.

Proposition 2.1.7. The map defined by (2.1.19) has the following properties

i) The map σK is antisymmetric

ii) For all φ1, φ2 ∈ SolKsc (M), there exist [u], [v] ∈ EK

σK(φ1, φ2) = τK

M

(
[u], [v]

)
. (2.1.21)

Proof. Starting from the point i), we take arbitrary φ1, φ2 ∈ SolKsc (M) and we consider

the splittings φi = φ+
i + φ−

i , i = 1, 2. Recalling that given a a past compact set A+ and

a future compact set A−, their intersection is a compact set and that, as noticed before,

from Kφi = 0 follows that Kφ+
i = −Kφ−

i . Then

σK(φ1, φ2) = (Kφ+
1 , φ2)R = (Kφ+

1 , φ
+
2 )R + (Kφ+

1 , φ
−
2 )R

and the splitting due to the linearity of the pairing makes sense because both terms are

well-defined. Indeed supp(φ+
i )∩supp(φ−

j ) is compactly supported for each couple (i, j) and

the term (Kφ+
1 , φ

+
2 )R can be rewritten as −(Kφ−

1 , φ
+
2 )R, that falls in the case just examined.

Hence, we can proceed with

σK(φ1, φ2) = −(Kφ−
1 , φ

+
2 )R + (φ+

1 , Kφ
−
2 )R = −(φ−

1 , Kφ
+
2 )R − (φ+

1 , Kφ
+
2 )R

= −(φ1, Kφ
+
2 )R = −(Kφ+

2 , φ1)R = −σK(φ2, φ1), (2.1.22)

For the proof of the point ii) we recall that using the isomorphism GK of Proposition 2.1.5,

we can interpret a solution φ of Kφ = 0 as the image of a function u ∈ C∞
c (M)

φ[u] = GK([u]) := GKu

Then, given two elements in SolKsc (M) we denote them with φ[u], φ[v] and we can use the

convenient decomposition GKu = (GK)+u− (GK)−u given by the Green’s operator in order

to find

σK(φ[u], φ[v]) = (K(GK)+u,GKv)
R
= (u,GKv)

R
= τK

M
([u], [v]) , (2.1.23)
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where we used the definition of Green’s operator and of the symplectic form on the space

EK (M)

Since we introduced this symplectic structure on the space of space-compact solutions

in order to compare our formalism with the standard one of quantum field theories in

flat backgrounds, underlining the relationship between (SolKsc (M) , σK) and the space of

function of (2.1.16) turns out to be useful. Hence, we can summarize our results with:

(SolKsc (M) , σK)
Symp≃ (EK (M) , τK

M
)

where the superscript“Symp”indicates that the isomorphism defined preserves the symplec-

tic structures. The symplectic form σK defined in (2.1.19) is enough for a full theoretical

comprehension of the phase space, but, in order to underline the connection with the or-

dinary quantization, we show how that form can be written as an integration of a current

over any Cauchy surface. Using the formalism introduced in Remark 2.1.2, we present here

a technical Lemma, the proof of which can be found in [Tay96, Ch. 10].

Lemma 2.1.8. Given a smooth compact manifold M with boundary ∂M and two differen-

tial forms u, v ∈ Λ0(M) we get

(✷H,0u, v)R − (u,✷H,0v)R =

∫

∂M

dvol∂M (〈dv, n〉u− 〈du, n〉v) (2.1.24)

where 〈·, ·〉 is the dual pairing between differential forms and vector fields.

In order to proceed, we shall rewrite (2.1.24) using functions and derivatives. Recalling

the relation (2.1.11) of Remark 2.1.2, taking two smooth functions φ1, φ2 it becomes:

(✷∇φ1, φ2)R − (φ1,✷∇φ2) =

∫

∂M

dvol∂M (−φ1∇nφ2 + φ2∇nφ1)

Now, in order to apply Lemma 2.1.8, we choose a Cauchy surface Σ of the GHST, (M, g, o, t),

and we split the manifold M in two regions, M± = J±(Σ). This splitting is such that

M =M+ ∪M− and M+ ∩M− = Σ and induces a decomposition of the bilinear form σK,

when acting on two smooth space-compactly supported solution φ1, φ2:

σK(φ1, φ2) = −(Kφ−
1 , φ

+
2 )

+
R
+ (φ+

1 , Kφ
−
2 )

−
R
. (2.1.25)
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where for each f, g we denote

(f, g)±
R
=

∫

M±

dvolMf · g

Let us notice that with this splitting we decomposed the bilinear form in two terms which

are integrals over compact submanifold. Indeed supp(φ±
1 ) ⊆ J±(C) for some compact set

C and J±(C) ∩M∓ is trivially compact.

Proposition 2.1.9. Given a globally hyperbolic spacetime (M, g, o, t) and the scalar field

operator K the symplectic form of (2.1.19) can be written as

σK(φ1, φ2) =

∫

Σ

dvolΣ (φ1∇nφ2 − φ1∇nφ2) (2.1.26)

where Σ is an arbitrary Cauchy surface of (M, g, o, t).

Proof. We start from the splitting of (2.1.25)

σK(φ1, φ2) = −(Kφ−
1 , φ2)

+
R
+ (φ+

1 , Kφ2)
−
R
.

As stressed before, both integrals of the last term are performed over a compact region of

the spacetime, respectively

supp(φ∓
1 ) ∩ supp(φ2) ∩ J±(Σ) = C±,

and moreover the only region of the boundary ∂C± where integrands are non vanishing,

repsectively, ∂C± ∩ Σ. Hence, applying Lemma 2.1.8 in a suitable version, denoting with

n the future pointing normal vector to Σ and ñ = −n, we get:

σK(φ1, φ2) =

∫

Σ

dvolΣ (φ−
1∇nφ2 − φ2∇nφ

−
1 − φ+

1∇ñφ2 + φ2∇ñφ
+
1 )

=

∫

Σ

dvolΣ (φ1∇nφ2 − φ2∇nφ1) (2.1.27)

Let’s notice that, since the decomposition depends only on the chosen Cauchy surface,

independence from the splitting of the form σK entails independence from the choice of

the Cauchy surface. Writing σK as in (2.1.26), allows to recollect the standard symplectic
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form and a physically meaningful interpretation of our formalism. First we notice that

for the continuity of the map GK and for the result of Proposition 2.1.7, the symplectic

form τK

M
defines a bidistribution in D′(M ×M), i.e. the dual space of compactly supported

functions defined on the product manifold M ×M . We denote this bidistribution with

the symbol ∆, and we define the integral kernel with ∆(x, y). This fact can be transposed

to the symplectic form σK with an heuristic interpretation of the association [u] → φ[u]

as distribution, defined via the so called “unsmeared field” φ(x) (for a rigorous treatment

of this interpretation we recommend the reading of [Hac10, pag. 53]). Taking this into

account we can write

σK (φ(x), φ(y)) = ∆(x, y).

Furthermore, we know that τK

M
(f, g) vanishes when the supports of the functions g and

f are causally separated, this entails, looking at the level of integral kernel, that ∆(x, y)

is zero when the points x, y are causally separated. For this property, throughout the

literature, the commutator is said to satisfy the causality condition. Concluding, in order

to underline the connection with the standard formalism of QFT we shall understand σK

as the equal time commutator. We present here without proof a proposition by Dimock

[Dim80], as exposed by [Hac10], that states some properties of the causal propagator and

its distributional integral kernel.

Proposition 2.1.10. Given a globally hyperbolic spacetime (M, g, o, t) and a Green-hyperbolic

operator K, with its causal propagator GK. Given any Cauchy surface Σ, for all f ∈ C∞
c (Σ)

the following statement holds true:

∇nG
Kf |Σ = f, GKf |Σ = 0 (2.1.28)

that in terms of integral kernels can be read as

∇n∆(x, y)|Σ×Σ = δΣ(x, y) ∆(x, y)|Σ = 0 (2.1.29)

Recalling now the theorem Theorem 1.1.22, we see that any Cauchy surface can be seen

as a ‘time constant sub manifold’. Indeed given a Cauchy surface Σ the existence of the

diffeomorphism claimed at point iii) of Theorem 1.1.22 and the topological decomposition

of M as R× Σ, with the metric −βdt2 + gt, allow us to fix t = t0 and to interpret Σ as a

time constant submanifold because it is diffeomorphic to t0 × Σ. Moreover, we know for

the same argument and for what has been stressed at the end of Proposition 2.1.9 that σK
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is constant when moving on the family of Cauchy surfaces. Hence we can write

σK (∇nφ(x), φ(y)) =∇n∆(x, y)|Σ×Σ = δΣ(x, y)

σK (φ(x), φ(y)) =∆(x, y) (2.1.30)

We can now conclude this subsection seeing what happens in the usual example of the flat

spacetime.

Remark 2.1.11. What we have just shown can be used to shed light on the connection

between our formalism and the ordinary development of QFT in Minkowski spacetime.

We build up the GHST taking the Lorentzian manifold (R4, η) and defining the volume

form induced by η and a timelike vector field using the system of global coordinates

(x0, x1, x2, x3), hence we get the 4-tuple (R4, η, dx0 ∧ dx1 ∧ dx2 ∧ dx3, e0). The family

of Cauchy surfaces is easily defined as Σt = {x ∈ R
4|x0 = t}. In this framework the time-

orientation vector e0 is also the unit constant vector field normal to Σt, hence ∇n = ∂0.

Then ∇nΦ(x) = ∂0Φ(x) = Φ̇(x) = Π(x) and equations (2.1.30) looks like

σK (Π(x), φ(y)) =∇n∆(x, y)|Σ×Σ = δΣ(x− y) = δ(3)(x− y)

σK (φ(x), φ(y)) =∆(x− y)

where the function ∆(x− y) is the well known Pauli-Jordan distribution.

Functionals as observables

Here we show how the classical theory of the scalar field can be set in a more general

framework. The space of classical observables of the theory will be defined as the space

of functionals on the space of field configurations, C∞(M) and the equivalence with the

previous construction will be proven. As a first step, in this space we can define the notion

of linear observable.

Definition 2.1.12. Given a GHST, (M, g, o, t), and the normally hyperbolic operator K,

we define the set of linear observables for the scalar field theory ruled by K as the set of

functionals generated this way by f ∈ C∞
c (M):

Ff : C
∞(M)→ R φ 7→ Ff (φ) = (f, φ)R. (2.1.31)
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If we denote with L (M) the space of functionals defined by (2.1.31) we can define the map

F : C∞
c (M)→ L (M) f 7→ F(f) := Ff (φ). (2.1.32)

This definition already shows some pathologies: first, let us notice that some ambiguities

could arise when we work on the so called space of on shell field configuration, i.e. the space

SolK (M) = KerK|C∞(M). Indeed there exist two different elements f ∈ C∞
c (M), such that

Fh(φ) = Ff (φ) for each φ ∈ SolK (M). This is due to the fact that we are working with

the kernel of the operator K, indeed given f ∈ C∞
c (M) and defining f̃ = f +Kh for some

h ∈ C∞
c (M), we get the chain of equalities

Ff̃ (φ) = (f̃ , φ)R = (f +Kh, φ)R = Ff (φ) + FKh(φ)

but, using the self-adjointness of K, the last term becomes

FKh(φ) = (Kh, φ)R =

∫

M

dvolM (Kh)φ =

∫

M

dvolM h(Kφ) = 0

Hence we found that the kernel of the linear map f 7→ Ff is nonempty and the latter is not

injective. Yet, due to the linearity, we have simply to figure out which is the space of null

observables and then, understanding its degeneracy, we can quotient out redundancies.

Proposition 2.1.13. The space of linear null observables

NK(M) = {Ff (φ) = 0, ∀φ ∈ SolK(M)} (2.1.33)

coincides with the image of Im
(
K|C∞

c (M)

)
via the isomorphism F defined in (2.1.32)

Proof. The statement can be rephrased as

F
(
Im
(
K|C∞

c (M)

))
= NK(M) .

We prove first the inclusion F
(
Im
(
K|C∞

c (M)

))
⊆ NK(M): Given an element in C∞

c (M) of

the form Kf , for all φ we write

F (Kf) (φ) = FKf (φ) = (Kf, φ)R = (f,Kφ)R = 0

then F (Kf) (·) ∈ NK, and the inclusion above holds true.
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Now we prove the inclusion F
(
Im
(
K|C∞

c (M)

))
⊇ NK (M): Given Ff such that Ff (φ) =

0, ∀φ ∈ SolK, this can be written in terms of pairing

Ff (φ) = (f, φ)
R
= 0, ∀φSolKsc(M) .

Recalling now that SolK = Ker(K|C∞(M)) and invoking the extended exact sequence (1.2.7)

of Theorem 1.2.16 for K we have

Ff (φ) = (f, φ)
R
= 0 = (f,G

K

h)R = 0, ∀h ∈ C∞
tc (M)

Then, we can use non degeneracy of the pairing (·, ·) and that G
∗
= −G in order to notice

that G
K

f = GKf = 0, and so that f ∈ Ker
(
GK|C∞

c (M)

)
= Im

(
K|C∞

c (M)

)
. Concluding that

f = Ku for some u ∈ C∞
c (M).

Then we are ready to define

OK(M) := L(M)/N (M)

and denoting with a slight abuse of notation the map F : EK(M)→ OK(M) such that

F([f ]) := F[f ],

we find an isomorphism, through which we can even push-forward the symplectic structure.

Indeed, we easily define:

F∗τ
K

M
: OK(M)×OK(M)→ R

(
F[f ], F[h]

)
7→ F∗τ

K

M

(
F[f ], F[h]

)
:= τK

M
([f ], [h]) (2.1.34)

Hence we gave a third way of understanding the space of observables associated to the field

theory ruled by the operator K, and we showed how these three formulation are equivalent.

We can summarize the situation with the following diagram

(SolKsc(M) , σK) (OK(M) ,F∗τ)

(EK(M) , τK

M
)

≃

GK F

Diagram 2.1.1
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and, with this diagram in mind we can activate the quantization machinery.

2.1.2 Algebraic quantization

Even thought the construction of classical field theories showed strong analogies with the

methods used when dealing with flat spacetimes, quantization shows remarkable differ-

ences. Indeed, it is a well know fact that in generally curved spacetimes a sensible notion

of ‘particle’ fail to be found. At the level of mathematical formalisms this means the im-

possibility to pick out one preferred state from the class of suitable states for the theory.

The algebraic quantum field theory gave in the past a good recipe to avoid this problem,

that is defining an algebra of fields, working independently from the choice of a unique

state or a class of Hilbert spaces unitarily related. In this framework, as a first step, we

try to associate to our symplectic space of classical fields a ∗-algebra of quantized fields.

After the characterisation of the space of classical observable for the scalar field theory, we

have to find a suitable method to proceed in this direction. We recall that we have got

three different, but related, schemes for the construction of a space of observables, endowed

with a symplectic structure. Since we know, as summarized in Diagram 2.1.1, that there

is not any theoretical difference between this three formulations, each of them can be used

depending on the practical advantages we need.

As for the classical field theory, also the construction of a theory for a quantized field

can be achieved in many different ways: we are going to show here two of these techniques.

Before proceeding, it’s important to underline that the ∗-algebra of fields has to be inti-

mately related with the spacetime being the background for the theory. Hence, more often

in the literature authors refer to a net of algebras associated to a spacetime and to all

its causally compatible subregions, implementing two conditions which encode topological

and causal properties of the background. These are:

i) Isotony, meaning that the algebra has to be coherent with the operation of inclusion

between two regions of the spacetime, i.e. the algebra associated to a region O is a

subalgebra for the algebra associated to each opens set O′ such that O ⊆ O′ and O is

causally compatible with O′.

ii) Causality, meaning that elements of subalgebras associated to causally separated

regions of the spacetime are asked to commute. In physical terms, this means that ob-

servables defined on causally non-related regions should be simultaneously measurable,

i.e. the measurement of one them should not affect the other.
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iii) Time slice property, meaning that if a causally convex open set O ⊆M contains a

Cauchy surface for M, then the algebra associated to O has to be isomorphic to the

algebra associated to M . This practically means that once you characterize the space

of observable associated to an arbitrary small open region around a Cauchy surface Σ,

then you know the space of observable of the whole spacetime.

To build up an algebra with these properties we first present here a procedure that makes

possible to associate a ∗-algebra to a symplectic space, and then we force suitable causality

conditions, quotienting by a suitable ideal. Hence, given a symplectic space (V, τ) one can

start introducing an algebra A consisting of the vector space T CV =
⊕

k∈N0
V ⊗k
C

, i.e. the

direct sum of all the tensor powers of the complexification VC of the vector space V , where

we have set V ⊗0
C

= C. Therefore, we can interpret elements of T CV as sequences of the

form {vk ∈ V ⊗k
C
}k∈N0 with finite non-zero terms. Each term vk can be written as a linear

combination, with complex coefficients, of terms of the form v1⊗· · ·⊗vk for v1, . . . , vk ∈ V .

A product on this set is given by the binary operation · : T CV × T CV → T CV given by

{uk} · {vk} = {wk}, wk =
∑

i+j=k

ui ⊗ vj. (2.1.35)

With respect to this product the identity 11 is given by the sequence v0 = 1, vk = 0 ∀k. An
involution for this algebra can be defined on the elements of the form v1 ⊗ · · · ⊗ vk ∈ V ⊗k

and then extended to all the elements of the direct sum:

(v1 ⊗ · · · ⊗ vk)∗ = (vk ⊗ · · · ⊗ v1)

As evident this construction can be used over each symplectic space, but from now

on, in order to compare results with ordinary physically focused literature, we will use

(EK(M) , τK

M
) as a prototype and we will denote the elements of the algebra with Φ[f ]k

. Then,

we can notice that elements in EK(M) of the form [f ] have a faithful correspondence in

A (M) = T CEK(M), given by {[f ]k} such that [f ]1 = [f ] and the other terms are vanishing,

i.e. {0.[f ], 0, . . . , 0}. The algebra A (M) already encodes the property of isotony quoted

above, indeed for each region O ⊆ O′, the inclusion C∞
c (O) →֒ C∞

c (O′) in the sense that

we can trivially understand f ∈ C∞
c (O) as an element in C∞

c (O′) extending it by zero.

This entails EK(O) ⊆ EK(O′). Conversely, the causality condition has to be introduced ‘by

hand’. We take the ideal J Bos

τ
generated by the elements of the form

Φ[f ] · Φ[h] − Φ[h] · Φ[f ] − iτ([f ], [h])11,
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for all [f ], [h] ∈ V . Then we can ultimate the construction of the algebra defining the

quotient

A
K(M) = T CEK(M) /J Bos

τ
. (2.1.36)

This algebra satisfies the causality condition by definition and what has yet to be proven

is the compatibility of this construction with the time slice axiom. We first present the

situation of the classical theory and then we deduce what happens at the level of the

algebra. Hence given a causally connected open subset O containing a Cauchy surface

Σ, we first prove that the embedding EK(O) →֒ EK(M) given by the extension by zero

[f ] 7→ [extMf ] is a symplectomorphism. This map is trivially well defined and linear, it

preserves the symplectic form because

τK

O
([f ], [h]) =

∫

O

dvolOfG
Kh =

∫

M

dvolMextM(f)G
KextM(h) = τK

M
([extM(f)], [extM(f)]),

and is injective because functions of the form Ku are extended to KextMu. The only thing

that shall be checked is the surjectivity.Taken a smooth section f with compact support

in M , we take two Cauchy surfaces Σ+,Σ− contained in O, respectively in the future and

past of Σ. We then define the open cover {I+(Σ−), I−(Σ+)} and we take a partition of

unit subordined to it, χ+ + χ− = 1, on M . We, hence define f ′ = −K(χ−GKf), that

has support in O, because, K(χ+GK + χ−GK)f = 0 entails that f ′ = K(χ+GK). But, f ′

differs from f only for the image through K of a compactly supported section. Indeed,

f ′ = f − K(χ−GK+)f + χ+GK−f (we left the check to the reader). And hence we found

a function f ′ such that [extM(f ′)] = [f ]. At the level of the algebra this symplectic

isomorphism induces a ∗-isomorphism, that is defined associating the element Φ[f ]k
to the

element Φ[extMf ]k
. We do not prove this fact here because all this results can be seen easily

with the formalism of category theory as exposed in the next section. We can recollect the

claims of this subsection on the algebra A K(M)1 in the following theorem

Theorem 2.1.14. Given a globally hyperbolic spacetime (M, g, o, t), and for a given causally

connected open subset U ⊆M , let A K(U) be the unital ∗-algebra of observables for the real

scalar field introduced in (2.1.36). Then the following properties hold:

Isotony if O ⊆ O′, A K(O) ⊆ A K(O′).

Causality If O,O′ are causally separated in M, then elements in the algebra A K(O)

1Since we understood that properties of the algebra depend on the causal structure via τ , we now label
the algebra of the observable with the letter referring to the spacetime.
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commutes with elements in A K(O′). Practically, if f, g ∈ C∞
c (M) be such that

supp(f) ∩ J(supp(g)) = ∅, then Φ[f ] · Φ[g] = Φ[g] · Φ[f ].

Time-slice axiom Let O ⊆ M be a causally convex open neighbourhood of a spacelike

Cauchy surface Σ for M. Then the algebras A K(O) and A K(M) are ∗-ismorphic.

Quantization by deformation

The formalism just presented is very abstract and certainly hard to manipulate when

extending the algebra of fields to deal with models of interacting field theories. Here we

briefly show how, with a different approach, it is possible to get the quantized version

of the classical scalar field theory. This approach is called deformation quantization and

consist of ‘deforming’ the commutative product of a Poisson algebra in order to define a

new non-commuting algebra. Given an algebra (A, ·s) (where ·s is a commutative product)

endowed with a Poisson structure {, } one studies the class of deformed products ⋆~
2 such

that for all pairs a, b ∈ A

lim
~→0

a ⋆~ b = a ·s b, lim
~→0

1

~
[a, b]⋆~ = {a, b} (2.1.37)

Here, we briefly show how an algebra of quantum local observables can be constructed

deforming the ordinary commuting product between classical observables. Deformation

techniques can be naturally applied to algebraic quantum field theory dealing with the

space of linear observables L defined in the previous paragraph. But, in order not to

restrict our discussion to very limited cases, we present this methods applied to a more

general context. In the literature, many authors refer to the the space of observables as

the set of real valued functionals from the space of field configuration C∞(M). Often, one

picks out from this set a subset of functionals suitable for the treatment of the particular

problem of interest. Namely, one can select all the regular polynomial functionals defined

by

F (φ) =
N∑

n=0

∫

Mn

dx1 . . . dxn fn(x1, . . . , xn)φ(x1) . . . φ(xn)

where fn ∈ C∞
c (Mn). This set, denoted by Preg will be the framework for our exposition. It

is trivial to notice that L ⊂ Preg. Now, without any intention to give a thorough exposition,

we show how the space of local functionals and hence its subset L can be endowed with a

2Until now the quantity ~ has been set equal to one, but in this subsection it cannot be fixed because
it is used as deforming parameter
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non commuting deformed product using the Plank’s constant as parameter. We recall that

Preg is naturally endowed with the pointwise commuting product

µ : Preg × Preg → Preg µ (F,G) (φ) = F (φ) ·G(φ), ∀φ ∈ SolK (2.1.38)

Over this space we define the Poisson bracket using the notion of functional derivative.

