
University of Bologna
School of Engineering and Architecture

Two Year Master Course in Computer Engineering

Master Thesis
in

Protocols and Architecture for Space Networks M

DTN DISCOVERY AND ROUTING: FROM SPACE
APPLICATIONS TO TERRESTRIAL NETWORKS

Student:
Michele Rodolfi

Supervisor:
Prof. Ing. Carlo Caini

Co-supervisor:
Scott Burleigh (JPL NASA)

Session III
Academic Year 2014/2015

ABSTRACT

This thesis deals with the Delay-/Disruption-Tolerant Networking (DTN) architecture,

which was designed to support communications within “challenged networks”:

environments where the TCP/IP protocol stack may be ineffective due to long round-

trip-times, high packet loss ratio and link disruption. Challenged networks are very

heterogeneous and examples of them vary from interplanetary networks to Mobile Ad-

Hoc Networks (MANETs). The main implementations of the DTN architecture are

DTN2, the reference implementation, and ION, developed by NASA JPL, until now

more oriented to space applications. A significant difference between space and

terrestrial networks is that while in space nodes movements and contacts are

deterministic, as related to the movement of planets and spacecrafts, terrestrial mobile

nodes in MANETs or in wireless sensor networks do not generally have any prior

knowledge about contacts, which most of the times are related to independent

movements of nodes, and more commonly, also of network topology. This leads to the

adoption of completely different routing strategies: deterministic for space networks and

opportunistic for terrestrial mobile networks. A DTN implementation should be

effective within the DTN environment heterogeneity, consequently NASA JPL has

recently decided to extend ION in order to support also non-deterministic scenarios. To

this purpose, during my thesis work, carried out at NASA -JPL in Pasadena under the

guide of my co-supervisor, Scott Burleigh, I have worked on different topics all related

to this common aim. Firstly, I tested the brand new IP Neighbor Discovery (IPND) ION

implementation: bugs have been fixed and the official “man” page written from scratch.

Then, my research has focused on the integration of the existing deterministic ION

Contact Graph Routing (CGR) into ”The ONE” DTN simulator, using the Java Native

Interface (JNI) as a bridge between the Java code of the simulator and the C code of

ION. The ION native libraries have been adapted to work within The ONE environment

in order to allow the CGR code to work in The ONE without any modifications, thus

root avoiding all disadvantages related to the development of a parallel implementation

of CGR in Java. Furthermore, after the careful analysis of some mobile trace datasets, I

supported my co-supervisor in the development of an opportunistic extension of CGR

(OCGR) , to be implemented as an ION module first, and then integrated into The ONE.

Preliminary tests carried out with OCGR in The ONE seem to have proved the potential

of OCGR: once properly tuned, it could become