Given a funcrional F , its nth functional derivative is a compactly supported distributional

density in n variables, symmetrical under permutations of arguments, defined by

〈F (n)(φ), v⊗n〉 = dn

dλn
F (φ+ λv)

∣∣
λ=0

. (2.1.39)

For the sake of the synthesis we cannot go deeply in the well-posedness of this definition

and we recommend to the reader a brief discussion on this tools applied to algebraic QFT

in [BDF+09, Section 2]. Now, before proceeding we refer to the previous section for

the interpretation of the symplectic form as a distribution in D′(M × M), that can be

represented by the integral kernel.

Now, considering the integral kernel ∆(x, y) associated to the symplectic form τK

M
and

recalling the interpretation proposed in the previous section of the latter as a distribution

in D′(M ×M), we can define the Poisson bracket for this vector space as

{F,G}
Poi

(φ) =
(
F (1)(φ),∆G(1)(φ)

)
R
, (2.1.40)

that perfectly fits the symplectic form obtained via pull-back in (2.1.34), when applied to

the space of linear functionals L. Moreover it can be easily proven that if on entry of the

bracket (2.1.40) is an element of the spaceNK(M), the result is an element in this space, i.e.

NK(M) is an ideal for the bracket and so the quotient that defines OK(M) = L/NK(M)

can be extended to all the space Preg, defining PK

reg
= Preg/NK(M). Now we define the

product solving the problem (2.1.37)

(F ⋆ G)(φ) =
∞∑

n=0

~
n

n!

(
1

2

)n (
F (n)(φ),∆⊗nG(n)(φ)

)
R
, (2.1.41)

Let us notice that in the case of linear functional of the form F[f ] ∈ OK(M) this product

gives exactly

F[f ] ⋆~ F[h] := µ
(
F[f ], F[h]

)
+ i~τK

M
([f ], [h])1 (2.1.42)
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because the functional derivative of F[h](φ) =
∫
M
dvolM h · φ gives the function h inter-

preted as distribution acting on the space C∞(M). Hence we can easily deduce that the

commutator evaluated on two element of OK(M) gives

[
F[f ], F[h]

]
~
:= i~τK

M
([f ], [h])1

defining exactly the same algebra of the previous section. Whereas in the extended algebra

PK we get:

[F,G]
~
= i~

(
F (1)(φ),∆G(1)(φ)

)
R
+O(~2)

satisfying the deformation condition and quantizing this way an extended class of function-

als.

Summarizing we have shown how this approach generates the same algebra that is given

working with the machinery of algebraic quantization. Moreover, it is clear that this new

request allow to comprehend the problem of quantizing the linear observables within a

wider class of problems that is the quantization of more general structures. Starting from

an algebra with a commutative product in a way such that the (2.1.37) holds true. As seen,

this particular formulation is not fundamental in treating the free theory of scalar field but it

gives a very enlightening insight on the procedure of quantization and turns out to be a very

powerful tool to treat algebraic quantization of interacting field theories. Unfortunately

a deeper discussion on the noteworthy applications of this methods to the treatment of

interactions needs preliminary notions we haven’t got yet. Hence, we recommend the

reader the consultation of one or two enlightening references, such as [DF01], [BDF+09],

[FR15].

2.2 Cartan structures and spinor fields

The generalisation of the free scalar field equation to curved background has been intro-

duced using well known notions in ordinary differential geometry. For the spinor field, the

analogous problem needs different instruments and a different description of the underlying

background. In this section, we are going to give a new picture to describe Lorentzian man-

ifolds not only with the aim of defining a suitable coupling between geometry (curvature)

and spinor field, but also setting a good starting point for the presentation of super Cartan

structures that will be the basic framework for a rigorous definition of super-QFT.
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Non-coordinate bases for Lorentzian manifolds

At the beginning of our discussion, we give an equivalent formulation of geometry over

n-dimensional Lorentzian manifolds replacing the information given by the metric in a set

of n one-forms. This approach can be formulated in the very general context of Cartan

geometry (see for example [Sha97])), but since the Cartan theory could be too complicate

and technical for the scope of this thesis, we will use an adapted version of the subject,

making explicit use of bases decomposition and coordinates. In doing this we will make

use of Einstein convention for sums throughout all the section.

The tangent space at a point p of a given Lorentzian manifold M is generated by the

so called coordinate basis, {∂i|p}ni=1, i.e. vectors defined by the chosen system of charts

{Uα, φα}, defined by

∂i|p(f) =
∂

∂xi
(f ◦ φα) |p

with p ∈ Uα for a given α, with the basis of T ∗
pM induced by duality denoted with {dxi}ni=1.

Another set of vectors spanning TpM can be obtained using the action of the general linear

group GL(n,R). Denoting this set with {V̂i|p}ni=1, the relation V̂i|p =
∑

i e
i
j∂i|p where

eij are n2 real numbers defining an element of the general linear group. Moreover, when

the manifold is endowed with a Lorentzian metric g, a subgroup of transformation can

be extracted by asking for preservation of a certain orthonormality condition ruled by the

flat metric η, i.e. (omitting the point p for simplicity and details on the running indexes,

because obvious):

g(V̂j, V̂i) = g(V k
j ∂k, V

h
i ∂h) = V h

i V
k
j gkh = ηij (2.2.1)

Looking at the last equation, we can see that the Lorentzian metric elements at a point gij,

represented as a matrix, can be put in the diagonal form once a suitable basis is chosen.

We choose a set of tangent vectors satisfying this condition and we denote them with the

same symbol V̂i. This defines a non-coordinate basis and the dual basis of the space of

one-forms {êi}ni=1, which allows to rewrite the metric as

g = ηij ê
i ⊗ êj. (2.2.2)

We recall that transformation from the set of one-forms to the coordinate basis of the

cotangent space can be defined by ê = eijdx
j and satisfy the relation V j

l e
i
j = δil . Since
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there are many non-coordinate bases, a natural question is how many of these satisfy the

constraint to (2.2.1), answering this question we set

ê′i|p = Λij(p)ê
j|p

and we find the equation defining the Lorentz group SO(1, d− 1),

Λki (p)ηkhΛ
h
j (p) = ηij.

Remark 2.2.1. The transformations coefficients defined by eij can be used for many different

purposes. As first example we define the ‘moving γ-matrices’. More precisely, given the

Clifford algebra generated by the elements {γi} fulfilling

γiγj + γjγi = ηij

we define the elements γ̃i = eijγ
j and we find that an analogous relation, ruled by the

coefficient of the metric at a point gij, holds true

γ̃iγ̃j + γ̃j γ̃i = gij

The local action of the Poincaré group

Summarising, at each point we have a class of non-coordinate bases of the tangent and

cotangent space, each element of this class is linked to another element by a linear map

- that we will call local Lorentz transformation (Λij(p)) - and to the coordinate basis with

the linear transformation defined by the coefficients eij(p). Now, we can use this two facts

to encode the action of the Lorentz group and of the spin group for defining an equation of

motion for the spinor field. For an n dimensional manifold, the idea is that of defining an

object “coupling” the set of n one-forms with the elements of the translations Lie algebra

(t), using then the action of the adjoint action of the Poincaré group on these elements.

This new object is called vielbein and is defined as follow.

Definition 2.2.2. Given a Lorentzian manifold (M, g), denoting by t the translation al-

gebra, the vielbein ê is a one-form section with values in the translation algebra, i.e. an

element of Ω1 (M, t) satisfying a non degenerate condition in the sense that. For each point

p, we take a chart (U, φ), where p ∈ U , that induces a system of local coordinates {xi}ni=1,

we can expand the vielbein in terms of the coordinate basis T ∗
pM and an orthonormal basis
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of t:

ê|p = êi|p ⊗ Pi = eij(p)dx
j|p ⊗ Pi (2.2.3)

where the coefficients eij(p) define a non degenerate transformation to the non coordinate

basis {êi}ni=1. We denote the inverse of this transformation with V k
h , using which we can

write the associated frame of vector fields V̂h = V k
h ∂k.

We notice that in the literature the definition of the vielbein can be different, it is

presented as a non degenerate map from a SO(1, n-1)-vector bundle to the tangent bundle

of the manifold M . We are not going to show the equivalence of this two definitions, but

we remark that in both cases the vielbein has the double aim: describing the geometry of

the underlying Lorentzian manifold (M, g), done by the set of one forms {êi}ni=1 due to

their relation with the metric, and encoding the local action of the Lorentz group, in a

sense that we are going to make clear in the following remark.

Remark 2.2.3. Taking a Lie group G we define the adjoint action of the group on itself as a

map ψ : G×G→ G, (g, h) 7→ ψ(g, h) = ghg−1. Looking at this map on just one argument,

we define the map ψg = ψ(g, ·) and the map Ψ : G→ Aut(G), associating g 7→ ψg. Fixing

an element g, if we take the differential at the identity of ψg

dψg|e :TeG→ TeG (2.2.4)

X 7→ dψg|e(X) (2.2.5)

We recall that the tangent space at the identity is the Lie algebra g associated to G and

we denote, from now on, the map defined via 2.2.4 by Adg : g→ g. This can be seen as an

action Ad : G × g → g of the group on its Lie algebra, and taking the differential of Adg

with the respect to the group element g, an action of the algebra on itself ad : g× g→ g is

naturally defined. It is a well known fact that the maps from two elements can be explicitly

computed [·, ·]g:

ad :g× g→ g (x, y) 7→ adx(y) = [x, y]

and defines the so called adjoint representation of the algebra on itself. We sometimes will

adopt the convention, as often in physics, for which the action of the Lie algebra element x

is referred to as infinitesimal action of the Lie group element g associated to x, and denoted

by δx
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Let us take the Poincaré group SO(1, n-1)⋉R
1,n-1 as Lie group. We can use its infinites-

imal action on the translation algebra t, seen as the normal subalgebra of the Poincaré

algebra poinc = so(1, n-1) ⊕ t, consisting of the elements of the form 0 ⊕ P , where P ∈ t.

Hence, denoting the generators of the algebra by {Pi, Ljk}, if we look at the infinitesimal

transformations induced by the element ε = εij1 Mij ⊕ εk2Pk, we can calculate the action on

t

δε(0⊕ Ph) =adε(0⊕ Ph)
=
[
εij1 Lij ⊕ εk2Pk, 0⊕ Ph

]

=εij1 (0⊕ [Lij, Ph])

=2(ε1)
i
h(0⊕ Pi) (2.2.6)

that, since we are interested only in the action on t, can be written shortly δε(Ph) = 2εikPi.

Going directly to finite transformation, via exponential map, the action of SO(1, n-1)⋉R
1,n-1

becomes

Ad(Λ,a)Pj = ΛijPi

where (Λ, a) is the element generated by ε ∈ poinc, and Λij are the matrix elements of the

representation of the Lorentz group over t. We can use this fact to define an action of the

Lorentz group on the vielbein, setting

δε(ê) = [ε, ê] := εij1 ê
h [Lij , Ph] 2εihê

h ⊗ Pi (2.2.7)

Together with the action on the algebra we want to operate on ê using a notion of ‘deriva-

tive’, for this scope we have to choose a connection ω ∈ Ω1 (M ⊗ so(1, n-1)), defined on

the generators by the antisymmetric coefficients by

ω = ωij ⊗ Lij, (2.2.8)

and acting on the vielbein this way:

dωê :=dêk ⊗ Pk + ωij ∧ êk ⊗ [Lij, Pk]

= dêk ⊗ Pk + ωji ∧ êk ⊗ Pk + ωij ∧ êj ⊗ Pi
= (dêi + 2ωij ∧ êj)⊗ Pi. (2.2.9)
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The last equation defining a two form with values in t. Hence, we define an element

of Ω1 (M ⊗ t): the torsion two-form T = dωê = T i ⊗ Pi. Choosing a connection means

imposing constraints on the torsion coefficients T i and we want to motivate which constraint

has to be applied recalling the relation with the geometry of the Lorentzian manifold (M, g)

and its tangent bundle. We denote by∇ a connection over TM , hence the torsion associated

to ∇ is defined by the formula:

T̃ : TM × TM → TM(X, Y ) 7→ ∇XY −∇YX + [X, Y ]

With respect to the basis {V̂i}ni=1, we get the associated Christoffel symbols computing

∇V̂i
V̂j = Γ̃kijV̂k. Moreover, we denote by the ckij the structure coefficients of the vector fields

algebra at a point p

[V̂j , V̂k] = cijkV̂i

given by

[V̂j, V̂k] = [V l
j ∂l, V

r
k ∂r] = V̂j(V

r
k )∂r + V l

j V
r
k ∂l∂r − V̂k(V l

j )∂l − V r
k V

l
j ∂r∂l

= (V̂j(V
r
k )− V̂k(V r

j ))∂r = eir(V̂j(V
r
k )− V̂k(V h

j ))︸ ︷︷ ︸
ci
jk

V̂i

or equivalently (noting that eihV̂j(V
h
k ) = −V h

k V̂j(e
i
h))

cijk = V h
j V̂k(e

i
h)− V h

k V̂j(e
i
h) (2.2.10)

Then

T̃ ijk = 〈êi, T̃ (V̂j, V̂k)〉 = 〈êi,∇V̂j
V̂k −∇V̂k

V̂j + [V̂j, V̂k]〉
T̃ ijk = Γ̃ijk − Γ̃ijk + ckij (2.2.11)

Now, we can make explicit the calculations of the coefficients T i of T = dωê and compare

the result with the formula (2.2.11).

T i = d(eijdx
j) + 2(ωik)j ê

j ∧ êk =
= ∂hê

i
ldx

h ∧ dxl + 2(ωik)j ê
j ∧ êk

=
(
V l
k V̂j(e

i
l) + 2(ωik)j

)
êj ∧ êk (2.2.12)
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and, extracting coefficients by anti-symmetrization, we get

T ijk =
1

2

(
V l
k V̂j(e

i
l)− V l

j V̂k(e
i
l)
)
+ (ωik)j − (ωij)k

Hence, forcing the identification

2(ωij)k ↔ Γ̃ijk,

we can identify also T ijk ↔ −1
2
T̃ ijk, meaning that the two quantities are proportional up to

constant. Now, we use this fact to induce a choice of the connection ruled by ω, seeing

what happens when we take the connection ∇ to be the Levi-Civita connection over TM .

As well known, the latter is a torsion free connection and this entails T̃ ijk = 0 and then

the proportionality relation allows to write the vanishing torsion constraint which uniquely

determines ω

Tω = dωê = 0

For a fixed ω, another object related to the curvature tensor of the manifold can be com-

puted. It is an element of Ω2 (M, so(1, n-1)) and is defined by

Rω = dωω = dω +
1

2
ωij ∧ ωkl ⊗ [Mij ,Mkl]

= (dωij + ωki ∧ ωjk)⊗Mij. (2.2.13)

Moreover, referring to [Nak03], we note that Tω and Rω satisfy two equations that are

closely related to the ordinary Bianchi identities for the torsion and curvature tensor

dT i + ωik ∧ T k = Ri
k ∧ êk dRi

j + ωil ∧Rl
j −Ri

l ∧ ωlj = 0

Transformation rule for ω This paragraph has the precise aim to present the most

relevant fact of the vielbein formulation of Lorentzian geometry. We defined the torsion

one-form associated to the connection ω, which takes values in the translation algebra t.

This means that we can deduce a transformation rule for ω imposing it to be coherent with

the torsion Tω transformation rule.

From an infinitesimal transformation generated by ε ∈ so(1, n-1), we know that, in

analogy with (2.2.7)

δε(Tω) = 2εihTω
h ⊗ Pi and Âd(Λ,a) (T ) = T j ⊗ ΛijPi,
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which can be read on coefficients as

T ′j = ΛjiT
i (2.2.14)

We calculate now dωê, varying the vielbein coefficients (êi 7→ Λij ê
j)

d′
ωê

′ =
(
d(Λij ê

j) + ω′i
k ∧ Λkl ê

r
)
⊗ Pi

=dΛij ∧ êj +
(
Λjidê

j + ω′i
k ∧ Λkl ê

r
)
⊗ Pi (2.2.15)

and taking components

Λijdê
j +
(
Λhrω

′i
h + dΛir

)
∧ êr. (2.2.16)

Hence, if the set of one forms ωij transform as

ωij 7→ Λilω
l
k(Λ

−1)kj − (Λ−1)sjdΛ
i
s (2.2.17)

then Λhrω
′i
h + dΛir = Λhrω

i
h and the equation (2.2.14) is fulfilled.

We conclude this subsection with the summary definition of Cartan structure, this

notion will be the connection point with the supergeometric theory in the following.

Definition 2.2.4. Given a manifoldM , we define as Cartan structure overM , a pair (ê, ω),

where ê is a vielbein respecting Definition 2.2.2 and ω is an element of Ω1(M, so(1, n-1)). We

will call Cartan manifold the triple (M, ê, ω), to which torsion and curvature are assigned

with the formulas

Tω :=dωê := dê+ [ω, ê]∧ (2.2.18)

Rω :=dωω := dω + [ω, ω]∧ , (2.2.19)

where, for ρ ∈ Ωl(M, g), σ ∈ Ωk(M, g) [ρ, σ]∧,g := ρi ∧ σj ⊗ [Xi, Xj ]g. We can associate a

Lorentzian manifold (M, g) to each Cartan manifold, with g induced by the local frame of

Ω1(M) following equation (2.2.2).

An equation of motion for spinor fields

As anticipated, the main reason for a vielbein based description of the geometry of a

Lorentzian manifold is that of encoding and making explicit the local action of the Lorentz

group. This allow to proceed directly towards the study of spinor fields on curved back-
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grounds. We start recalling that, on Minkowski spacetime, a spinor field is defined as

an element of a vector space where acts a representation of the double covering of the

Poincaré group (the spin group Spin(1, n-1)). On non-flat globally hyperbolic spacetimes

global transformation composing the Poincaré group are no longer valid symmetries for the

physical system and the only tool we can use is the local action we described above. In

the following, we will use the vielbein and the spin connection to define a representation

of the spin group and write down an equation of motion, invariant under the local action

of the Lorentz group.

Example 2.2.5. We recall that in ordinary approaches to quantum field theory (see [PS95,

ch. 3.3, pg. 40]), a spinor is an element of C4 and the Spin(1, 3)-group action on C
4 is

represented by the group of 4× 4 matrices defined via exponential map

S(Λ) = exp

(
1

2
ερσS

ρσ

)

where γµ are elements in End(C4), satisfying the Clifford algebra ruled by the Minkowskian

metric and the set of matrices Sρσ = 1
4
(γργσ − γσγρ) represent the Lie algebra of the spin

group (or equivalently of the Lorentz group). The transformation rule for spinors is

ψa(x) 7→ S(Λ)abψ
b(R(Λ)−1x)

Where with R(Λ) we denoted the representation over R1,3 of the Lorentz group. Then the

equation of motion is written using global coordinates {xµ}3i=0

(iγµ∂µ −m)ψ = 0

and invariance under the Lorentz group action is ensured by the well known property

(sometimes called “covariance of gamma matrices”)

S(Λ)−1γµS(Λ) = γνR(Λ)µν (2.2.20)

Even though the instruments are different, the guidelines for the definition of a spinor

field equation are analogous. We take a representation of the group Spin(1, n-1) on a vector

space V and we define spinors as section in Γ(M,V ). This representation has to satisfy

a relation like (2.2.20), hence denoting it by ρV : SO0(1, n − 1) → End(V ), we write for
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Λ ∈ SO0(1, n− 1)

ρV (Λ)−1γµρv(Λ) = γνR(Λ)µν

where now R(Λ) is a n-dimensional representation. Then, recalling that a notion of covari-

ant derivative can be defined using the spin connection ω ∈ Ω1(M, so(1, n-1)), we extend

the representation ρV of the group to a representation of ω over V

ρ :Ω1(M, so(1, n-1))→ Ω1(M,End(V ))

using which we can introduce the dynamics with the operator

dρ,ω :Γ(M,V )→ Ω1(M,V )

ψ → dρ,ωψ := dψ + ρ(ω)ψ. (2.2.21)

Using the local frame, the derivative operator dρ,ω can be expanded, calculating the symbols

∇ρ,ω

i ψ := 〈V̂i, dρ,ωψ〉 (2.2.22)

with which we define the operator

/Dρ,ω :Γ(M,V )→ Γ(M,V )

ψ 7→ /Dρ,ωψ := γi∇ρ,ω

i ψ (2.2.23)

Now, what remain to be proved is invariance of the equation induced by this operator,

/Dρ,ωψ = 0 under the local action of the Lorentz group (a possible mass term would be

trivially invariant). Following [Nak03] we prove invariance for the spin representation gen-

erated by the elements Σij :=
1
4
i [γi, γj], introduced in Example 2.2.5. We split the operator

action defined by (2.2.23) can be split in two parts, which can be analysed separately:

γi〈V̂i, dψ〉︸ ︷︷ ︸
i.

+ γi〈V̂i, ωkl〉︸ ︷︷ ︸
ii.

Σklψ

Now, if we look at the transformation under local Lorentz action of the part (i.), we get

γi〈V̂i, dψ〉 7→γjΛij〈V̂i, d(ρV (Λ)ψ)〉 (2.2.24)

= γjΛij〈V̂i, d(ρV (Λ))ψ〉+ γjΛij〈V̂i, ρV (Λ)dψ)〉. (2.2.25)
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The second term of the latter, recalling that γjΛijρ
V (Λ) = ρV (Λ)γi, can be calculated as

ρ(Λ)γi〈V̂i, dψ〉

while we expect the first term to be deleted by part (ii.) of the splitting. Then we proceed

expanding (ii.) on the coordinate basis and denoting ω̃ = ωklΣkl in order to simplify the

calculations. Hence, we have γi〈V̂i, ωkl〉ψ = γieri ω̃rψ. Now, we claim that the coefficients

ω̃r transform this way3

ω̃r 7→ ρV (Λ)ω̃rρ
V (Λ)−1 − ∂rρV (Λ)−1

and we look at part (ii.),

γieri ω̃rψ 7→γiΛjierjρV (Λ)ω̃rρV (Λ)−1ρV (Λ)ψ − γieri∂rρV (Λ)ρV (Λ)−1ρV (Λ)ψ (2.2.26)

=ρV (Λ)γieri ω̃rψ − γi〈V̂idρV (Λ)ψ〉. (2.2.27)

Noting the expected cancellation we can write the transformation of the whole equation of

motion

/Dρ,ωψ = 0 7→ ρV (Λ) /Dρ,ωψ = 0. (2.2.28)

Remark 2.2.6. We conclude noting that the operator just introduced is Green-hyperbolic.

Indeed, it is easy to see that acting twice on a spinor field with the operator defined by

(2.2.23), we a normally hyperbolic operator. Then, we can use Proposition 1.2.12.

2.3 The axiomatic framework for quantum field theo-

ries

In the previous sections we presented two key examples of quantum field theories, in or-

der to underline singular aspects of the formulation of quantum field theories in curved

backgrounds. In particular, we have shown that quantizing classical fields on a general

curved Lorentzian manifold M means associating a ∗-algebra of quantum observables with

the three property of isotony, causality and ‘time slicing’. As an alert reader should have

3The proof of this formula can be done studying infinitesimally all the transformations involved. A
detailed presentation of these calculations can be found in [Nak03, Ch. 7, at the end of Sec. 7.10]
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noticed, all the results and constructions of the previous section are independent from the

chosen manifold and operator. In fact, what turns out to be fundamental are global hy-

perbolotcity of the background and Green-hyperbolicity of the operator. A very general

approach to quantum field theories in curved backgrounds is based on the generally covari-

ant locality principle (GCLP) and its formulation as appeared for the first time in [BFV03].

This GCLP provides a scheme for the formulation of the QFTs emphasising the common

features of the quantization methods on different general curved spacetimes, encoding in

the mathematical formalism of category theory the covariance property that any theory

has to satisfy to be physical. Indeed, the GCLP is formulated in terms of locally covariant

quantum field theories (LCQFT): the central topic of this chapter.

2.3.1 The generally covariant locality principle

The GCLP is formulated using the language of category theory. We recommend the reader

to look at the Appendix or at a thorough exposition on the subject like [ML78]. We are

ready now to start with the definition of the two categories at the basis of the axiomatic

formulation.

Definition 2.3.1. We call Ghs the category such that:

• Objects are GHSTs of dimension d.

• Morphisms, MorGhs (M,N), are all the isometric embeddings χ :M → N preserving

orientation and time orientation, such that χ(M) ⊂ N is causally convex respect to

the causal structure of N.

• The composition law for morphisms is the usual composition of functions.

Remark 2.3.2. Now we proceed with the discussion of Remark 1.1.16 in order to give the

preliminary background to check the category axioms for Ghs. Given two spacetimes

(M, g, o, t) and (N, h, p, v), and an element χ ∈ Morghs (M,N) we have that χ(M)⊂N is a

causally compatible submanifold of N , hence we are induced to consider the restriction to

the image of χ, χ :M → χ(M), that is a diffeormophism and can be used to push forward

the structure of M. We can construct this way the spacetime (χ(M), χ∗g, χ∗o, χ∗t) that is

equivalent to
(
χ(M), h|χ(M), p|χ(M), v|χ(M)

)
, and this classify χ as a morphism from M to

χ(M). Then, recalling that, given a manifold χ(M), the inclusion map ιχ(M) : χ(M)→ N

is naturally a morphism from
(
χ(M), h|χ(M), p|χ(M), v|χ(M)

)
to (N, h, p, v), hence we can

conclude writing χ with the decomposition ιχ(M) ◦ χ
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We check here the category axioms:

• For each object (M, g, o, t) the identity morphism is defined by the map idM : M →
M , p 7→ p.

• The composition law for morphisms is associative because associative is the compo-

sition of functions.

• Given two morphisms χ1 ∈ Morghs (M,N) and χ2 ∈ Morghs (N,O), where M,N,O,

the map χ1 ◦ χ2 is trivially an embedding preserving metric, orientation and time-

orientation. What needs to be proven is that the submanifold (χ1◦χ2)(M) is causally

convex inO. Given two points p, q ∈ (χ1◦χ2)(M) and the curve γpq : I → χ1◦χ2)(M)

from p to q. We take the decomposition of Remark 2.3.2 noticing that both χ2 and χ1

are diffeomorphism, respectively from M to χ2(M) and from χ2(M) to χ1 (χ2(M)).

Hence, we can define the curve γ̃ = χ1
−1 ◦ γ : I → χ2(M) connecting χ1

−1(p) and

χ1
−1(q), points in χ2(M). The latter is included in χ2(M) because χ2(M) is causally

convex, and so is χ1 ◦ χ1
−1 ◦ γ = γ

Now we define the second category needed to proceed with the axiomatic formulation

Definition 2.3.3. We define the category Alg as follow:

• Objects are ∗-algebras.

• The set of morphism MorAlg (A,B) are all the ∗-homomorphisms between A and B.

• The composition law for morphisms is the usual composition of functions.

The check for this category to satisfy the category axioms is trivial. We have now all

the element for the definition of the locally covariant quantum field theories

Definition 2.3.4. A locally covariant quantum field theory is a covariant functor from the

category ghs to the category Alg

Now the generally convariant locality principle (GCLP) can be formulated saying that on

a globally hyperbolic spacetime, any quantum field theory must be formulated as a lo-

cally covariant quantum field theory (LCQFT ). This statement is motivated by the fact

that LCQFTs seem to be the perfect object to implement the covariance of general rel-

ativity in the physics of quantum field theories. Furthermore, the functorial nature of

these quantum fields imposes the geometrical locality at the level of quantum observables,
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i.e. the elements of the ∗-algebra. In fact, this is exactly the implementation of the

property of isotony that we noticed in the algebras of local observables for the classical

scalar field: considering a LCQFT A : ghs→Alg, given a globally hyperbolic spacetime

M = (M, g, o, t) and a causally convex connected open subset O of M , look at the in-

clusion ιO : O → M that is a morphism of the category ghs. Hence we consider the

element of MorAlg (A (O) ,A (M)), defined by A (ιO), we, then, recall that the spacetime

O can be identified with the spacetime (O, g|O, o|O, t|O) and we know that the algebra

A (ιO) ((A (O))) is a unital sub-∗-algebra of A (M). Hence a LCQFT A associates a

causally convex connected open subset of a globally hyperbolic spacetime to a unital ∗-
algebra satisfying the inclusion A (ιO) ((A (O))) ⊆ A (M).

Isotony and locality and their interpretation at the level of quantum fields are not the

unique property we need to have an interesting theory. Indeed, two other property are

often required to be satisfied by a locally covariant quantum field theory

i. A LCQFT A is called causal if for all triple of objects in ghs, M1,M2,M, and all

pair of morphisms χ1 ∈ Morghs (M1,M) and χ2 ∈ Morghs (M2,M) such that χ1 (M1)

and χ2 (M2) are causally separated with respect to the causal structure of M, then the

following holds:

[A (ψ1) (A (M1)) ,A (ψ2) (A (M2))] = {0} ,

ii. A fulfils the time slice axiom if for all pairs of objects of ghs, O,M, and each χ ∈
Morghs (O,M) such that the image of O through χ in M , χ (M), contains a smooth

spacelike Cauchy surface Σ for M, then

A (ψ) (A (M)) = A (N) .

2.3.2 Construction of locally covariant QFTs

In this section we show how, on the light of the GCLP, a quantum field thoery can be

constructed as a covariant functor. As we already underlined, in Section 2.1 we have

given a first example of locally covariant quantum field theory. Indeed the algebra A K(M)

defined before turns out to be the image of a functor A K : ghs→ Alg. In order to achieve

that construction we will pass through the category of symplectic vector spaces (yet to

be defined here, but its meaning is clear from the context). Moreover we will show how a

general approach to algebraic quantization is possible, and how the construction of quantum

field theories can be performed according to the GCLP with a given set of initial data. In
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[BFV03], the authors anticipated the possibility of giving slightly changed versions of the

categories involved in the definition of locally covariant quantum field theories. Hence,

following the work of [BG12], we introduce the category Ghs and we will call LCQFT any

functor F : Ghs→ Alg.

Definition 2.3.5. The category Ghs is formed taking

• as objects the triples consisting of a globally hyperbolic spacetime (M),a real vector

bundle π : E → M endowed with a non-degenerate inner product 〈· , ·〉E and a

formally self-adjoint Green-hyperbolic operator P : Γ(M,E)→ Γ(M,E).

• Morphisms are given by pairs (χ, F ) ∈ MorGhs ((M1, E1, P1), (M2, E2, P2)), where χ :

M1 →M2 is an isometric embedding preserving orientation and time orientation, with

χ(M1) being a causally compatible open subset of M2, and F is a fiberwise isometric

vector bundle isomorphism over χ such that the following diagram commutes:

Γ(M2, E2) Γ(M2, E2)

Γ(M1, E1) Γ(M1, E1)

P2

res

P1

res

Diagram 2.3.1

where res(u) := F−1 ◦ u ◦ χ is the formal definition of the restriction operator for

every u ∈ Γ(M2, E2), the definition of which can be understood more clearly looking

at the diagram

E1 E2

M1 M2

F

res(v)

χ

v

Diagram 2.3.2

Let us define also the operator ext acting on sections Γc(M1, E1) this way ext(u) =

F ◦u◦f−1. It trivially holds the identity: res◦ext(u) = u, ∀u ∈ Γc(M1, E1) and ext◦res(v) =
v, ∀v ∈ Γc(M2, E2). From this identity we deduce also ext◦P1 = P2◦ext. With this in mind,

we present a Lemma to be used together with results of the Chapter 1: Theorem 1.2.15

and Propositions 1.2.16, 1.2.134

4We present it here in the form used in [BG12], where a complete proof can be found
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Lemma 2.3.6. Let (χ, F ) be a morphism between two objects (M1, E1, P1) and (M2, E2, P2)

in the category Ghs and let (G1)± and (G2)± be the respective Green’s operators for P1 and

P2. Then

res ◦ (G2)± ◦ ext = (G1)±.

Definition 2.3.7. We call Symp the category which objects are the pairs (V, τ), where V

is a vector space and τ a symplectic form, i.e. a non degenerate, skew-symmetric bilinear

map. Morphism of Symp are linear maps preserving the symplectic structure. Given two

pairs (V1, τ1), (V2, τ2), then α : V1 → V2 linear, such that α∗τ2 = τ1 where the pullback is

α∗τ2 : V1 × V1 → V1

α∗τ2 = τ2 ◦ (α⊗ α)

Now all the preliminary results and definitions for the construction of bosonic LCQFT

have been presented, we remind that the construction we did for K in Section 2.1 has been

based on the same arguments, and we will recall them in the following, without repeating

the proofs. We know that the exact sequence for the operator P and the associated causal

propagator GP allows to build up a symplectic space. We denote with

EP

M,E
= Γc(M,E)/Im

(
P |Γc(M,E)

)
(2.3.1)

the vector space associated to the triple (M, E, P ) and with [ϕ] the class of elements

generated by ϕ ∈ Γc(M,E). Hence, the symplectic form (2.1.18) can be rewritten in this

context as

τP

M,E
([u], [v]) =

∫

M

dvol 〈u,GPv〉E (2.3.2)

Furthermore, we notice that the map ext, defined above, induces a linear map ρχ,F :

EP1
M1,E1

→ EP2
M2,E2

, [φ] 7→ [ext(φ)]. Hence, we are ready to prove the fundamental statement

of this section on the functorial nature of the latter definitions.

Proposition 2.3.8. Given the categories Ghs and Symp, the association

(M, E, P ) 7→ EP

M,E
(χ, F ) 7→ ρχ,F (2.3.3)

defines a functor E : Ghs→ Symp.

Proof. The fact that E ((M, E, P )) = (EP
M,E

, τP

M,E
) is a symplectic vector space, i.e an object

in Symp, has been analyzed in the previous chapter and nothing but the notation should
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be changed to present the general result. More interesting is the proof that, given two

objects (M1, E1, P1), (M2, E2, P2) and the morphism (χ, F ), the map

E((χ, F )) = ρχ,F : EP1
M1,E1

→ EP2
M2,E2

is a linear map preserving symplectic form in the sense of Definition 2.3.7. We first check

the well-definiteness of the map ρχ,F . Taking a class [ϕ] and two elements in this class, ϕ

and ϕ+ P1h, we have ρχ,F ([ϕ]) = [ext(ϕ)] and

ρχ,F ([ϕ]) = [ext(ϕ) + ext(P1h)] = [ext(ϕ) + P2ext(h)] = [ext(ϕ)].

The proof that this map is a symplectomorphism is an application of Lemma 2.3.6. Indeed

for [u], [v] ∈ EP1
M1,E1

, we get

τP2
M2,E2

([ext(u)], [ext(v)]) =

∫

M2

dvolM2 〈ext(u), GP2 ◦ ext(v)〉E2
(2.3.4)

but the formula for the change of variable for the integral of a section h ∈ Γ(M1, E1),

induced by the map f :M1 →M2, says that

∫

M2

dvolM2 h =

∫

M1

dvolM1 res(h).

Hence (2.3.4) becomes

∫

M1

dvolM1 〈u, res ◦GP2 ◦ ext(v)〉E1
=

∫

M1

dvolM1 〈u,GP1v〉E1
= τP1

M1,E1
([u], [v])

concluding the proof.

In the previous section, we have found a technique for the construction of a ∗-algebra
from a symplectic space. Here, in the form of a proposition we claim that this construction

is functorial. Hence, we denote with VC the complexification of the real symplectic vector

space (V, τ), T CV =
⊕

k∈N0
V ⊗k
C

the algebra built up on the tensor product of V . As showed

before, elements in this algebra can be interpreted as sequences of the form {vn ∈ V ⊗n
C
}n∈N0

the operation of involution is given by involution for each element of the sequence, i.e.

{vn}∗ = {(vn)∗}, where the latter, for vn ∈ V ⊗n
C

, is defined as

(vn)
∗ = (vi1 ⊗ · · · ⊗ vin)∗ = (vin ⊗ · · · ⊗ vi1)
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where the bar indicates complex coniugation. In conclusion we define J Bos

τ
as the ideal

generated by the elements of the form (u ⊗ v − v ⊗ u − i~τ(u, v)), where the superscript

Bos means bosonic. Hence, denoting with [{vk}] the equivalence classes in T CV/J Bos

τ
. We

are ready to prove the functoriality of what we have just presented.

Proposition 2.3.9. Given an object in the category Symp of symplectic vector spaces

(V, τ), and an element L ∈ MorSymp ((V1, τ1), (V2, τ2)), then the association

(V, τ) 7→ Q
Bos ((V, τ)) := T CV/J Bos

V , (2.3.5)

together with the definition of the action on morphisms, for which given a symplectic map

L : (V1, τ1)→ (V2, τ2)

L 7→ Q
Bos(L) :QBos ((V1, τ1))→ Q

Bos ((V2, τ2)) (2.3.6)

[{vk}] 7→ [{L(vk)}] , (2.3.7)

defines a functor QBos : Symp→ Alg.

Proof. The fact that QBos(V, τ) is a ∗-algebra has been deeply analyzed in the previous

section, hence we just have to check that the action on symplectic maps gives well-defined

∗-morfisms. We first look at the involution operation. We recall that the application is

build up on a real vector spaces and the action on the complexification of V is given by

∀v ∈ V λ ∈ C, L(v ⊗ λ) := L(v)⊗ λ.

Hence, L(v) = L(v) and we can deduce that QBos (L) is at least an algebra homomorphism

preserving the involution operation, indeed, for an element in V ⊗n
C

we get:

Q
Bos(L) ((v1 ⊗ · · · ⊗ vn)∗) =L(vn)⊗ · · · ⊗ L(v1) (2.3.8)

=L(vn)⊗ · · · ⊗ L(v1) (2.3.9)

=(Q(L)(v1 ⊗ · · · ⊗ vn))∗. (2.3.10)

In order to conclude the proof, the next step is to prove the preservation of the structure

induced by the quotient. We should have that QBos(L) (J Bos

V ) = J Bos

L(V ). The right hand

side is generated by the elements of the form:

L(u)⊗ L(v)− L(v)⊗ L(u)− i~τ2(L(u), L(v))) = L(u)⊗ L(v)− L(v)⊗ L(u)− i~L∗τ2(u, v)
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where in the last equality we used the definition of pull-back induced by L. Looking then

at the left hand side, we get:

Q(L) (u⊗ v − v ⊗ u− i~τ1(u, v)) = L(u)⊗ L(v)− L(v)⊗ L(u)− i~τ1(u, v).

Hence we can conclude recalling that the map L, as morphism in the category Symp,

preserves the symplectic form when acting through the pullback map, i.e. L∗τ2(u, v) =

τ1(u, v). The composition law trivially holds true.

The latter proposition allows us to claim that the functor A Bos = QBos ◦ E is a locally

covariant quantum field theory and, moreover, it satisfies also the causality condition in

the quantum formulation and the time slice axiom. We can formalise this fact with the

next theorem, as presented in [BG12].

Theorem 2.3.10. The functor A Bos = QBos ◦E : Ghs→ Alg is a bosonic locally covariant

quantum field theory and the following axioms hold:

(i) Causality Let (Mj, Ej , Pj) be objects in Ghs, j = 1, 2, 3, and (χj, Fj) morphisms

from (Mj, Ej , Pj) to (M3, E3, P3), j = 1, 2, such that χ1(M1) and χ2(M2) are causally

disjoint regions in M3. Then the subalgebras

A
Bos(χ1, F1)(A

Bos(M1, E1, P1)), A
Bos(χ2, F2)(A

Bos(M2, E2, P2)) ⊆ A
Bos(M3, E3, P3),

commute.

(ii) Time slice axiom Let (Mj, Ej, Pj) be objects in Ghs, j = 1, 2, and (χ, F ) a mor-

phism from (M1, E1, P1) to (M2, E2, P2) such that there is a Cauchy hypersurface

Σ ⊂M1 for which f(Σ) is a Cauchy hypersurface of M2. Then

A
Bos(χ, F ) : A

Bos(M1, E1, P1)→ A
Bos(M2, E2, P2)

is an isomorphism.

Now we can conclude this section, in which it has been shown how a bosonic LCQFT can

be constructed in a very general context. Physically meaningful properties of the theory,

such as isotony and causality are naturally encoded in this construction and time slice

aciom is satisfied. Analogously, a recipe for the construction of the fermionic LCQFTs can

be given with slight changes in the techniques used before. We don’t want to present here
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an extended treatment of this topic, but we simply underline that, as expexted, the classical

fermionic theory finds a natural framework in the category of Hilbert spaces, because the

anti-commuting quantum relations can be intended as the transposition at the quantum

level of an hermitian scalar product between fields. When dealing with scalar product,

additional hypotesis are needed to guarantee the positive-definiteness. Indeed, working on

fermionic field theories bilinear forms like (2.1.19) fail to be physically sensible for a general

Green-hyperbolic operator P . The solution to this problem can be found restricting the

construction of LCQFTs to those fermionic operators P , of first order, for which the pairing

(ψ1, ψ2) :=

∫

Σ

〈iσP (n♭)ψ1|Σ, ψ2|Σ〉EdvolΣ

is a positive definite hermitian scalar product on SolPsc (M, E) = {ψ ∈ Γsc (M,E) |Pψ = 0}.
An extended treatment of fermionic field theories can be found in [BG12] and [San10].
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Chapter 3

Supergeometry and LCQFT

In the previous chapters we have set the basis for understanding locally covariant quan-

tum field theory, presenting the axiomatic formulation and constructing general models of

bosonic field theories. Now, inspired by those results, we can proceed presenting the most

recent developments concerning the generalization of the general covariance scheme to field

theories defined on supermanifolds. For this scope, we start this third chapter with the

presentation of the basic mathematical instruments for a minimal comprehension of the

geometry of supermanifolds: a series of fundamental definition and proposition, from the

concept of super vector spaces to more advanced notions such as that of Berezin integration

and super differential forms. Afterwards in Section 3.2, in two different steps we show how

super field theories can be defined rigorously. At first we select a class of suitable frame-

works that are called super-Cartan structures (collected in the category ghsCart) to which

it is possible to associate canonically an ordinary globally hyperbolic spacetime, then we

proceed showing how a functor from (a full subcategory of) ghsCart (generally denoted by

sLoc) to the category of super ∗-algebras can be constructed once a super-Green’s hyperbolic

operator is given. Unfortunately, in this latter construction supersymmetry transformations

fails to be coherently encoded and, hence, we sketch the idea of the solution adopted in

[HHS16]. Finally, we recollect and apply all the results presenting explicit calculations for

super field theory models on super-Cartan supermanifolds of dimension 2|2, defining the

category 2|2-sLoc and imposing restrictive conditions called supergravity supertorsion con-

straints (see [WZ77] and [How79]), giving a classification of supersymmetry transformations

and showing explicitly their action on the superalgebra of super fields.

65
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3.1 Basics in supergeometry

The exposition on this subject is entirely based on reference [CCF11] and many insights

are taken from [HHS16]. We will denote with K any algebraic field used in the following,

meaning either R or C. The basic definition to start from is that of super vector space.

Definition 3.1.1. A super vector space is a vector space V obtained as the direct sum of

two vector spaces V0, V1 where a Z2-parity is assigned to non-zero elements following the

conventions:

|v| :=




0, v ∈ V0
1, v ∈ V1.

(3.1.1)

We define the superdimension of V = V0⊕V1 as the pair (dim(V0), dim(V1)) and we denote

it with dim(V ) = dim(V0)|dim(V1). Elements in V0, resp. V1, are called even, resp. odd.

Example 3.1.2. A first seminal example is that of Kn|m := K
n ⊕ K

m where n,m ∈ N and

where (Kn ⊕K
m)0 = K

n and (Kn ⊕K
m)1 = K

m. Usually, the base algebraic field K is

denoted by K
1|0.

Once super vector spaces have been defined, one can look at the maps between such

objects. among all the linear maps an interesting subset is composed by taking those

preserving parity. Given two super vector spaces V,W , the parity preserving linear maps

are all the linear maps L : V → W such that

L(Vi) ⊆ Wi for i = 0, 1 (3.1.2)

This condition is required to take care of the parity structure of a super vector space

when it is mapped into another super vector space: for example, Rn+m|0 and R
n|m cannot

be isomorphic as super vector spaces if we take as morphisms only the maps preserving

parity. After this consideration, we are ready for the definition of the category sVec

Definition 3.1.3. We define sVec as the category whose objects are super vector spaces

and, given two objects (V,W ), MorsVec(V,W ) is the set of all the linear maps between V

and W preserving parity.

This definition is sensible and well posed, but one should note an issue due to the

restriction of the space of linear maps to those preserving parity. Indeed, when one tries

to define a dual of a super vector space, borrowing the definition from the category of
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ordinary vector spaces, the set

V ∗ := { all the morphism L : V → K}

turns out to have only an element (the zero-map) if V is a purely odd vector space (i.e.

V = {0} ⊕ V1). This is because K being a purely even vector space, all non-zero maps

from V to K reverse parity. We have seen this key example, but this issue shows up also

when one tries to endow the set of morphism between two objects in the category sVec

with a proper structure of super vector space. Indeed, whereas the set MorVec(A,B), where

A,B are ordinary vector spaces, is a vector space, an analogous condition fails to be true

when A,B are super vector spaces. A solution for this problem is to look at the internal

morphisms of the category (see Definition A.8 and the relative introductory discussion in

the Appendix). Hence, we have that Mor(V,W ) (where we omitted the subscript sVec to

simplify the notation) consists of all the linear maps between V and W , and is the direct

sum of

(Mor(V,W ))0 = {L : V → W | L preserves parity }
(Mor(V,W ))1 = {L : V → W | L reverses parity }

and the dual is taken to be V ∗ := Mor(V,K). We can also define a tensor product between

super vector spaces, built up on the same algebraic field K, assigning parity this way:

(V ⊗W )0 := (V0 ⊗W0)⊕ (V1 ⊗W1)

(V ⊗W )1 := (V0 ⊗W1)⊕ (V1 ⊗W0).

These latest facts can be simply summarised saying that sVec is a tensor category with

internal morphism. In this context, we introduce the commutativity map, i.e. an isomor-

phism between V ⊗W and W ⊗ V , taking into account the graded structure (needed for

all the physical developments of the theory):

cv,w :V ⊗W → W ⊗ V
v ⊗ w 7→ (−1)|v||w|w ⊗ v (3.1.3)

that makes sense also when w and v are elements of not definite parity. In that case the

product v ⊗ w shall be decomposed as sum of parity-defined elements, then transformed
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and recomposed. As usual, even thought super, a vector space structure is not enough to

get something very interesting. The next step towards physical application is the definition

of superalgebras and the category in which they appear as objects sAlg.

Definition 3.1.4. A unital superalgebra is a super vector space endowed with two mor-

phisms µA : A⊗ A→ A and ηA : K→ A such that the following diagrams commute

A⊗ A⊗ A A⊗ A

A⊗ A A

idA⊗µA

µA⊗idA

µA

µA

Diagram 3.1.1

K⊗ A A⊗ A A⊗K

A

ηA⊗idA

≃

idA⊗ηA

≃µA

Diagram 3.1.2

Superalgebras are the objects of the category sAlg, in which morphisms are sVec-morphism

preserving the products and unit.

Multiplication and unit are often denoted shortly with µA(a1⊗ a2) = a1a2 and ηA(1) =

1A. Also the category sAlg can be seen as a tensor category if the tensor product is

endowed with a suitable multiplication function:

µA⊗B := (µA ⊗ µB) ◦ (idA ⊗ cB,A ⊗ idB)

ηA⊗B := ηA ⊗ ηB

that with the short notation introduced before becomes

µA⊗B(a1 ⊗ b1, a2 ⊗ b2) = (a1 ⊗ b1)(a2 ⊗ b2) = (−1)|a1||a2|a1a2 ⊗ b1b2
1A⊗B = 1A ⊗ 1B

Among all the superalgebras, we restrict our analysis to the subclass of the supercommuta-

tive superalgebras, i.e. those A for which the multiplication map µA satisfies µA◦cA,A = µA.

Example 3.1.5. A first fundamental example of supercommutative superalgebra is the free

algebra generated over a field K by the even elements {ti}i=1,...,p and the odd elements

{θj}j=1,...,q, the latter called Grassmann variables, such that:

θiθj = −θjθi
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for all i, j and hence θ2i = 0∀i. Formally, we can define the algebra A = K[t1, . . . , tp] ⊗
Λ(θ1, . . . , θq) where the second factor of the tensor product in the exterior algebra generated

by θ1, . . . , θq. Elements of this algebra, using the multi-index notation, can be written as

f0 +

q∑

k=1

∑

{Ik}
fIkθIk

where the second sum is performed over the set of multi-indexes {Ik} composed by all

the kthuple it is possible to build up with numbers from 1 to q, monotonically increasing,

f0, fIk ∈ K[t1, . . . , tp] and the symbol θIk denotes the product of Grassmann variables ruled

by the multi-index Ik. Let’s fix p = q = 2 to see how the notation and the product work.

For k = 1 we have two multi-index (despite this time they are single indexes), {I1} = {1, 2},
and for k = 2, {I2} = {12}. Hence, a generic element takes the form:

f0 + f1θ1 + f2θ2 + f12θ1θ2

where θ1θ2 can be indifferently written as θ12. We take now

a = α1
0t1 + α2

0t2 + (α1
1t1 + α2

1t2)θ1 + (α1
2t1 + α2

2t2)θ2 + (α1
12t1 + α2

12t2)θ12

b = β1
0t1 + β2

0t2 + (β1
1t1 + β2

1t2)θ1 + (β1
2t1 + β2

2t2)θ2 + (β1
12t1 + β2

12t2)θ12

where θ12 = θ1θ2. We can split each element of the superalgebra in even and odd part and

then compute the product, for the odd part we have a = (α1
1t1 + α2

1t2)θ1 + (α1
2t1 + α2

2t2)θ2

and b = (β1
1t1 + β2

1t2)θ1 + (β1
2t1 + β2

2t2)θ2, together with the product:

a · b = (α1
1t1 + α2

1t2)(β
1
2t1 + β2

2t2)θ1θ2 + (α1
2t1 + α2

2t2)(β
1
1t1 + β2

1t2)θ2θ1 = −b · a

in accord with the parities |a| = |b| = 1 and (−1)|a||b| = −1. Taking the product for a

generic split element, one can easily see that we have just defined a supercommutative

superalgebra

As in the ordinary quantum field theory, an operation of involution defined over the

elements of the algebra gives the right basis for the construction of the quantum theory.

Hence, we can endow a superalgebra with a superinvolution ∗A : A → A satisfactory

∗A ◦ ηA = ηA and ∗A ◦ µA = µA ◦ cA,A ◦ (∗A⊗∗A), that may look quite cumbersome but its
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actually very intuitive when written as

(a1a2)
∗ = (−1)|a1||a2|a2∗a1∗

for two elements of definite parity a1, a2 and (1A)
∗ = 1A. Extending trivially the superin-

volution to the tensor product we can define the tensor category ∗-sAlg in analogy with

Definition 3.1.4. Another key example of superalgebra, following the example of ordinary

geometry, is the tensor superalgebra built up on a super vector space. We define

T(V ) =
⊕

n

V ⊗n where V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
ntimes

for which (T(V ))0 =
⊕

n=even V
⊗n and (T(V ))1 =

⊕
n=odd V

⊗n, with the product defined

as usual with the map φr,s : V
⊗r × V ⊗s → V ⊗r+s

φr,s(vi1 ⊗ . . . vir , wi1 ⊗ . . . wis) = vi1 ⊗ . . . vir ⊗ wi1 ⊗ . . . wis

We net define the concept of super Lie-algebra.

Definition 3.1.6. A super-Lie algebra is a super vector space v together with a morphism

[·, ·] : v⊗ v→ v, called super-Lie bracket, satisfying:

i) [X, Y ] + (−1)|X||Y | [Y,X];

ii) [X, [Y, Z]] + (−1)|X||Y |+|X||Z| [Y, [Z,X]] + (−1)|Z||Y |+|X||Z| [Z, [X, Y ]] = 0

for X, Y, Z ∈ v. Equivalently the two conditions can be rewritten using the commutation

morphism in the category sVec:

i) [·, ·](idv ⊗ idv + cv,v) = 0

ii) [·, ·](idv ⊗ idv + cv,v⊗v + cv⊗v,v) = 0

A morphism between super-Lie algebras is a linear map L : v→ v′ preserving the brackets,

i.e. such that

[·, ·]v′ ◦ (L⊗ L) = L ◦ [·, ·]v (3.1.4)

These last constructions seems to be enough rich and complicate to build up a quantum

theory of superfield in analogy with the ordinary case. But the goal of this section is not

only to understand super vector spaces and superalgebras but to present the definition and
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then manage with supermanifolds. Before introducing them and the categorical structure

with which their class can be endowed, we shall pass thorough supermodules defined on a

superalgebra. This notion will be useful in defining some other supergeometric object.

Definition 3.1.7. Given a super algebra A, a left A-supermodule is a super vector space

V together with a left A-action lV : A ⊗ V → V induced by A, such that the diagrams

commute

A⊗ A⊗ V A⊗ V

A⊗ V V

idA⊗lV

µA⊗idV

lV

lV

Diagram 3.1.3

K⊗ V A⊗ V

V

ηA⊗idV

≃
lv

Diagram 3.1.4

Analogous definition can be provided, mutatis mutandis, for right A-supermodules, and

A-bisupermodules, that are both right and left A-supermodules.

Let us first notice that if A is a supercommutative superalgebra then every left super-

modules is also a right supermodules and that the abstract presentation of the Diagrams

3.1.3 and 3.1.4can be expanded writing the left action explicitly, for generic a, b ∈ A and

x, y ∈ V :

1. a(x+ y) = ax+ ay

2. (a+ b)x = ax+ bx

3. (ab)x = a(bx)

4. 1Ax = x

and this is useful to select the class of interesting morphism between supermodules, that

are those φ : V → W preserving parity and being linear with respect to the A-action, i.e.

φ(ax) = aφ(x), ∀a ∈ A and ∀x ∈ V , which formally shall be written as φ◦lV = lW ◦(idA⊗φ),
meaning that we ask the diagram to commute:

A⊗ V A⊗W

V W.

idA⊗φ

lV

φ

lW

Diagram 3.1.5
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Supermodules over the same supercommutative superalgebra A can be organized in

a category, called sMod, endowed with a tensor product and internal morphism (cfr.

[CCF11][pag.9]). At this point a legitimate question is whether is possible to recover

the language of matrices and what meaning can be assessed to usual tools like determinant

and trace. The first step in this direction is that of selecting a useful class of supemodules.

Example 3.1.8. Given a supercommutative superalgebra A, we define the tensor product

Ap|q = A⊗K
p|q where

(Ap|q = A⊗K
p|q)0 = A0 ⊗

(
K
p|q)

0
⊕ A1 ⊗

(
K
p|q)

1
(3.1.5)

(Ap|q = A⊗K
p|q)1 = A1 ⊗

(
K
p|q)

0
⊕ A0 ⊗

(
K
p|q)

1
(3.1.6)

In particular, what we are interested in is the class of all supermodules isomorphic to Ap|q,

i.e. those super vector spaces M , with p elements in M0, {e1, . . . , ep}, and q elements in

M1, {ǫ1, . . . , ǫq}, such that

M0 = spanA0
{e1, . . . , ep}+ spanA1

{ǫ1, . . . , ǫq} (3.1.7)

M1 = spanA1
{e1, . . . , ep}+ spanA0

{ǫ1, . . . , ǫq} (3.1.8)

In the literature often refers to this costruction with the name of free super module generated

over A by {e1, . . . , ep} and {ǫ1, . . . , ǫq}

Now we are ready to understand some interesting featuures of a matrix in a supergeo-

metric context. Let’s take a map L on the left free supermodule as in Example 3.1.8 built

up on the same superalgebra A. Its action is fully determined by the action on the basis

elements, i.e.

L(eh) =

p∑

i=1

tihei +

q∑

j=1

ujhǫj

L(εk) =

p∑

i=1

vikei +

q∑

j=1

wjkǫj

where additional attention shall be applied multiplying from the left (right) with coefficients

defining L if the modules are intended as left (right) A-supermodules. The notation above
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can be summarised in the block matrix form

(
L1 L2

L3 L4

)
(3.1.9)

where L1 and L4 are the even blocks, meaning that they preserve parity, built on the even

elements tih, w
j
k ∈ A, whereas L2 and L3 are the odd blocks containing the odd elements

ujh, v
j
k ∈ A. Using the matrix representing L and another matrix representing on the same

basis an application S, the action on a vector x ∈M can be written as the ordinary matrix

product L(x) := L · x as well as the composition S · L, taking care of the meaning of the

multiplication when dealing with right rather than left A-supermodules.

Once the matrix notation has been recovered, the first natural attempt is to define two

objects working with the same aim of the trace and the determinant. At this point, one

should ask which properties of trace and determinant are interesting for the ordinary con-

text and what of those properties is important to reproduce to develop the supergeometric

theory. From the block form (3.1.9) for L one is tempted to define the supertrace as the

sum of the ordinary trace of L1, L2, i.e. tr(L1) + tr(L4), but this definitions fails to be

independent from the choice of a basis for M . A good definition in order to preserve basis

independence is

str(L) := tr(L1)− tr(L4), (3.1.10)

We don’t give a proof here, since it is not needed for our purposes, but it can be found

in more extended expositions such as [Del+99]. With the definition of supertrace in mind

we can get some motivations for the definition of the concept of determinant updated to

supermodules map. One of the most relevant properties of the determinant (even though

it is not part of the axioms for its definition) is the so called Binet rule, i.e. det(AB) =

det(A)det(B). Looking for something similar, one defines the Berezinian (named after

Felix Berezin) by

Ber(L) := det(L1 − L2L
−1
4 L3) (det(L4))

−1 (3.1.11)

where, for this definition we ask L4 to be invertible. Actually, another formulation for

Ber(L) can be provided, that is

Ber(L) := det(L4 − L3L
−1
1 L2) (det(L1))

−1 (3.1.12)

that can be used requiring only the L1 block to be invertible. As expected, when both L1

and L4 are invertible the two formulas coincide. Using one of these formulas the following
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rule holds true

Ber(ST ) = Ber(S)Ber(T ).

We refer to [CCF11, pg.15] for the proof of the latter and for a deeper discussion of the

properties of the Berezinian, as for example the well-know relation

Ber(eX) = estr(X)

of which we cannot give a detailed proof because the definition of exponential map in super-

geometric context involve complicate instruments and techniques. Actually, the Berezinian

can be seen as a group homomorphism from the group of A-automorphism of the super-

module of the matrices acting over M (GL(M)) and the invertible elements of A (denoted

by A×
o ).

3.1.1 Supermanifolds

The definition of these mathematical objects pass through concepts whose natural frame-

work is that of the sheaf theory. In order to understand better the detail of some peculiar

notions of supergeometry, we will try to give a brief exposition on ordinary geometry using

a more abstract language. Indeed, understanding manifolds with the insight given by sheaf

theory will make natural to proceed with the generalized definition of supermanifold. We

start defining presheaves on a fixed topological space X. We take the category openTop(X),

where the objects are the opens sets U ⊆ X and morphisms are the inclusions i : U → V ,

for U ⊆ V ⊆ X. Then the notion of presheaf is easily given.

Definition 3.1.9. Considering a topological space X, the category openTop(X) and a

target category C we define a presheaf as a functor F : openTopop(X)→ C.

In order to understand why such a definition turns out to be useful, we fix a topological

space X and we focus our attention on all the open sets U ⊆ X. A presheaf assigns to each

open set U an object F (U) in the category C. But as we know, a functor is more than

an association of objects. Given, indeed, an open set V , such that U ⊆ V , we can take

the inclusion iU,V : U → V , obtaining the morphism F (iU,V ) : F (V ) → F (U), usually

denoted by resV,U , associating to an element s ∈ F (V ) the element resV,U := s|U ∈ F (U).

Moreover, is important to underline that the composition rule for the functor entails

F (iU,V ) ◦F (iV,W ) = F (iV,W ◦ iU,V ) = F (iU,W ) or resW,U = resV,U ◦ resW,V
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for U ⊆ V ⊆ W . A sheaf is a presheaf with two additional properties. Given an open set

U and an open covering {Ui}i∈I , then

i. given two elements s, t ∈ F (U) s.t. s|Ui
= t|Ui

, ∀i ∈ I, then s = t.

ii. Given a family {fi}i∈I , with fi ∈ F (Ui), ∀i, such that fi|Ui∩Uj
= fj|Ui∩Uj

, ∀i, j ∈ I,

then exists unique f such that f |Ui
= fi, ∀i ∈ I

As the notation (res) for the morphism in the target category suggests, sheaves have the

principal aim of generalizing the concept of section over a manifold, and the morphism res

take the role of the restrictions in the target category C. Hence, in order to make more

concrete the definition above we show how it may look familiar. We take a differentiable

manifoldM , and identify the underlying topological space withX in Definition 3.1.9. Then,

for every open set U ⊆M , let C∞(U) be the algebra of smooth functions. Given two open

sets U ⊆ V , and f ∈ C∞(V ), then resV,U(f) = f |U is the usual restriction verifying all

the requirements to be sheaf. We can give here a first example of map between sheaves

and then provide a general definition. When dealing with two differentiable manifolds

and a smooth map χ : M → N , the pullback induced by χ is a map χ∗ : C∞
N (U) →

C∞
M (f−1(U)), assigned to each open set U , such that χ∗(f)(x) = f ◦χ(x). This construction

can be seen in the categorical formalism, noting that the association U 7→ C∞(U) is a

functor from the category openTop to the category alg, denoted by C∞ : openTopop →
alg. We can get a bit more from this point of view, indeed we know that given two

differentiable manifolds M,M ′ and an open embedding φ : M → M ′, we can define a

functor Fφ : openTop(φ(M)) → openTop(M), such that U ′ 7→ Fφ(U
′) := φ−1(U ′), that

transforms morphisms in openTop(φ(M)), (a full subcategory of openTop(M ′)) as showed

in the following diagram

U ′ V ′

φ−1(U ′) φ−1(V ′).

iU′,V ′

φ−1

iφ−1(U′),φ−1(V ′)

φ−1

Diagram 3.1.6

for all U ′, V ′ ⊆ M ′. Meaning that the nets of open sets can be transposed from a

manifold M ′ to an embedded manifold M , seen as submanifold of M ′. With this in mind,

we recall that an embedding and its restriction to open sets naturally induces a map between
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the space of smooth functions associated to its domain and codomain: given φ : M →M ′

we look at the pullback φ∗ : C∞(M ′)→ C∞(M), f 7→ f ◦ φ.
Applying this to the net of open sets of the categories openTop(M ′) and openTop(M),

we derive, together with a rule to go from a net to the other, an association, given by φ∗,

connecting the sheaves built up on these nets, respecting compatibility with morphisms

(restrictions) in openTop(M ′) and openTop(M). We mean compatibility in the sense that

the following diagram

C∞(V ′) C∞(φ−1(V ′))

C∞(U ′) C∞(φ−1(U ′)).

φ∗

resV ′,U′

φ∗

resφ−1(V ′),φ−1(U′)

Diagram 3.1.7

commutes for all U ′, V ′ and iU′,V ′ in openTop(M ′). This fact can be trivially proven, once

f ∈ C∞(V ′) is given and both paths of Diagram 3.1.7 are explicitly calculated. Denoting

resV ′,U′(f) = f |U ′ ∈ C∞(U ′), holds:

φ∗ ◦ resV ′,U′(f) = φ∗(f |U ′) = f |U ′ ◦ φ

that coincides with

resφ−1(V ′),φ−1(U′) ◦ φ∗(f) = f ◦ φ|φ−1(U ′)

because the embedding φ is invertible in the image and then φ ◦ φ−1(U ′) = U ′, then

restricting f ◦φ to φ−1(U ′) inM ′, is the same operation that restricting f |U ′ and composing

it with φ.

Now, it has been clarified how an ordinary manifold can be seen as a sheaf of commuting

algebras over a topological space. But, with a common scheme in the development of new

mathematics and physics, commuting objects produce a too restrictive formalism and hence

the next step towards the definition of supermanifolds is the trivial substitution of the sheaf

of commuting algebras with a sheaf of supercommuting superalgebras. Starting from the

easiest case - using as underlying topological space R
n - this new sheaf is defined as

U 7→ C∞(U)⊗ Λ(Rm). (3.1.13)

Sometimes, C∞(U) ⊗ Λ(Rm) is denoted by C∞
R
n

∣∣
U
⊗ Λ(Rm), meaning that the assignment
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(3.1.13) can be obtained taking the restriction to U of the element of the global sections

C∞(Rn) := C∞
Rn . This is the prototype of a supermanifold, and we have to give sense to

the usual statement ‘locally isomorphic to’ in order to compare a generic association of a

supercommuting sheaf to a topological space, with C∞
Rn⊗Λ(Rm). In order to formalise this

idea, we give the auxiliary notion of superspace as presented in [HHS16, cf. pg. 8].

Definition 3.1.10. A superspace is a pairM := (M̃,OM), where M̃ is a second countable

and Hausdorff topological space and OM is a sheaf of supercommutative superalgebras on

M̃ . OM is called the structure sheaf of the superspace M and the space of global sections

of the structure sheaf OM(M̃) is denoted by O(M).

A morphism between superspaces shall keep track of the additional structure intro-

duced by the structure sheaf, recalling the construction summarized in the Diagram 3.1.7

for ordinary manifolds. The technical difference stands in the fact that, in more general

situation, once a map between two topological space is given, a function between structure

sheaves is not automatically defined. Hence, a morphism between superspaces is a datum

of a pair of maps such that a compatibility condition with the restriction morphisms holds

true.

Definition 3.1.11. A superspace morphism, between two superspaces M and N , is a pair

χ := (χ̃, χ∗), where χ̃ : M̃ → Ñ and χ∗ is a family of morphism {χU}U⊆M , χ∗
U : OM ′(U)→

OM(χ̃−1(U)) such that the diagram

OM ′(V ) OM ′(χ̃−1(V ))

OM ′(U) OM ′(χ̃−1(U)).

χ∗
V

resV,U

χ∗
U

resχ̃−1(V ),χ̃−1(U)

Diagram 3.1.8

commutes, for all U ⊆ V ⊆ M̃ ′.

We can now define supermanifolds as superspaces modeled on the superspace R
n|m :=

{Rn, C∞
Rn ⊗ Λ(Rm)} defined above.

Definition 3.1.12. A supermanifold of dimension n|m is a superspace M = (M̃,OM)

such that for each p ∈ M̃ , ∃V ⊆ M̃ neighbourhood of p and a homeomorphism of an

open set U ⊆ R
n into V , ϕU : U → V ⊆ R

n and an isomorphism of superalgebras
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ϕ∗ : OM(V )→ C∞(U)⊗Λ(Rm). Morphism between supermanifolds are morphism between

superspaces.

Looking at the definition of supermanifolds, the careful reader should notice that -

because the structure sheaf defining a supermanifold consists of a tensor product one factor

of which is the sheaf of smooth functions - once a supermanifold is given, there exists a

naturally induced structure of ordinary manifold on the underlying topological space M̃ .

And this is exactly the case. In the immediate following we are going to show how and in

what sense we can relate an ordinary manifold to a given supermanifold. First we notice

that looking at a section f ∈ OM(V ) we need a notion of value of the function at a pair

x ∈ V . Can be proven (cf.[CCF11, Lemma 4.1.6]) that writing f as

f0(x) +
m∑

k=1

∑

Ik

fIk(x)θIk ,

where f0(x), fIk(x) are elements in C∞(V ) (looking at Example 3.1.5 we simply replace

the module K[t1, . . . , tn] with C
∞(V )), f0(x) is the value of f at x, in the sense that the

element (f−f0)(x) ∈ OM(V ) is not invertible in any neighbourhood of x. Some statements

in the immediate following are easier to be presented in terms of functors and categories,

hence before proceeding let’s quickly fix some facts concerning the categorical structure

over the class of supermanifolds.

Definition 3.1.13. Let us denote by sMan the category whose objects are supermanifolds

and morphisms are superspace morphisms between supermanifolds. This category is a

monoidal category with respect to a cartesian product defined taking as base topological

space the cartesian product of the topological spaces, endowed with a sheaf assigned to

rectangular open subsets U × V ⊆ M̃ × M̃ ′, as the completed tensor product OM⊗̂OM ′ .

The unit object is the pair pt := ({·},R)

An interesting results of characterization of the structure of a supermanifold says that a

morphism between supermanifolds is already uniquely specified by the morphism between

supercommutative superalgebras χ∗ : ON(N) → OM(M), defined as global sections of a

structure sheaf.

Theorem 3.1.14. The functor F : sMan → sAlg, assigning to each supermanifold M ,

the supercommutative superalgebra O(M) and to each morphism (φ̃, φ∗) the superalgebra

map φ∗
M is a full and faithful functor.
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The proof of this statement can be found in the book [CCF11, Prop. 4.6.2]. The main

point of the connections between the supermanifold structure and the ordinary properties

we can associate to a supermanifold is maybe the possibility of associating uniquely and

canonically an ordinary manifold to a supermanifold. As it’s clear, this fact is interesting

for all the applications to quantum field theories, because it allows to recover most of the

formalism, ideas and results developed in the formulation of axiomatic QFT.

Dealing with (super)algebras a remarkable operation is that of taking quotients by

ideals of the (super)algebra, bringing to the construction of new structures. Hence on a

supermanifold we can define the relevant ideal sheaf

U 7→ JM(U) := {f ∈ OM(U)| f is nilpotent }.

Remark 3.1.15. We can easy characterize elements of this set as f such that f0(x) ≡ 0.

Indeed, we know that locally an element in OM(U), can be represented as a f(x) =

f0(x) +
∑

I fIθ
I , hence if exists l such that f l = 0 ⇒ f l0(x) = 0 ⇒ f0(x) = 0; while

the reverse is true because if every element of the sum comes “multiplied” by a Grassman

coordinate (θj), then there exists certainly an integer number for which each θj comes twice

in the product.

After this characterization of the elements in JM(U), one could notice that quotienting

out the nilpotent elements give a direct relation with the set of ordinary smooth functions

defined on the base manifold. Unfortunately, the quotient involving sheaves is not a painless

operation: the natural assignment U 7→ OM(U)/JM(U), in general, does not define a sheaf

but a presheaf.

Definition 3.1.16. Let M = (M̃,OM) be a supermanifold, then we define the reduced

manifold as the n|0-dimensional submanifold (M̃,OM/JM), where the assignment U 7→
OM(U)/JM(U) =: (OM/JM) (U) defines the structure sheaf

Remark 3.1.17. (M̃,OM/JM) is an object in the category of supermanifolds and exist

a natural morphism from (idM̃ , j
∗) : (M̃,OM) → (M̃,OM/JM), where the j∗U are the

projection maps into (OM/JM) (U) associating f ∈ O(M) to the ordinary differentiable

function on M , (j∗f)(x) = f0(x), (once f is expanded in local coordinates as above). We

are not going to present here the proof of this claim, but we refer to [CCF11, ch. 3]

for a detailed exposition. What is remarkable for the application to the following is that

this functorial association exists and how it can be done. Formally, given any morphism
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χ = (χ̃, χ∗), then χ̃ is a morphism in Man. Moreover, the map j∗ induces uniquely a map

j : M̃ →M such that the following diagram commutes

M̃ M̃ ′

M M ′.

χ̃

jM̃,M′

χ

jM̃,M′

Diagram 3.1.9

Once the basic notions of supergeometry are fixed, different tools and structures defined

over supermanifold should be studied. In the immediate following we will give meaning to

notions such those of super vector fields, superderivations, superdifferential forms as the

fundamental blocks for implementing differential equations on supermanifolds, and then

to develop quantum field theories in the supergeometrical context. In ordinary geometry,

studying analogous concepts the easiest scheme starts with the definition of tangent space

at a point x ∈ M (where M is a manifold) and continues defining vector fields as section

of the tangent bundle, the latter obtained as union of the tangent spaces at each point, in

order to proceed afterwards towards the definition of derivations an differential forms. Our

approach will be different, following the presentation of [CCF11] and [HHS16]. At this

stage one of the most remarkable difference between the ordinary and supergeometrical

contexts is the following. When dealing with supermanifolds is not easy and natural to

define certain objects passing through the concept of point and then to extend on open

sets or to the whole manifold. This is usually resumed in the very popular claim that “on

a supermanifold there are not enough points”, meaning that the structure defined over the

topological space is so rich that a pointwise description fails to be powerful. Hence, these

new objects are assignment of sheaves respecting the structure of the supermanifold.

Let’s proceed with the definition of superderivation and then super vector field.

Definition 3.1.18. A super derivation of a superalgebra A is an element in the space

Mor
K
(A,A), i.e. a K-linear map to the algebra itself, satisfying a graded Leibniz rule

D(fg) = D(f)g + (−1)|D||f |fD(g) f, g ∈ A.

Derivations form a left A-supermodule considering the relation (fX)(g) := fX(g)

Super vector fields shall be derivations acting on the structure sheaf, hence we give the

following definition.
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Definition 3.1.19. Let’s take an open set U ⊆ M̃ , a super vector field is an element in

the super derivations of the algebra OM(U). We denote the set of super vector fields by

DerM(U) ⊆ Mor(OM(U),OM(U)) and we notice that it can be endowed with a super-Lie

algebra structure taking the commutator as bracket

[D,D′] := D ◦D′ − (−1)|D||D′|D′ ◦D

The assignment U 7→ DerM(U) defines a sheaf of super-Lie algebras (or left OM -

supermodules) on M̃ , denoted by DerM and called superderivation sheaf. As showed in

[CCF11, Lemma 4.4.4], fixed an open set U ⊆M , taking even local coordinates {xi}, and
odd local coordinates θi in a neighbourhood U ′ ⊆ U , a vector field on U can be represented

in the form

V |U ′ =

p∑

i=1

fi(x
1, . . . , xp, θ1, . . . , θq)

∂

∂xi
+

q∑

j=1

gj(x
1, . . . , xp, θ1, . . . , θq)

∂

∂θj

The definition of vector field and derivation is naturally followed by that of differential

operator. This definition can be provided recursively, starting from Diff0(U) = OM(U),

that acts via multiplication

Diff0(U) ∋ f : OM(U)→ OM(U), g 7→ f · g

Hence, super differential operator of degree k are

Diffk(U) := {D ∈ Mor(OM(U),OM(U))|[D, f ] ∈ Diffk−1(U), ∀f ∈ OM(U)} (3.1.14)

where [D, f ] = D◦f−(−1)|D||f |f ◦D. Then we are ready to define Diff(U) =
⋃
k≥0Diffk(U),

that with a suitable restriction defines a superalgebra sheaf on M̃ via the assignment

U 7→ Diff(U). We know from the previous chapter that issues connected to the support of

the functions are of crucial importance when studying operators (differential or not) acting

over the elements of the sheaf algebra. In supergeometry, failing the pointwise description,

support of an element of OM(U) can be defined “evaluating” the function in all the open

sets. Given f ∈ OM(V ) for V ⊆ M̃ , we call Nullf,V the class of open sets for which

resV,U(f) = 0 the support of f is the closed subset of M̃

supp(f) := V \
⋃
{U ∈ Nullf,V }
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Let’s notice that if f ∈ C∞
M (U) then this definition perfectly matches the usual definition

of support. Finally, we claim that the elements of the superalgebra sheaf don’t change

supports when acting on OM(U), for U ⊆ M̃ .

We have set the basis for differential calculus on supermanifolds. The next step of

this brief mathematical introduction consist of providing powerful and useful definition

integration. First we define super-differential forms.

Definition 3.1.20. Given a supermanifold M = (M̃,OM), the sheaf of super-differential

forms over M̃ , denoted by Ω′
M is the assignment

U 7→ Ω1
M(U) := MorOM (U)(DerM(U),OM(U)).

Moreover, evaluation of differential forms can be used to define a pairing between super-

differential forms and super-vector fields, where particular attention shall be paid in the

sign convention. Hence one defines

〈·, ·〉 := ev ◦ cDerM,Ω1
M
: DerM ⊗OM

Ω1
M → OM . (3.1.15)

Explicitly, fix U ⊆ M̃ , the pairing is the element 〈X,ω〉 := (−1)|ω||X|ω(X) in OM(U). The

differential of an element f ∈ OM(U) is the morphism f 7→ df , defined by the condition

〈X, df〉 := X(f).

Given an open set V , once a set of coordinates {x1, . . . , xp, θ1, . . . , θq} =: {x1, . . . , xp+q}
has been fixed, an adapted basis for DerM(V ), {∂1, . . . , ∂p+q} defined by the relations

∂ix
j = δji , (i, j = 1, . . . , p+q), and for Ω1

M(V ), {dx1, . . . , dxp+q} is completely characterised

by the duality relations 〈∂i, dxj〉 = δji , (i, j = 1, . . . , p + q). The exterior algebra of

differential forms can be defined and it’s denoted by ΩM := Λ(Ω1
M).

Recalling the axiomatic definition of quantum field theories and the conditions required

to set the categorical framework, we need an extension of the operation of “pulling back

the geometrical structure” from a spacetime to another, that can be applied to a couple of

superspaces in super-QFTs. In the development of the theory, we will focus on a subclass

of supermanifolds whose structure are completely determined by the assignment of a super

one form, we will perform pull-backs of these one-forms only for open embeddings of the

respective reduced manifolds. Hence, given a morphism in sMan, χ : M → M ′ such that

χ̃(M̃) ⊆ M̃ ′ is open, we first define the push forward of a super vector field, X : OM(U)→
OM(U), U ⊆ M̃ , in the natural way suggested by the diagram
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OM ′(U) OM ′(U)

OM(U) OM(U)

χU ∗(X)

χ∗
U

X

χ∗
U

Diagram 3.1.10

leading to χU ∗(X) := χ∗
U
−1 ◦X ◦ χ∗

U . Then, duality does the job: the pull-back of a super-

one-forms ω is the pull-back of the evaluation of forwarded super vector fields χU ∗(X) on

the form ω, i.e.

〈X,χ∗
U(ω)〉 := χ∗

U(〈χU ∗(X), ω〉) (3.1.16)

From the definition we can deduce two relevant properties:

i. χ∗
U(fω) = χ∗

U(f)χ
∗(ω), for f ∈ OM ′(U), ω ∈ Ω1

M ′(U). Indeed, for every superderivation

X : OM → OM , we define the push-forward as in Diagram 3.1.10 and calculate starting

from the definition

〈X,χ∗
U(fω)〉 :=χ∗

U(〈χU ∗(X), fω〉) = χ∗
Ufω(χU ∗(X))

=χ∗
U(f)χ

∗
U(ω(χU ∗(X))) = χ∗

U(f)〈X,χ∗
U(ω)〉 = 〈X,χ∗

U(f)χ
∗
U(ω)〉

ii. χ∗
U(df) = dχ∗

U(f), f ∈ OM ′(U). Indeed

〈X,χ∗
U(df)〉 :=χ∗

U(〈χU ∗(X), df〉) = χ∗
U (χU ∗(X)(f))

=χ∗
U ◦ χ∗

U
−1 ◦X ◦ χ∗

U(f) = X(χ∗
Uf) = 〈X, dχ∗

U(f)〉

Remark 3.1.21. At this stage, we shall study a notion of push-forward also for sections

of the sheaves of sections over a supermanifold OU(M). As already noticed, what we are

tempted to call “pull-back” is a datum in the definition of morphism between supermanifold

and encodes the transformation properties of the sheaf of sections from a supermanifold

to the other. For compactly supported global sections the concept of push-forward can be

successfully defined. We take two supermanifolds M,M ′ and a sMan morphism χ : M →
M ′, with the additional requirement that when restricted to the image χ : M → M ′|M̃ is

an isomorphism. Hence, we have that the superalgebra morphism χ∗
χ̃(M̃)

admits inverse, in
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particular when restricted compactly supported functions

(
χ∗
χ̃(M̃)

)−1

: OM,c(M̃)→ OM ′,c(χ̃(M̃))

which can be composed with the extension sheaf morphism

extχ̃(M̃),M̃′ : OM ′,c(χ̃(M̃))→ OM ′,c(M̃
′)

to give the wanted push-forward

χ∗ := extχ̃(M̃),M̃′ ◦
(
χ∗
χ̃(M̃)

)−1

(3.1.17)

With the intention to go straight towards the definition of integration, we first notice

that in a supergeometrical context there is not any sensible meaning for the notion of

top-degree (volume) forms and this is the main issue concerning integration on generic

supermanifolds. The solution to this problem is very cumbersome and technical, but we

try to sketch briefly the path, giving detailed references for the interested reader. We start

doing a step back to free A-supermodules and we show a useful functorial construction.

Once is taken a free left A-supermodule (V ) and any adapted basis {e1, . . . , ep+q} we may

assign a left A-supermodule (Ber(V )) with the association

{e1, . . . , ep+q} 7→ [e1, . . . , ep+q]

with the additional relation that for each automorphism L of V , relating two adpated basis,

[L(e1), . . . , L(ep+q)] = Ber(L)[e1, . . . , ep+q]. (3.1.18)

Hence, declaring [e1, . . . , ep+q] even if q is even, or odd if q is odd, we have defined a free

left A-supermodule of superdimension 1|0 or 0|1. As anticipated before, this assignment is

functorial. For each f : V → V ′, we define Ber(f) : Ber(V )→ Ber(V ′) by setting

Ber(f)([e1, . . . , ep+q]) := [f(e1), . . . , f(ep+q)].

Then, due to the impossibility to define top forms on supermanifolds, integration is an

operation involving different objects called densities.

Definition 3.1.22. Given U subsupermanifold of R
p|q, we define densities as R-linear,
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R-valued forms on compactly supported elements of OM(U)

µ :OM(U)→ R g =
∑

k

gIkθ
Ik 7→

∫

U

µ(g) :=
∑

k

∫

Ũ

µIk(x)gIk(x)dx
1 . . . dxp (3.1.19)

for µIk(x) ∈ C∞(U). The set of densities D(U) over U has a structure of left OM(U)-

supermodule with the multiplication map

OM(U)×D → D

(u, µ) 7→ (uµ) =

∫
(uµ)(g) :=

∫
µ(u · g).

Remark 3.1.23. The dimension of the supermodule D as defined in the previous Definition

turns out to be 1|0 if the dimension (q) of the odd superspace is even and is 0|1 if it is odd.

We show this for a submanifold of R2|2: a remarkable case for the following and, however,

a good example in order to trust the previous claim. The generalisation is trivial and has

not to pass through all the amount of calculations we are going to present, but we believe

that some explicit presentation could be useful to see how things concretely work. We take

U ⊆ R
2|2, with coordinates (x1, x2, θ1, θ2) (let’s fix x = (x1, x2)). Taking a generic density

∫
µ(g) :=

∫

Ũ

(µ0(x)g0(x) + µ1(x)g1(x) + µ2(x)g2(x) + µ12(x)g12(x)

acting on g = g0(x) + g1(x)θ
1 + g2(x)θ

2 + g12(x)θ
1θ2. We claim that each density of this

kind is generated by the density

∫

U

µ(g) =

∫

U

[dx1, dx2, dθ1, dθ2](g) :=

∫

Ũ

g12(x)dx
1dx2 (3.1.20)

where this notation is not a priori justified, but has been used as a first suggestion that the

supermodule D is isomorphic to the OM(U)-supermodule, Ber(Ω1
M(U)). Then, we have to

find an element u ∈ OM(U) such that

∫
(uµ)(g) =

∫

Ũ

(u g)12(x)dx
1dx2.

is equal to the integral above. In this case the right choice turns out to be u = µ12(x) +

µ2(x)θ
1 − µ1(x)θ

2 + µ0(x)θ
1θ2.

Now referring to [Del+99, ch. 3.10] we notice that with minimal work can be proven
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that an isomorphism between open subsupermanifolds of Rp|q, ϕ : Up|q → V p|q transforms

densities over the domain in densities over the codomain, and this fact can be general-

ized with isomorphism from generic supermanifolds and open subsupermanifold of Rp|q.

Moreover, as anticipated before, given a supermanifold M an open U ⊆ M̃ the Berezinian

OM(U)-supermodule, built up on Ω1
M(U) can be put in correspondence with D(U) (see

[Del+99, Prop. 3.10.2, ch. 3.10, pg. 81]), leading to the definition of of the local Berezin

integral over M |Ũ
∫

M |U
[dx1, . . . , dxp, dθ1, . . . , dθq]f :=

∫

Ũ

fIq dx
1, . . . , dxp (3.1.21)

that can be globalized and gives a unique linear map

∫

M

: Ber(Ω1
M)c(M̃)→ R v 7→

∫

M

v (3.1.22)

We conclude showing how the change of variable formula works for an orientation

preserving morphism between two supermanifolds, i.e. χ : M → M ′ such that χ̃ :

M̃ → M̃ ′ preserves orientation. Taking two sets of local coordinates (x′1, . . . , x′p+q) and

(x1, . . . , xp+q), fixed V ′ and V = χ̃−1(V ), we denote the basis induced by the coordinates

in Ω1
M ′ and Ω1

M , respectively by {dx′1, . . . , dx′n+m} and {dx1, . . . , dxn+m}. When we pull-

back the basis from Ω1
M ′ to Ω1

M , we define the basis
{
dχ∗

V ′(x
′i)
}p+q
i=1

. The automorphism

mapping the two basis of Ω1
M(V ) one into each other, induced by χ, is denoted by J(χ)

and acts on the basis elements in a matrix form

dχ∗
V ′(x

′j) =
∑

j

J(χ)ijdx
j

Then, we have the following isomorphism between Berezinian supermodules, χ∗ : Ber(Ω1
M ′)→

Ber(Ω1
M)

χ∗
V ′

(
[dx′1, . . . , dx′n+m]

)
= [dχ∗

V ′(x′1), . . . , dχ∗
V ′(x′n+m)]

= Ber(J(χ)) [dx1, . . . , dxn+m] . (3.1.23)

The isomorphism is well-defined because theOM(V ′)-supermodule multiplication is mapped

to the OM(V )-supermodule multiplication by the property i) of the pull-back map

χ∗
U(v f) = χ∗

U(v)χ
∗
U(f),
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for all v ∈ Ber(Ω1
M ′)(U), f ∈ OM ′(U) and all open U ⊆ M̃ ′. Hence, the equivalence

∫

M

χ∗(v) =

∫

M ′

v , (3.1.24)

holds for all v ∈ Ber(Ω1
M ′)c(M̃ ′).

3.2 Super-QFTs

Following the approach to the exposition of ordinary locally covariant quantum field the-

ories, all the mathematical notions and the technical tools for the development of super

quantum field theories have been prepared in the previous section. Scope of this section is

then to present the formal asset proposed in [HHS16] to give sense to a covariant locality

principle for the treatment of super-QFTs. From the beginning, we declare our intention

not to present all the results and the technical details of this construction, but to underline

those aspects that can be used in analogy with ordinary QFTs and those which appear dif-

ferently instead, with the only aim to depict the suitable framework for a brief presentation

of 2|2-dimensional models.

3.2.1 Background geometry: super-Cartan supermanifolds

As first step of the exposition, we have to explain what is the best minimal datum for the

development of field theories on supermanifolds. We already laid the foundations for the

definition of the suitable structures in section 2.2 of the second chapter with the definition

of Cartan structures (2.2.4). Construction of such objects was basically motivated by the

need to make explicit the local action of Lorentz group and to use it to define a differential

operator − and an equation of motion − for spinor fields. At this stage, we introduce

the notion of super-Cartan structure on supermanifolds: the first thing to be fixed is what

super-Lie algebra has to replace the Poincaré algebra which we used in the definition of

vielbein and spin connection in Section 2.2: this super algebra is called the super Poincaré

super-Lie algebra. We report here the definition of [HHS16], following the notation of the

original version, fixing W = R
n and g = η, and hence Spin(g,W ) = Spin(1, n-1).

Definition 3.2.1. Given a fifthple (R1,n−1, S, ρ, ρS,Γ), where S is a real vector space over

which the spin group representation is defined by the action ρS : Spin(1, n-1) × S → S,

while ρ : Spin(1, n-1) × R
n → R

n is the action on R
n, a super-Poincaré super-Lie algebra
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sp is the super vector space

sp := (spin⊕ R
n)⊕ S with (spin⊕ R

n) = (sp)0, S = (sp)1. (3.2.1)

The super-Lie bracket is defined for Mi ⊕ vi ⊕ si ∈ sp, for i = 1, 2 by

[M1 ⊕ v1 ⊕ s1,M2 ⊕ v2 ⊕ s2] =
[M1,M2]spin ⊕ (ρ∗(M1 ⊗ v2 −M2 ⊗ v1)− 2Γ(s1, s2))⊕ ρS∗ (M1 ⊗ s1 −M2 ⊗ s2) (3.2.2)

where we denoted by ρ∗ : spin× R
n → R

n and ρS∗ : spin× S → S the induced spin action.

The supertranslation super Lie algebra st is given by the vector space

st := R
n ⊕ S with (st)0 = R

n, (st)1 = S (3.2.3)

Given a super-Poincaré super-Lie algebra and a translation algebra associated to the

data (R1,n−1, S, ρ, ρS,Γ), we take additionally a map ε : S ⊗ S → R, being a metric with

positive signature or a symplectic structure and a choice of orientation for R
n (o) and S

(oS). Moreover, we fix a positive cone of timelike vectors C ⊂ R
n and we choose Γ positive

in the sense that Γ(s, s) is in the closure of C for all s ∈ S and is zero if and only if s = 0.

We make explicit all data needed for the definition of super-Cartan supermanifolds

Definition 3.2.2. Given the set of data (R1,n−1, S, ρ, ρS, o, oS,Γ, C, ε) and supermanifold

M of dimension n|dim(S), a super-Cartan structure over M is a pair (Ω, E), where Ω,

the super-spin connection, is an even element of Ω1(M, spin) and E, the supervielbein, is

an even element of Ω1(M, st), which is non-degenerate. The triple M = (M,Ω, E) is a

super-Cartan supermanifold.

As we did in Definition 2.2.4 with formulas (2.2.18) and (2.2.19), we can assign toM
a supertorsion TM ∈ Ω2(M, st) and supercurvature RM ∈ Ω2(M, spin) two forms. Once a

bracket in the space of sp-valued forms is defined,

[·, ·]
∧,sp

:Ωr(M, sp)⊗ Ωs(M, sp)→ Ωr+s(M, sp) ,

(ω1 ⊗X1)⊗ (ω2 ⊗X2)→ (−1)|X1||ω2|ω1 ∧ ω2 ⊗ [X1, X2]sp
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the formulas for TM and RM are given by

TM := dE + [Ω, E]
∧,sp

(3.2.4)

RM := dΩ + [Ω,Ω]
∧,sp

. (3.2.5)

The first natural question is whether and in what sense the results of Chapter 1 can be

reproduced when dealing with supermanifolds. The idea is to use the natural construction

of the reduced manifold associated to a supermanifold, in order to take advantage of concept

well defined for ordinary oriented and time-oriented manifold (such as the notion of causal

structure) and hence select a subclass of all the super-Cartan supermanifold for which

the definition of fields and their dynamics can be well posed. Then, we notice that the

supertraslation algebra can be endowed with an adapted basis {p0, . . . , pn-1, q1, . . . , qdim(S)},
where pα ∈ R

n (α = 0, . . . , n−1) can be chosen to be orthonormal for (R, η), oriented with

respect to o and time-oriented in the sense that p0 ∈ C, while qi ∈ S (i = 1, . . . , dim(S))

can be chosen to be an orthonormal (or orthosymplectic) basis for (S, ε) and oriented with

respect to oS. Using this basis we can expand the supervielbein

E = êα ⊗ pα + ξa ⊗ qa (3.2.6)

where the “coefficients” of the expansions, {ê0, . . . , ên−1, ξ1, . . . , ξdim(S)}, are an adapted

basis for Ω1(M) due to the non-degeneracy assumption for E. Parity for the elements of

this basis is assigned in order E to be even as by definition above. Since we learnt how to

describe the geometry of an ordinary manifold from a set of one-forms, our aim is to extract

a vielbein for the reduced manifold from the first part of the sum (3.2.6), then orientation on

R
n and the positive cone C are used to induce orientation and time-orientation. Explicitly,

we take the embedding jM̃,M : M̃ → M defined in Remark 3.1.17 (where we make explicit

domain and codomain) and using pull-back of one forms (cf. equation (3.1.16)), recalling

that R
n with the trivial bracket is isomorphic to the standard translation algebra t, we

define the t-valued one form

ẽ := j∗
M̃,M

(E) ∈ Ω1(M̃, t),

and can be expanded on the basis of t {pα}nα=1, giving ẽ = ẽα ⊗ pα.

Definition 3.2.3. Given a super-Cartan supermanifoldM = (M,Ω, E) we construct the

following list of data:
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Lorentzian metric: a metric is defined impicitly by

gM̃ : Γ(TM̃)× Γ(TM̃)→ C∞(M),

(X, Y ) 7→ gM̃,E(X, Y ) := η(〈X, ẽ〉, 〈Y, ẽ〉).

Orientation: the volume form associated to the collection {ẽα} by vol(ẽ) = ẽ0, . . . , ẽn−1

defines an orientation oM̃ on the reduced manifold M̃ .

Time-orientation: recalling that p0 ∈ C by construction, we take the vector field X̃0,

defined as a dual for ẽ0 with respect to the relations 〈X̃α, ẽ
β〉, represent a time

orientation tM̃ induced by the cone C ⊂ R
n.

The fourthple (M̃, gM̃ , oM̃ , tM̃) hence is a spacetime according to Definition 1.1.7 and we

call it reduced spacetime M̃ associated toM.

This construction can be done for all super-Cartan supermanifolds, hence, at this stage,

its useful to approach the subject with category theory and to establish in which context

the association of a reduced spacetime is possible and turns out to be functorial. Before

proceeding, we provide another source of motivation for the following definitions. We

know that integration plays a relevant role in the construction of quantum field theory,

in particular because a pairing between fields is needed for the implementation of super-

commuting relation on the algebra of fields (in analogy with the ordinary construction of

the algebra of fields).

Moreover, on a super-Cartan supermanifold a notion of integration is specified by the

assigned supervielbein. Indeed, given M := (M,Ω, E) we can associate a Berezinian to

E = êα ⊗ pα + ξi ⊗ qi (well defined since E is non-degenerate):

Ber(E) := [ê0, . . . , ên−1, ξ1, . . . , ξdim(S)] ∈ Ber(Ω1(M))

Remark 3.2.4. The object Ber(E) does not depend on the choice of the adapted basis.

Indeed, taking another adapted basis {ê′0, . . . , ê′n−1, ξ′1, . . . , ξ′dim(S)} (whose even part is

orthonormal and whose odd part is orthonormal/orthosymplectic), we know that there

exist a parity preserving linear map T : st→ st, in block form

(
T1 T2

T3 T4

)
, (3.2.7)
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where, in order to preserve orthonormality of the even part and orthonormality (orthosym-

plect condition) for the odd part, T1 ∈ SO0(n− 1), T2 = T3 = 0, T4 ∈ SO(dim(S)). Hence,

the Berezinian as defined by (3.1.11)

Ber(T ) = det(T1 − T2T−1
4 T3) (det(T4))

−1 = det(T1) = 1

and looking at formula (3.1.18), we deduce that

[
ê′0, . . . , ê′n−1, ξ′1, . . . , ξ′dim(S)

]
=
[
ê0, . . . , ên−1, ξ1, . . . , ξdim(S)

]

Then, according to the discussion at the end of section 3.1, we can integrate elements of

the sheaf of global compactly supported section Oc(M) over a super-Cartan supermanifold

M = (M,Ω, E), for H ∈ Oc(M) by

∫

M

Ber(E)H (3.2.8)

and a pairing for global section with supports overlapping on a compact set (H1, H2 ∈
O(M)) is easily defined by

〈H1, H2〉M :=

∫

M

Ber(E)H1H2 . (3.2.9)

As usual, attention has to be paid in exchanging order of the integrands

〈H1, H2〉M = (−1)|H1||H2|〈H2, H1〉M

Then, we proceed defining the category of super-Cartan supermanifolds (sCart) and prove

that the assignment of the reduced spacetime is a functor to Loc.

Definition 3.2.5. We define the category of sCart, whose objects are super-Cartan super-

manifolds M = (M,Ω, E) and whose morphism χ : M → M′, are all the morphism in

sMan between the base supermanifolds χ :M →M ′1 such that:

i. χ̃ is an open embedding;

ii. χ :M →M ′|χ̃(M̃) is an isomorphism;

1With a slight abuse of notation sMan morphism and sCart are denoted by the same symbol.
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iii. the spin connection Ω and the supervielbein E are preserved by pull-back of one-forms,

i.e χ∗(Ω′) = Ω and χ∗(E ′) = E

Proposition 3.2.6. Given any object in sCart the assignment of a reduced spacetime is

functorial, i.e. we can define the functor R : sCart→ Loc by:

• for any super-Cartan supermanifoldM = (M,Ω, E), R(M) := (M, gM̃ , oM̃ , tM̃ );

• for any pair of objects M, M′, taking a χ ∈ Mor(M,M′) we assign the morphism

R(χ) = χ̃ : R(M)→ R(M′).

In order to simplify the notation we will denote R(M) =: M̃.

In the light of the last proposition, it is clear that we can define a causal structure for a

super-Cartan supermanifold borrowing the causal structure of the reduced spacetime and

then all the relevant properties due to causal structure can be used for characterisation of

the objects in sCart. In particular we can define the category of globally hyperbolic super-

Cartan supermanifolds, where the objects are super-Cartan supermanifold whose reduced

spacetime is a GHST.

Definition 3.2.7. The category ghsCart is the full subcategory of sCart defined taking as

objects all the objects whose reduced spacetime is globally hyperbolic.

3.2.2 Axioms and construction of super-QFTs: a quick review

In this subsection we show how the axioms for super-QFTs can be stated in order to in-

clude field theories on supermanifolds in the framework depicted by the general covariance

locality principle. Unfortunately, the mathematical tools needed for a detailed and thor-

ough exposition of the subject are too technical for the purpose of this thesis. Hence, the

approach we have chosen is that of giving a schematic summary of what has been done

in [HHS16], omitting most of the formal statements. In fact, on one side we believe that

understanding how a scheme such that of locally covariant QFT can be reproduced suc-

cessfully in other contexts only at a superficial level is already enough enlightening, on the

other side our aim is not to spend great effort in theoretical study of heavy mathematical

language but to give the recipe for a concrete definition of models of super-QFT.
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From theoretic data to super field theories

As showed before, once a set of defining data (R1,n−1, S, ε, o, oS,Γ) is given in addition to

a base supermanifold M , we can specify a super Poincaré super Lie-algebra sp, a super-

translation algebra t (cfr. eq Definition 3.2.1) and a reduced spacetime whose orientation

and time orientation are induced by the super-Cartan structure based on this data set.

This choice is enough to provide a sensible definition of super field theory, describing the

geometry of the reduced spacetime and hence the scenario of the physical theory and fixing

the amount of supersimmetries. Nevertheless, even though all these hypothesis − together

with global hyperbolicity of the reduced spacetime − are enough for a theoretical treatment

of the subject, it is a common practice to impose constraints on the objects defining the

geometry, in order to get a sensible theory from a physical point of view and to reduce

the great amount of degree of freedom that would require too effort in computations. This

constraints are usually imposed on the quantity TΩ (see eq. (3.2.4) above) and allow to

select a full subcategory sLoc of ghsCart. Two remarkable example are the supergravity

supertorsion constraints proposed for the first time in [WZ77] and used in several following

works (such as [How79]).

If we take an object M = (M,Ω, E) of sLoc, inspired by motivations presented in

Section 2.1 and by constructions performed in 2.3, we shall fix a space of super field config-

uration, that in our approach is taken to be the space of global section of the supermanifold

M , denoted by O(M) := O(M). Then, with the aim to rule the dynamics of fields, we

take a super differential operator (cf. eq. (3.1.14)), we denote it by PM and we demand it

to be super-self adjoint with respect to the pairing (3.2.9)

〈F, PM(H)〉M = (−1)|F ||H|〈PM(F ), H〉.

As in ordinary field theory, in line with locally covariant approach, for super field theories

we are not going to solve explicitly the equations of motion, but we prefer a quantization

scheme which deals with Green’s operator2. Then we define retarded and advanced super

Green’s operator (super-GO) and we build up the theory only for operators PM admitting

super-GO, called Green hyperbolic operator.

Definition 3.2.8. Given a super-Cartan supermanifoldM and super-differential operator

2Existence of Green’s operator can be proven composing Green’s operator of well-know ordinary theory,
after the super field has been suitable decomposed, using theorems and propositions on stability of Green’s
operator of section 1.2, in particular Proposition 1.2.11
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PM : O(M) → O(M), we define as retarded/advanced super-Green’s operator, the linear

maps G±
M : Oc(M)→ Oc(M):

1. PM ◦G±
M = idOc(M);

2. G±
M ◦ PM|Oc(M) = idOc(M);

3. supp
(
G±

M(H)
)
⊆ J±

M (supp(H)), for all H ∈ Oc(M).

An operator PM is called super-Green hyperbolic if admits reatrded and advanced Green’s

operator. Moreover, we can define the super causal propagator associated to PM by the

formula

GM := G+
M −G−

M. (3.2.10)

Super quantum field theories are formulated in term of a super-self adjoint super-Green’s

hyperbolic operator defined over a super-Cartan supermanifold: this in fact consist of all

the initial data needed to perform the super quantum theory. Since the machinery for

the construction of the superalgebra of quantum fields follows the path of what has been

showed in section 2.3, we present here the main properties of super Green’s operator (this

statements strongly recall the analogous properties for ordinary Green hyperbolic operator)

and then, in few steps, we give the definition of the functor defining a super quantum field

theory satisfying the same proprieties listed in theorem 2.3.10.

Proposition 3.2.9. Given any two objects M,M′ in ghsCart and a super-self adjoint

super Green’s hyperbolic super differential operator PM (defined for all objects of ghsCart),

denoting by G±
M(G±

M′) two super Green’s operators for PM(PM′), by GM(GM′) the induced

super causal propagator and by 〈·, ·〉M the pairing defined in (3.2.9), the following properties

hold:

i. 〈H1, G
±
M(H2)〉M = (−1)(|H1|+|PM|)|PM|〈G∓

M(H1), H2〉M for all H1, H2 ∈ Oc(M) and the

maps G±
M are unique.

ii. The sequence O → Oc(M)
PM−−→ Oc(M)

GM−−→ Osc(M)
PM−−→ Osc(M) is an exact complex

everywhere.

iii. Given a ghsCart morphism χ : M → M′ and the induced push-forward defined by

(3.1.17), then G±
M = χ∗ ◦G′±

M ◦ χ∗.
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These are the main results on super field theories, intended as an assignment of a super-

self adjoint super Green’s hyperbolic operator to each object of a category sLoc, and could

be noticed that the sequence of the point (ii.) in particular can be used to define a map,

directly on the quotient space VM := Oc(M)/PM (Oc(M)) (for any two representatives) 3

τM : VM ⊗ VM → R

[H1]⊗ [H2]→ τM〈GM(H1), H2〉M, (3.2.11)

whose symmetry property depends on the dimension of the space S (this is a remarkable

difference with respect to the ordinary case, because, as anticipated, this means that the

category we have to deal with has to be defined taking into account the datum S). We

have:

τM([H1], [H2]) = (−1)|PM|+1(−1)|H1||H2|τM([H2], [H1])

and since PM is even/odd if dim(S) is even/odd, the map is super-skew symmetric or super

symmetric. This latter formula shows one of the differences with ordinary QFT, indeed

the intermediate mathematical object between the background and the algebra of fields is

neither a symplectic space nor an inner product space. Hence, before proceeding we shall

define the right category to include vector spaces endowed with bilinear forms like 3.2.11.

Definition 3.2.10. We define VS as the category whose objects are pair (V, τ) consisting

of a real super-vector space and a weakly non degenerate bilinear form satisfying

τ(v1, v2) = (−1)dim(S)+1(−1)|v1||v2|τ(v2, v1),

and whose morphism are linear maps preserving the bilinear form.

In conclusion, we can assign to each M in sLoc an object in VS given by the couple

(VM, τM) and to each morphism χ : M → M′ in sLoc the morphism induced by the

push-forward

[F ] 7→ [χ∗(F )].

This assignment is a functor and the proof of this can be found in [HHS16, prop. 5.8, pg.

23]. In order to use uniform notation with the literature, we denote it by L : sLoc→ VS.

Now, we can deal with super real vector spaces V and we can consider the tensor super

3Well-definiteness and non-degeneracy are due to the exactness of the sequence: see Theorem 1.2.15
for the analogous result on ordinary Green’s hyperbolic operators and all the section 2.1 to understand
motivations of what we are showing at this stage of the thesis.
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algebra of the complexification, denoted by TC(V ). This super algebra can be endowed

with a super involution and the super commutation relation encoding the quantization of

fields can be imposed using the bilinear form τ , quotienting the whole algebra by the ideal

Iτ,S = {v1v2 + (−1)dim(S)+1(−1)|v1||v2|v2v1 − βτ(v1, v2)} (3.2.12)

with β = i if dim(S) is evene and β = 1 if dim(S) is odd. Hence, the mathematical

object

QV,τ = TC(V )/Iτ,S (3.2.13)

defines an object in ∗-sAlg, and the assignment of QV,τ to any pair (V, τ) is functorial (cfr.

[HHS16, prop. 5.10]). This functor is called qunatization functor and is usually denoted

by Q : VS → ∗-sAlg.
In conclusion, the composition of the functors just defined gives a functor

A = Q ◦L : sLoc→ ∗-sAlg (3.2.14)

fulfilling locality, causality and the time-slice axiom (cfr. [HHS16, prop. 5.11]).

We hence sketched how the wanted functor proceeding along the path developed by

[BG12] for ordinary field theory and hence an interpretation of the super quantum field

theory as a smearing field is possible: to each element F ∈ Oc(M) we can associate

ΦM(F ) ∈ A (M) by ΦM(F ) = [F ]. Fields are labelled by super-Cartan supermanifolds

and satisfy covariance with respect to ghsCart-morphisms χ : M → M′ in the sense

that the following diagram commutes (recalling that the morphism A (χ) acts on elements

[F ] ∈ Oc(M) by A (χ)(F ) := [χ∗F ]

Oc(M) A (M)

Oc(M′) A (M′).

ΦM

χ∗

ΦM′

A (χ)

Diagram 3.2.1

Unfortunately, this result cannot be satisfactory if we want to implement supersimme-

try transformation on the framework suggested by the generally covariant locality principle.

The construction we just presented is made possible by suitable definition of all the cate-

gories involved, in particular the category sLoc on which the functor A is defined. Then,
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looking at the morphism between objects in sLoc, we notice that all the maps χ :M→M′

are even, because even are the super algebra maps χ∗ : O(M)→ O(M), and the induced

push forward χ∗ : Oc(M) → Oc(M′). Hence, recalling that each element F ∈ O(M)

can be splitted F = F0 ⊕ F1 in an even and odd part, we can see that the splitting is

transposed both at the level of the super algebra of fields, ΦM(F ) = [F0]⊕ [F1], and when

acting with a morphism on the background, ΦM′(χ∗F ) = [χ∗F ] = [(χ∗F0)] ⊕ [χ∗F1]. On

the light of the last comments, this machinery for super-QFTs seems only a fancy construc-

tion to treat simultaneously bosonic and fermionic fields, without any chance to encode

supersimmetry transformation of the fields. As announced before, the solution for the prob-

lems noticed can be found using advanced techniques in category theory (in particular the

branch called enriched category theory) lying outside our background knowledge, hence we

give only a sketch of the general idea followed in [HHS16]. A subclass of supermanifolds

called the class of superpoints is introduced. The underlying topological space is taken

to be a point and the sheaf is the assignment of the Grassmann algebra of dimension n,

ptn = ({•},Λn). Supermanifolds M and M ′ are extended to ptn ×M and ptn ×M ′ and

morphisms χ : ptn×M → ptn×M ′, at the level of sheaves χ∗ : Λn×O(M)→ Λn×O(M ′),

can be represented on elements of the form 1⊗F ∈ Λn⊗O(M ′) by (in multiindex notation):

χ∗(1⊗ F ) =
∑

I

εI ⊗ χ∗
I(F ) (3.2.15)

Transformation like this can reverse parity. Let us split 1⊗F in 1⊗F0⊕F1 = (1⊗F0)⊕
(1⊗ F1) and take a transformation “parametrized” by the odd parameter ε, hence

χ∗(1⊗ F ) = 1⊗ χ∗
0(F ) + ε⊗ χ∗

ε(F ) = 1⊗ χ∗
0(F ) + ε⊗ χ∗

ε(F0)⊕ ε⊗ χ∗
ε(F1) (3.2.16)

and we can trivially notice parity of the term F0/1 is reversed on the image of χ∗. Even

though we skipped all the technical details of a thorough exposition, what is important

to remark is that all this idea can be made rigorous introducing the concept of enriched

locally covariant quantum field theory and to keep fixed the equation (3.2.15) when working

on 2|2-dimensional models.

3.3 2|2 models

This section is devoted to the presentation of those super quantum field theories for which

the background supermanifold is chosen to be of superdimension 2|2. Before proceeding
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towards a description of the theoretical representation data and towards a definition of

a suitable full subcategory of ghsCart, we propose a quick overview of some remarkable

features which characterise ordinary quantum field theories on two dimensional curved

backgrounds.

Klein-Gordon and spinor field on two dimensional backgrounds

We first present a well-known fact concerning two dimensional Lorentzian manifolds. We

recall that a Lorentzian manifold (M, g) is said to be locally conformally flat if at every

point p is possible to find a chart (U, ϕ) (p ∈ U), such that the metric coefficient in

the coordinate basis can be written as gij(p) = e2σ(p)ηij. It can be proven that every

two dimensional Lorentzian manifold is locally conformally flat (see for example [Nak03]).

This property of two dimensional manifolds considerably simplify the description of the

background geometry, also when it is given in terms of the data (M, g,∇), defining a

Lorentzian manifold which tangent bundle is endowed with the Levi-Civita connection. As

explained in Section 2.2, the vielbein and the spin connection are defined as one-forms

taking values in the translation algebra and in the Lorentz (or spin) algebra. Hence, before

proceeding, we recall briefly the simple structure of those Lie-algebras in the following

definition.

Definition 3.3.1. The two dimensional Lie algebra of translations is defined to be a vector

space t(2), on which is assigned the trivial Lie bracket. For an adapted basis {pα}α=0,1,

we have [pα, pβ] = 0. The one dimensional Lie algebra so(1, 1), (sometimes equivalently4

denoted as spin(1, 1)), is trivially defined in term of one elementK, which clearly commutes

with itself. The Lie algebra consisting of the direct sum of them is called 2D-Poincaré Lie

algebra and is defined by

poinc(1, 1) = spin(1, 1)⊕ t(2) (3.3.1)

[K, pα] = Kβ
αpβ (3.3.2)

where K1
0 = K0

1 = 1 and K0
0 = K1

1 = 0. In the following we will sometime omit explicit

references to the dimension and we will write t, spin, poinc

4The different notation for the same Lie algebra is due to the fact that the two dimensional proper
orthocronus Lorentz group SO0(1, 1) and its double covering Spin(1, 1) have the same associated Lie
algebra (this a very well-known result in the theory of Lie groups and associated Lie algebra)



3.3. 2|2 models 99

Remark 3.3.2. In order to enrich the framework depicted above, we can define two repre-

sentations, both two dimensional, of so(1, 1). The first one is the standard representation

on two dimensional vector spaces. Let’s take a vector space V , with a basis {fα}α=0,1,

recalling that a two dimensional vector space is always isomorphic (via an isomorphism

preserving the Lie brackets) to t(2)

rV : so(1, 1)× V → V

(λK, vαfα) 7→ [λK, vαfα] := λvα Kβ
αfβ (3.3.3)

The second one is the spin representation and can be defined explicitly for S = R
2 using

the Clifford algebra of the gamma matrices on the complexification of S. They have to

satisfy the relations

γαγβ + γβγα = 2ηαβidC. (3.3.4)

Moreover, other elements of the algebra turn out to be useful, these are γ3 := γ0γ1 and the

antisymmetrized products

σαβ =
1

2
(γαγβ − γβγα) (3.3.5)

In the following, we will take the representation defined by the matrices

γ0 =

(
0 i

−i 0

)
, γ1 = −

(
0 i

i 0

)
. (3.3.6)

Hence, the spin representation is given on a basis for S ({qa}a=1,2) by

ρS : so(1, 1)× S → S

(λK, saqa) 7→ λsa
(γ3)

b
a

2
qb (3.3.7)

Now, recalling the Definition 2.2.2 for the notion of vielbein, we can write

e = êα ⊗ pα = Sδαµdx
µ ⊗ pα (3.3.8)

where S2 is taken to be the always positive factor e2σ defining the equivalence above and S

is called conformal factor. Then, solving the vanishing torsion constraint

dêα +Kα
βω ∧ êβ = 0
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we can find an useful form for ω in term of S, expressed using the non-coordinate dual

vector fields defined by 〈V̂α, êβ〉 = δβα

ω = êβKα
β V̂α(S) . (3.3.9)

Hence, using the representation given in Remark 3.3.2 we can write explicitly the field

operators defined in Chapter 2 for the two dimensional case. We have that, for M two

dimensional, the Klein-Gordon operator can be given using a sort of ‘covariant differential’

(in analogy with those for the spinor field) induced by the representation rL and acting on

object of the form V̂α(φ) (with φ ∈ C∞(M)) this way

dr,ωV̂α(φ) := dV̂α(φ) + ωKβ
α V̂β(φ) . (3.3.10)

Hence, we get

P✷ : C∞(M)→ C∞(M)

φ 7→ P✷φ := ηαβ〈V̂α, dr,ωV̂β(φ)〉, (3.3.11)

that after some manipulations becomes

P✷φ = ηαβV̂β

(
V̂α(φ)

)
+ ǫαγωαV̂γ(φ) (3.3.12)

Analogously, we can give an explicit form for the operator (2.2.23) acting on ψ ∈ Γ(M,M×
S):

( /Dρ,ωψ)a = (γα)ba〈V̂α, dψb〉+ (γα)ba〈V̂α, ρS(ω)cbψc〉 (3.3.13)

= (γα)baV̂α(ψb) + (γα)baωα
(γ3)

c
a

2
ψc (3.3.14)

3.3.1 A sLoc category for 2|2 dimensional spacetime

Here we present the application of the theoretical construction of Section 3.2 to 2|2-
dimensional super-Cartan supermanifolds (M). As established above, we first have to

fix the set of theoretic data (R1,n−1, S, ρ, ρS, o, oS,Γ, C, ε). The first datum defines the spin

and Lorentz group acting on fields and hence is fixed by the choice of the dimension for

the supermanifold. We will work with R
1,1 that is the vector space R

2, endowed with the

flat metric η. The canonical basis of R2 will be denoted by {pα}α=0,1, denoting the metric
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coefficients by ηα,β = η(pα, pβ). The orientation o is fixed by the basis. Furthermore, we

take as positive cone the set C ⊆ R
2, defined by C = {v ∈ R

2, η(v, v) > 0 and v0 > 0}
The spin representation is defined taking as vector space S = R

2 and using gamma matri-

ces defined in Remark 3.3.2. We list the other items below, point by point, checking the

relevant properties.

1. The SO0(1, 1) group consist of all the linear maps Λ such that η(w,w) = η(Λw,Λw). It

is easy to see that SO0(1, 1) can be mapped via a Lie group isomorphism to (R,+). We can

define hence a representation of its action on R
2 fixing the canonical basis and representing

the elements of the group by the matrices

Λ(α) =

(
cosh(α) sinh(α)

sinh(α) cosh(α)

)
. (3.3.15)

With this notation, for all w ∈ R
2

ρ : SO0(1, 1)× R
2 → R

2 (3.3.16)

(α,w) 7→ ρ(Λ, w) = Λ(α)w. (3.3.17)

2. The spin representation ρS is defined taking S = R
2, endowing it with the canonical

basis {qa} (a=1,2) and describing the element of the algebra in matrix form

Σ(α) =

(
e−

α
2 0

0 e
α
2

)
. (3.3.18)

The action is hence

ρ : Spin0(1, 1)× R
2 → R

2

(α, s) 7→ ρS(Σ, w) = Σ(α)s. (3.3.19)

3. The pairing Γ is defined using the pairing of R2

Γ : S ⊗ S → R
2 (3.3.20)

(s1, s2) 7→ Γ(s1, s2) = (iγα)abs1
as2

bpα. (3.3.21)

Looking at this definition is easy to prove that the pairing is symmetric and positive with

respect to the cone. Moreover, we can prove covariance with respect to the representations
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defined above.

Proposition 3.3.3. The pairing Γ defined by equation (3.3.20) is covariant with respect

to the SO0(1, 1) and Spin(1, 1) representation (respectively defined in (3.3.15) (3.3.18)), i.e.

the following formula holds true

Γ
(
Σ(α)s,Σ(α)s̃

)
= Λ(α)Γ(s, s̃). (3.3.22)

Proof. We explicit all the definition expanding vectors in column form, using the canonical

basis of R2, hence w = (w1, w2)
T and s = (s1, s2)

T . In this notation Γ(s, s̃) = (s1s̃1 +

s2s̃2,−s1s̃1 + s2s̃2)
T and we have

Γ(Σ(α)s,Σ(α)s̃) =

(
e−αs1s̃1 + eαs2s̃2

−e−αs1s̃1 + eαs2s̃2

)
, (3.3.23)

Calculating the right hand side of (3.3.22), we have that

ΛαΓ(s, s̃) =

(
(cosh(α)− sinh(α))s1s̃1 + (cosh(α) + sinh(α))s2s̃2

(− cosh(α) + sinh(α))s1s̃1 + (cosh(α) + sinh(α))s2s̃2)

)
.

and recalling the definition of cosh(α) = (eα + e−α)/2 and sinh(α) = (eα − e−α)/2, we can

conclude the proof.

4. The symplectic form on S is defined using the antisymmetric symbols εab = −εba, with
ε12 = 1. We impose

ε : S ⊗ S → R (3.3.24)

(s, s̃) 7→ ε(s, s̃) = εabs
as̃b. (3.3.25)

That is invariant under the action of the Spin(1, 1) representation. Indeed, we have in

column form

ε(Σ(α)s,Σ(α)s̃) = (e−
α
2 s1, e

α
2 s2)

(
e

α
2 s̃2

−e−α
2 s̃1

)
= s1s̃2 − s̃1s2 = ε(s, s̃)

Now we shall study the super Poincaré super-Lie algebra that can be constructed start-

ing from this data following Definition 3.2.1. As first step, we calculate the action of
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spin(1, 1) algebra induced by ρ and ρS. We have,

ρ∗ :spin(1, 1)× R
2 → R

2

(α, v) 7→ L(α)v =

(
0 α

α 0

)(
v1

v2

)
(3.3.26)

and

ρS∗ : spin(1, 1)× R
2 → R

2

(α, s) 7→ σ(α)s =

(
−α

2
0

0 α
2

)(
s1

s2

)
(3.3.27)

Summing up, the algebra sp = (spin(1, 1) ⊕ R
2) ⊕ S, is composed by the set of generator

{K, pµ, qa}, the first one is the so called boost generator, while the pµ label the even transla-

tion generator and the qa label the odd translation generator. Using equation (3.2.2), after

a straightforward but tedious calculation, the commutators defining the structure of the

algebra can be calculated. We show here the list (let’s notice that just in the following

formulas, repetition of the index “a” is not intended as understood summation)

[K,K] = 0 [K, pµ] = kνµpν [K, qa] =
(−1)a
2

qa (3.3.28)

[pµ, qa] = 0 [qa, qb] = 2Γ(qa, qb) = 2δab(p0 + (−1)ap1) (3.3.29)

Once the representation data have been fixed, we can use them to give a complete char-

acterisation of the objects in the category of ghsCart for 2|2-dimensional supermanifolds.

In addition, we consider only super-Cartan supermanifoldsM whose reduced manifold M̃

is connected and whose structure sheaf OM is globally isomorphic to C∞
M̃
⊗ Λ(R2). Hence,

we can find global odd coordinates and label them by θa, a = 1, 2. In order to simplify

the notation we can set θ := θ1θ2. As presented in Definition 3.2.2, the objects of this

category are completely defined once a supervielbein E ∈ Ω1(M, st) is assigned together

with a super spin connection Ω ∈ Ω1(M, sp). At this stage we can give a general expres-

sion for both one-forms, expanding in the adapted basis of the super translation algebra
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st, {pα, qa}, hence E = eα ⊗ pα + ξa ⊗ qa where

eα = ẽα + fαθ − dθbθchαbc (3.3.30)

ξa = gab θ
b + dθb(kab + lab θ) (3.3.31)

with fα, gab ∈ Ω1(M̃) and hαbc, k
a
b , l

a
b ∈ C∞(M̃). Moreover, due to the condition of non-

degeneracy for the supervielbein, functions kab have to be invertible and then we can absorb

them with a change of coordinates (this means substituting kab ↔ δab ). The set of one-form

ẽα can be used to compute the vielbein on the reduced manifold ẽα ⊗ pα. The inverse

of the supervielbein can be calculated in terms of dual vector fields {X̃α}α=0,1 and dual

super derivation {∂b}b=1,2 defined by the duality relations 〈X̃α, ê
β〉 = δβα, 〈∂b, dθa〉 = δab ,

〈∂a, êβ〉 = 0 and 〈X̃α, dθ
b〉 = 0. The result are four quantities {Xα, Da} (α = 0, 1, a = 1, 2),

obtained as combination with coefficient in C∞(M̃) of X̃α and ∂a, fulfilling the relations

〈Xα, e
α〉 = δβα 〈Xα, ξ

b〉 = 0 〈Da, ξ
b〉 = δba 〈Da, e

β〉 = 0 (3.3.32)

The super-spin connection, being the spin algebra one dimensional, can be written in

term of an even element ω ∈ Ω1(M). Hence,

Ω = ω ⊗K (3.3.33)

In particular, the even one form ω can be reduced at the choice of three smooth functions,

i.e.

ω = ẽα(ρα + σαθ) + dθaθbφab (3.3.34)

with in ρα, σα, φab ∈ C∞(M̃). Before proceeding let’s see the simplest example of 2|2-
dimensional super-Cartan supermanifold.

Example 3.3.4. We call super Minkowski spacetime M the super-Cartan supermanifold

consisting of the following data: as underlying supermanifold we take M = R
2|2, the super-

spin connection Ω is set to be zero, and the supervielbein is given, using global coordinates

of R2, by

E =
(
dxα − dθbγαbaθ

a
)
⊗ pα + dθa ⊗ qa (3.3.35)
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Dual odd and even superderivation take the form5:

X̃α = ∂α (3.3.36)

DM

a = ∂a + θbγαab∂α (3.3.37)

Now, we already restricted the class of all the super-Cartan supermanifolds requiring

additional hypothesis on the reduced manifold and the structure sheaf, in order to simplify

expressions for the mathematical quantities involved. As we explained in the previous

section, we are allowed to work with a full subcategory of ghsCart, hence this restrictions

are perfectly compatible with the theoretical framework. In particular, we can add some

constraints on the supertorsion TM associated to each object M = (M,Ω, E) (see eq.

(3.2.4) after Definition 3.2.2). These constraints are the so called supergravity supertorsion

constraints and are introduced with the aim to produce a reasonable theory with treatable

calculations and physically sensible field operators. We will use, an adapted version of the

supertorsion constraints proposed in [How79] that together with the parity requirements

already imposed will provide an interesting class of supervielbein. Implementation of this

constraints will be resumed in the following proposition.

Proposition 3.3.5. Let’s consider an object in M = (M,Ω, E) in ghsCart, with con-

nected reduced manifold M̃ and with the structure sheaf of M (OM) globally isomorphic

to C∞(M̃) ⊗ Λ(R2). Expanding the supervielbein in the form E = eα ⊗ pα + ξa ⊗ qa and

considering the supertorsion defined by eq.(3.2.4) expanded as

TM =
(
dξa ∧ dξbT αab + êβ ∧ dξcT αβc + êβ ∧ êγT αβγ

)
⊗ pα (3.3.38)

+
(
dξa ∧ dξbT aab + êβ ∧ dξcT aβc + êβ ∧ êγT aβγ

)
⊗ qa, (3.3.39)

the supertorsion constraints

T αba = (γα)ba, T αβa = 0, T αβγ = 0 , (3.3.40)

5We notice that we use subscript greek letters in order to distinguish coordinate vector fields of {∂α}
from dual vector fields ({∂a}) of {dθa} (a=1,2).
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are solved by E and Ω = ω ⊗K defined by:

eα =êα − dθaθb(γα)ba (3.3.41)

ξa =dθa − ω

2
θb(γ3)

a
b , (3.3.42)

where ω and êα fulfil the ordinary torsion constraint dêα + ω ∧Kα
β ê

β = 0.

Proof. We will not present the full amount of calculations needed to solve the constraint

equations, but we will only show how the calculation can be done solving the constraints

for T α. From (3.2.4) we have:

T α =deα + ω ∧Kα
β e

β

=(dêα + ω ∧Kα
β ê

β)︸ ︷︷ ︸
=0

−d(dθaθbγαba)− ω ∧Kα
β dθ

aθbγβba

Hence, we write

T α = dθa ∧ dθbγαba − ω ∧Kα
β dθ

aθbγβba (3.3.43)

Now, we can calculate the supertorsion even part resulting from constraints. We have:

T α = ξa ∧ ξbγαba

and substituting the ξa from (3.3.42) we get

T α = dθa ∧ dθbγαba + ω ∧ dθaθb(γ3γ
α)ba

and, noting that −Kα
β (γ

β)ba = (γ3γ
α)ba, the latter matches exactly equation (3.3.43).

Hence, thanks to the last proposition we can select an interesting class of super-Cartan

super manifolds and give the definition of a suitable category.

Definition 3.3.6. We define the category 2|2-sLoc as the full subcategory of ghsCart which
objects are those super-Cartan supermanifold (M,Ω, E) satisfying the conditions:

i. The reduced manifold M̃ associated to M is connected.

ii. The structure sheaf OM of M is globally isomorphic to C∞
M̃
⊗ Λ(R2).
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iii. The super-spin connection and the supervielbein, expanded in the adapted basis of the

algebra sp, take the form

Ω =ω ⊗K (3.3.44)

E =
(
êα − dθaθb(γα)ba

)
⊗ pα +

(
dθa − ω

2
θb(γ3)

a
b

)
⊗ qa, (3.3.45)

whit the additional condition dêα + ω ∧Kα
β ê

β = 0.

Remark 3.3.7. With those definition for the super-spin connection (3.3.44) and the su-

pervielbein (3.3.45) the supercurvature two form RM ∈ Ω1(M, spin(1, 1)) can be easily

calculated. From (3.2.5)

RM := dΩ + [Ω,Ω]
∧,sp

= dω ⊗K + ω ∧ ω ⊗ [K,K] = dω ⊗K. (3.3.46)

We claimed that the restriction of the admissible background geometries allows us to

produce sensible super field theory. In order to convince the reader of this fact, we show

now how a super Green’s hyperbolic operator can be defined using the supervielbein (3.3.45)

and the super-spin connection (3.3.44) and how it’s possible to define a pairing for elements

in Oc(M), using (3.2.9)

Inspired by the definition of the field operator for spinor fields in Section 2.2, we first

give the inverse of the supervielbein coefficients

Xα = êα +
ωα
2
θb(γ3)

a
b∂a (3.3.47)

Da = ∂a −+
ωα
2
(γαγ3)

n
aθ∂n + (γα)asθ

sêα (3.3.48)

satisfying the relations (3.3.32). Then, for any object in 2|2-sLoc we define the operator

PM acting on elements Φ ∈ O(M) as

PM =
1

2

(
ǫabDΩb ◦Da

)
(Φ) (3.3.49)

where the Da acts as an usual derivation on Φ, while the action of DΩb is ruled by the

super-spin connection, via the representation

ρ(ω)ba :=
ω

2
(γ3)

b
a , (3.3.50)
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becoming in conclusion

(DΩb ◦Da) (Φ) = DΩb (Da(Φ)) := Db (Da(Φ))− 〈Db, ρ(ω)
c
a〉Dc(Φ). (3.3.51)

Using the latter defining formula we can expand the operator PM making explicit the

role of the spin-connection

PM(Φ) =
1

2
ǫabDb (Da(Φ)) +

ωα
4
θs(γαγ3)

c
sDc(Φ) (3.3.52)

In order to better understand the form of the super-differential operator and to obtain

a comparison with well-known ordinary field theories (Klein-Gordon field and Dirac field),

we check the action of PM on elements of O(M) using the expansion

Φ = ϕ+ ψaθ
a + ηθ. (3.3.53)

After some calculations we find:

PM(ϕ) =
θ

2

(
ηαβX̃α

(
X̃β(ϕ)

)
+ ωαε

βαX̃β(ϕ)
)

(3.3.54)

PM(ψaθ
a) =

θs

2


(γα)X̃α(ψa) +Kα

β (γ
β)
c

s︸ ︷︷ ︸
=(γαγ3)cs

ωα
2
ψc




=
θs

2

(
γα〈X̃α, dψ〉+ (γα)rs〈X̃α, ρ(ω)

c
r〉ψc

)
(3.3.55)

PM(η θ) = −η (3.3.56)

Now, we can keep track of the “parity exchanges” induced by our super-differential

operator and we are allowed to write PM in the matrix form acting on vectors whose entries

are the element of the decomposition (3.3.53), ordered by increasing degree, whereas the

elements of the matrix are field operators from ordinary QFT in curved backgrounds:

PM(Φ) =




0 0 −idC∞(M̃)

0 /∇ 0

✷ 0 0







ϕ

ψa

η


 (3.3.57)

Then, we can look at self-adjointness of this operator with respect to the pairing induce
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by the supervielbein. The latter, on two expanded element of Oc(M)

Φ1 = ϕ1 + ψ1aθ
a + η1θ Φ2 = ϕ2 + ψa2θ

a + η2θ,

takes the form

〈Φ1,Φ2〉M :=

∫

M

Ber(E)Φ1Φ2 =

∫

M̃

dvolM̃ (ϕ1η2 + ǫbaψ1aψ2b + ϕ2η1) (3.3.58)

On the light of the last considerations we can prove the following proposition.

Proposition 3.3.8. The operator PM : Oc(M)→ Oc(M) is super-self adjoint with respect

to the pairing defined by the formula (3.3.58), i.e. for elements of definite parity the

following equality holds true

〈Φ1, PMΦ2〉M = (−1)|PM||Φ1|〈PMΦ1,Φ2〉M (3.3.59)

Proof. We give the proof only for the case of two even elements, showing a scheme that

can be applied for all the other situations. Hence, we take

Φ1 =ϕ1 + θη1 Φ2 = ϕ2 + θη2 (3.3.60)

PMΦ1 =− η1 + θ✷ϕ1 PMΦ2 = −η2 + θ✷ϕ2 (3.3.61)

and then the two sides of (3.3.59) becomes

〈Φ1, PMΦ2〉M = −
∫

M̃

η2η1 +

∫

M̃

ϕ1(✷ϕ2) (3.3.62)

〈PMΦ1,Φ2〉M = −
∫

M̃

η1η2 +

∫

M̃

(✷ϕ1)ϕ2. (3.3.63)

And we can conclude recalling the self-adjointness of the d’Alembertian operator with

respect to the standard pairing between smooth compactly supported functions.

Furthermore, using the formalism involving matrix and vectors to represent the action

of the super field operator we can built up super-Green’s operators for PM, we have indeed

that

G±
M(Φ) =




0 0 G±
✷

0 G±
/∇ 0

−idC∞(M̃) 0 0







ϕ

ψa

η


 , (3.3.64)
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where G±
✷
and G±

/∇ are Green’s operator for ordinary fields operator ✷ and /∇.

Remark 3.3.9. We showed how one of the simpler super field operator can be constructed

and in principle one can use this prototype operator as a building block of many others.

For example, a field operator of remarkable interest is defined as

Pm
M := PM +m idO(M) : O(M)→ O(M). (3.3.65)

Self-adjointness of Pm
M is an easy consequence of the self-adjointness of PM and super

Green’s operator can be calculated once the matrix formalism is recovered. We get the

form for the super field operator

Pm
M =




m 0 −1
0 /∇+m 0

✷+m2 0 m


 (3.3.66)

and, hence, the Green’s operator can be easily proven to be

mG±
M =




mG±
✷+m2 0 G±

✷+m2

0 G±
/∇+m

0

−✷ ◦G±
✷+m2 0 mG±

✷+m2


 (3.3.67)

where G±
✷+m2 , G

±
/∇+m

are Green’s operator for differential operator written as subscripts.

3.3.2 Something more than morphism for 2|2-sLoc

Now that all the feature of the super field theory defined by the operator PM have been

established, one can also prove that all the hypothesis for the definition of an enriched

field theory in the sense proposed by [HHS16, pg. 34, Def. 6.15]. Hence, we can proceed

with the study of supersymmetry transformations. Actually, what we show now is not a

full characterization of the so called superset of the enriched morphism of two objects in

2|2-sLoc, but we look only at those transformation coming from the first order truncation

of the expansion (3.2.15). Recalling that formula here

χ∗(1⊗ F ) =
∑

I

εI ⊗ χ∗
I(F ) ,
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we have, at the first order in the odd “parameter” ε,

χ∗(1⊗ F ) = 1⊗ χ∗
0(F ) + ε⊗ χ∗

1(F ) . (3.3.68)

Now, in order to give an useful condition for the practical research of supersimmetry trans-

formations we force χ∗ to be a superalgebra morphism, i.e. we want it to preserve the

supercommutative products (in the following denoted by the same symbol “·” for simplic-

ity). Then for F,G ∈ O(M′)

χ∗(1⊗ F ·G) =1⊗ χ∗
0(F ·G) + ε⊗ χ∗

1(F ·G) (3.3.69)

χ∗(1⊗ F ) · χ∗(1⊗G) = (1⊗ χ∗
0(F ) + ε⊗ χ∗

1(F )) · (1⊗ χ∗
0(G) + ε⊗ χ∗

1(G))

=1⊗ χ∗
0(F )χ

∗
0(G) + ε⊗

(
χ∗
1(F )χ

∗
0(G) + (−)|F |χ∗

0(F )χ
∗
1(G)

)
,

and the second expression perfectly fits the first if χ∗
0 is induced by a sCart-morphism

preserving the reduced vielbein and χ∗
1 is an odd superderivation. From now on, we denote

χ1 := Q and we say that the morphsim χ is a supersimmetry transformation generated by

Q, in order to recover the standard notation and language of super-QFT. Then, recalling

that morphism and enriched morphism in the category 2|2-sLoc or in its enriched version

shall preserve the geometry of the super-Cartan supermanifolds involved, we find a set of

necessary condition defining Q: the Lie-derivative of the geometrical quantities built up

from the supervielbein, calculated along the odd superderivation Q should be vanishing,

for example

LQ(eα) = 0 , LQ(ξa) = 0 , (3.3.70)

LQ(RM) = 0 , LQ(Ω) = 0 . (3.3.71)

Now, if we try to implement the previous conditions we discover that an object M
in the category 2|2-sLoc has non trivial supersimmetry transformations generated by Q if

and only if its supercurvature is vanishing. The latter condition is fulfilled only by the so

called super Minkowski spacetime, for which we can understand symmetries in term of the

odd superderivations.

Proposition 3.3.10. Given an objects M,M′ in 2|2-sLoc, the class of supersymmetry

transformation which can be written as a pair (χ0, Q), where χ0 is an sCart-morphism and

Q is a superderivation acting as in equation (3.3.69), is empty if RM (or equivalently RM′)

is a non zero element of Ω1(M, spin(1, 1)). Whereas, if M,M′ are objects satisfying the
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additional constraint RM = RM′ = 0, we find that the supersymmetry transformations are

generated by the odd superderivations

QS

a = S
1
2

(
∂a − θbγαba∂α

)
for a = 1, 2 . (3.3.72)

Proof. We prove this statement using the necessary conditions listed in (3.3.70) and (3.3.71),

where all the geometric quantities are those defining objects in 2|2-sLoc (see Definition 3.3.6).

Without loss of generality, we can make the ansatz for the superderivation6:

Q = θajαa X̃α + (hb + kc θ)∂c. (3.3.73)

where jαa , h
b, kc are functions in C∞(M̃). We first impose the condition LQ(eα) = 0, using

the Cartan formula (see [Mor01, thm. 2.11, pg.74]) which holds true for a general super

differential form

LQ(ρ) = ιQ(dρ) + d(ιQ(ρ)) .

Hence, we get that the following equations which have to be fulfilled simultaneously by

jαa , h
b, kc, 




dθrkcγαsaθ = 0

θs
(
Kα
β j

β
s ω − jγsωγKα

β X̃
β + dha(γα)as

)
= 0

dθs (jαs + ha(γα)as) = 0

(3.3.74)

The first of these equations indicates that kc = 0 (for all c = 1, 2) and then we can look

at the condition LQ(RM) = 0 with Q = θajαa X̃α+ hb∂c. Before, proceeding we notice that

the second and the third equations link the two functions jβs and ha, reducing the problem

to the research of jβs ∈ C∞(M̃) such that

djαa +
1

2

(
Kα
β j

β
s ω − jγsωγkαδ êδ

)
= 0 (3.3.75)

Then, from (3.3.46) in Remark 3.3.7, we recall that RM = dω ⊗K and hence

LQ(RM) = d(ιQdω) = 0

6The one presented is indeed the most general form for an odd superderivation expanded in the local
basis {X̃α, ∂a}
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which gives 


dθa ∧ êσJαa ((dω)σα − (dω)ασ)

d (Jαa ((dω)ασ − (dω)σα)) ∧ êσ θa = 0
(3.3.76)

Still looking at the first equation we find that either Jαa = 0 or (dω)ασ = (dω)σα. In the

first case, looking at the third equation of the system (3.3.74) we deduce that also hc = 0

for c = 1, 2 and hence Q = 0; whereas, if (dω)ασ = (dω)σα holds, since the coefficients of

the ordinary two form should be antysymmetric, dω = 0. Assuming the second, we proceed

with LQ(ω) = ιQdω+d(ιQω). Last comments considerably simplify the calculations, which

becomes:

LQ(ω) = d(ιQ(ω)) = d (θajαaωα) = dθajαaωα + θad(jαaωα) = 0 . (3.3.77)

Both terms of the sum shall be zero, but looking at the first term one gets jαaωα = 0

meaning that

j0aω0 + j1aω1 = 0 .

Moreover, using jαaωα = 0 in equation (3.3.75), one finds

djαa +
1

2
Kα
β j

β
s ω (3.3.78)

that brings with some manipulations to the system of equations for jαa




X̃1(j

0
a) =

1
2
j0aω1

X̃1(j
1
a) =

1
2
j1aω0

(3.3.79)

If one takes the explicit form for ω = êαKβ
αX̃β(log S), given by the ordinary vanishing tor-

sion constraints, two simply equations remain in order to characterise the odd superdervi-

ation Q: 


θsKα

β X̃α(j
β
s ) =

1
2
Kα
β j

β
s X̃α(log S)

dθs (jαs + ha(γα)as) = 0
(3.3.80)

which admits the solutions given by θsjαs = S
1

2 θsγαas (for a = 1, 2) and Ha = S
1

2 (for

a = 1, 2). Before claiming that a final form for Q has been found we have to check the last
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condition LQ(ξa) = 0. We rewrite the ansatz as Q = hc(−θs(γα)csX̃α + ∂c)

ξa = dθa − θsω
2
(γ3)

a
s and dξa = −dθs ∧ ω (γ3)

a
s

2
− dωθs

(γ3)
a
s

2
.

Hence,

ιQ(dξ
a) = dθrθs

(γ3)
a
r

2
ωαh

c(γα)cs
︸ ︷︷ ︸

1.

−ω (γ3)
a
c

2
hc

︸ ︷︷ ︸
2.

+ êβθsθl
(γ3)

a
l

2
(γα)csRαβ

︸ ︷︷ ︸
3.

.

Now, we can notice that term (1.) vanishes because ωαh
c(γα)cs) = −jαs ωα = 0, while the

term (3.) vanishes because Rαβ = 0. Proceeding, we get

dιQ(ξ
a) = d(ha + θsθl

(γ3)
a
l

2
ωαh

c(γαcs))

that becomes simply dιQ(ξ
a) = dha becaus, as before ωαh

c(γα)cs = −jαs ωα = 0. Concluding

this part we can write the equation for ha

dha − hbω
2
(γ3)

a
b

that can be multiplied on the left by γαas and, recalling the relation (γαγ3)
a
b = −Kα

β (γ
β)ab ,

coincides exactly with equation (3.3.78). And we conclude writing in Q in the most general

form

QS

a = S
1

2

(
∂a − θbγαba∂α

)
for a = 1, 2 (3.3.81)

That, for the super Minkowski spacetime (S = 1) becomes

QM

a = ∂a − θbγαba∂α for a = 1, 2 . (3.3.82)

Now, recovering the interpretation of the super field as a functor from the enriched

category7 2|2-esLoc to the category of ∗-esAlg, we can fix an object in M in 2|2-esLoc,
7As we discussed in Section 3.2, for a sensible implementation of supersymmetries in locally covariant

quantum field theory, we should make use of enriched categories rather than ordinary ones. We didn’t
give a definition, but we repeat here that the enriched category we have to deal with can be constructed
preserving, in a precise mathematical sense, the same class of objects but enriching the sets of morphisms
between two objects. Hence, referring to the theoretical framework of [HHS16, Sec.7], the transformations
of Proposition 3.3.10 are exactly those enriched morphisms between objects in an enriched category.
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such that RM = 0, and look at the enriched automorphisms in esLoc (i.e. supersimmetry

transformations) that can be written in term of the odd superderivations (3.3.81) and a

constant parameter ε in the spinor vector space S. The super quantum field theory defined

by PM gives then a rule to associate an enriched automorphism of the object A (M) (where

A on the objects acts exactly as the functor defined by (3.2.14) and, for this reason, we use

the same notation) to each enriched morphism of M. Practically, since we have defined

ΦM(F ) = [F ] ∈ A(M), we can regard an action on the fields algebra as an action of the

elements generating the class [F ]. Hence, we take the contraction Q = εaQa

δQǫ
(ΦM(F )) := ΦM (Qε(F )) = [Qε(F )] (3.3.83)

where the action of Q on the element of Oc(M) is well defined and can be explicitly

computed. Indeed, taking the expansion F = f + saθ
a + kθ, we get

Qε(F ) = S
1

2 εasa + S
1

2 εa
(
kǫac − γαacX̃α(f)

)
θc + S

1

2 εa(γα)caX̃α(sc)θ (3.3.84)

Now, if we define the splitting on the super ∗-algebra elements ΦM(F ) := φM(f) +

ψaM(sa) + ηM(k), we can conclude writing

δQǫ
(ΦM(F )) = φM(S

1

2 εasa) + ψcM

(
S

1

2 εa
(
kǫac − γαacX̃α(f)

))
+ ηM

(
S

1

2 εa(γα)caX̃α(sc)
)
.

Now, analyzing this action for homogeneous elements of the algebra, as has been done in

[HHS16, Sec. 8] for both concrete models presented, we can recover the form for supersym-

metry transformations as proposed in standard literature, we get

δQǫ
(φM(f)) = −ψaM

(
S

1
2 εcγαcaX̃α(f)

)

δQǫ
(ψaM(sa)) = φM

(
S

1
2 εcsc

)
+ ηM

(
S

1
2 εc(γα)caX̃α(sc)

)

δQǫ
(ηM(k)) = ψcM

(
S

1
2 εcǫac k

)
.

Concluding the characterization of the category (enriched) 2|2-sLoc and the associated

super algebra of fields, induced by the super Green-hyperbolic super self-adjoint operator

PM.
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Conclusions and Outlook

In three chapters, as anticipated in the introduction, we tried to give a self-contained

exposition on locally covariant quantum field theory as thought in the ordinary literature

and of its extension to supergeometric backgrounds, with a particular care on the proofs

of some useful properties for field theories on 2|2-dimensional geometries. We devote now

few lines to depict a brief outline of the state of the research and a possible outlook for the

presented subject.

With the last developments, supergeometry was combined with LCQFT: a general con-

struction for non-interacting super-QFT has been achieved and the set of axioms seems to

be successful in including basic models, such as the superparticle, and interesting models,

such as the Wess-Zumino supergravity model (see [HHS16, Sec. 8]). Yet, many steps

towards a full understanding of super-QFT in this framework should be done. Espe-

cially, a satisfying description of interacting field theories, well understood in ordinary

LCQFT ([BDF+09],[DHP09]), is still missing. A rigorous study of the regularization and

renormalization properties of super-QFT could indeed lead to a rigorous proof of non-

renormalization theorems. The starting point of such research is certainly the construction

of super-Wick products, at least for the super scalar field. Of particular interest should

be the restriction imposed by the enriched morphisms on the degree of freedom in the

definition of ordinary Wick products. Indeed, it has been proven in [HW01, Th. 5.1] that

local Wick products can be defined up to finite polynomials in the fields with coefficients

depending on the geometric constant associated to the manifold. Moreover, already exist

some examples of QFTs for which an exceptional amount of symmetries can be used to

characterize those polynomials (see [Pin09]).

The analysis of the 2|2 dimensional super-Cartan structures, proposed at the end of

the thesis, goes exactly in this direction. Indeed, if those backgrounds reveal to be enough

complex to provide interesting examples of non-renormalizable theories, the low (ordinary)

dimension simplifies considerably the calculations of explicit Green’s operator and, in the

end, of quantum states which can be defined over the algebra of fields.
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Category theory

In the second half of the last century category theory started to be deeply used in many

development of mathematical physics. In this thesis we used some key notions which could

be new for a reader with background on different branch of physics, hence we believe

that a quick presentation on this topic will be useful to give notions being fundamental to

understand the mathematical framework in which all the locally covariant quantum field

theories are naturally developed. We start fixing what is meant for a category.

Definition A.1. A category Cat is a collection of objects ObjCat and for each pair of objects

(A,B) a set of morphisms MorCat (A,B), together with an application between different sets

of morphisms: the composition law,

◦ : MorCat (B,C)×MorCat (A,B) → MorCat (A,C)

(g, f) 7→ g ◦ f

for three given objects (A,B,C). This set of data shall respect the following axioms.

Identity law : for all objects A, the set MorCat (A,A) contains an element idA (there

could me more than one, in general) such that, for any other object B, each f ∈
MorCat (A,B) and each h ∈ MorCat (B,A), the following equivalences hold:

f ◦ idA = f ,

idA ◦ h = hg ;

Associativity : given four objects A, B, C, D, for all f ∈ MorCat (A,B), for all h ∈
MorCat (B,C) and g ∈ MorCat (C,D) it holds that

g ◦ (h ◦ f) = (g ◦ h) ◦ f .

Once a category is given, one can build up other categories extracting a part of the

collection of the objects, selecting a subset of each set of morphism or doing both the

operations.
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Definition A.2. Let Cat be a category. Then a subcategory Sub of Cat is a category

whose objects ObjSub are all objects of the category Cat and for each couple of objects

(A,B), the inclusion MorSub (A,B) ⊆ MorCat (A,B) holds. Moreover, on the same line of

the axioms above the following:

• the identity is preserved, i.e. for each object A of the category Sub the identity

morphism in the set MorSub (A,A) must coincide with the identity morphism of

MorCat (A,A);

• the composition law is preserved: i.e. for each A, B, C ∈ ObjSub, each f ∈
MorSub (A,B) and each g ∈ MorSub (B,C) the composition h ◦ g in Sub coincides

with the composition h ◦ g in Cat.

We say that a subcategorySub of the category Cat is a full subcategory of Cat ifMorSub (A,B) =

MorCat (A,B) for each A, B ∈ ObjSub.

Example A.3. Examples of categories are:

• the class of all sets form a category (Set), whose morphisms are functions f : A→ B

between two sets A,B, composed following the ordinary composition of functions;

• the category whose objects are vector spaces (Vec), whose morphisms are linear

functions L : V → W between vector spaces, composed following the ordinary com-

position of functions.

We leave to the reader the easy check of the axioms for the this three axioms

A natural question is whether its possible to define something having the role of appli-

cation connecting two different categories; this objects exist and are called functors. Some

authors distinguish between two different kind of functor, covariant and contravariant func-

tors, depending on how the composition law is transformed by its action. Unfortunately,

some other authors prefer to avoid this distinction using a little notational expedient. We

used both strategies indifferently throughout this work, hence after the classical definition

we precise the notation in a remark.

Definition A.4. Let A and B be two categories. A covariant functor F from A to B is

an association of an object F (A) for the category B, once an object A for the category A

is given, and the class of maps

{F : MorA (A,B)→ MorB (F (A) ,F (B)) for A,B objects of the category A}
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such that the following axioms hold

• preserved composition law: for all A, B, C objects of A, each f ∈ MorA (A,B) and

each g ∈ MorA (B,C) we have

F (g ◦A f) = F (g) ◦B F (f) ,

where we made explicit the difference between the composition laws on the two sides

of the equation;

• identity map preservation: for all objects A of A, the identity map idA is mapped to

the identity map of the corresponding object F (A) of B, i.e.

F (idA) = idF (A).

A contravariant functor E from A to B from A to B is an association of an object E (A)

for the category B, once an object A for the category A is given, and a collection of

applications

{E : MorA (A,B)→ MorB (E (B) ,E (A)) for A,B ∈ ObjA}

such that the preserved composition law axiom is switched to the requirement

• reversed composition law: for each A, B, C objects of the category A, each f ∈
MorB (A,B) and each h ∈ MorA (B,C) we have

E (h ◦A f) = E (f) ◦B E (h) ,

where, as before, different composition laws have been expressed.

Remark A.5. As anticipated, sometimes the distinction between functors preserving or

reversing the composition law is explicated differently. First, for all categories A we can

define the category Aop, as a category with the same objects of the category and with

reversed morphisms: i.e. given two objects A,B of A, and so of Aop, the set of morphism

MorAop(A,B) = MorA(B,A). In this context, we define a functor in the same way we

defined covariant functors above and, if we have contravariant functor F : A→ B, we can

take into account the reversion of the composition law considering F simply as a functor

from the category A to the category Bop.
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One can also study properties of functors. Taking two covariant functors F : A → B

and E : B→ C a new functor can be constructed defining a composition between functors:

E ◦F is the covariant functor from the category A and the category B such that

• each object A in the category A are associated to (E ◦F )(A)) := E (F (A)) in the

objects of the category C;

• each morphism χ ∈ MorA(A,B) is mapped to

(E ◦F )(χ)) := E (F (χ)) ∈ MorC(E (F (A)),E (F (A)))

This definition can be adapted respectively for composition of contravariant functors (the

result is a covariant functor) and for composition of a covariant functor with a contravariant

one (the result is a contravariant functor). Now, we proceed with the definition of natural

transformation.

Definition A.6. Given two functors F ,G : A→ B, a natural transformation η : A→ B

is an assignment of a class of maps {ηA : F (A) → E (A)} labeled by the objects in the

category A, such that given two objects B,C of A, for all χ ∈ MorA(B,C), the following

diagram commutes

F (B) E (B)

F (C) E (C)

ηB

F (χ)

ηC

E (χ)

Diagram A.1

Concluding this appendix, we present the construction of the object of internal mor-

phism for a monoidal category. This part as not to be intended as self-consistent, because

it is strongly interconnected with the issues raised in Section 3.1 on the definition of a

super vector space structure on the set of linear maps between objects in sVec.

Definition A.7. Given a category C, we say that C is a monoidal category if there exists

a functor

⊗ : C× C→ C

together with

i. an isomorphism (X ⊗ Y )⊗ Z ≃−→ X ⊗ (Y ⊗ Z), for any triple of objects X, Y, Z;
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ii. an object I, called identity object for the pair (C,⊗), such that for any object X, two

isomorphisms I ⊗X ≃−→ X and X ⊗ I ≃−→ X exist.

Let’s take now the category Set, then considering the cartesian product ×, (Set,×)
is a monoidal category. Fixing any pair of objects X, Y and looking at the morphism

Mor(X, Y ) := {functions fromXtoY }, it is a trivial fact that Mor(X, Y ) is a set and,

hence, an object in Set. In particular, this means that fixed two objects X, Y , for any

object S in the category Set we can find an isomorphism

Mor(S ×X, Y )
≃−→ Mor(S,Mor(X, Y )) (A.1)

indeed taking

f : S ×X → Y (s, x) 7→ f(s, x)

we define the map fs := f(s, ·) which can be used to associate bijectively

f· : S → Mor(X, Y ) s 7→ fs : X → Y

In general, given a monoidal category C it is not possible to construct this association.

The first issue is that the set of morphism Mor(·, ·), in general, is not an object in the same

category. A possible solution is to look for an object in C that fulfils a relation analogous

to (A.1). This is exactly what we need and hence we can present the definition of internal

morphism.

Definition A.8. Given a monoidal category (C,⊗), for any triple of objects X, Y we define,

if it exists, the object of internal morphism (or simply the internal morphism), Mor(X, Y ),

that object such that exist an isomorphism

Mor(Z ⊗X, Y )
≃−→ Mor(Z,Mor(X, Y )) for all objects Z in C

Example A.9. Given two object in the category of sets, the internal morphism object coin-

cide exactly with the morphism. The collection of all the morphism between two objects

is in fact always a set, hence an object in Set. Considering the category of vector spaces

(Vec) endowed with the standard tensor product ⊗, given V,W vector spaces, it can be

proven that Mor(Z ⊗ V,W ) ≃ Mor(Z,Mor(V,W )) and hence the usual morphism are also

internal morphism. This is not the case when we deal with super vector spaces sVec, and

it is indeed the reason why we need to introduce internal morphism: the object satisfying
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the wanted relation is not the set of morphism between two super vector spaces as defined

in Definition 3.1.3.
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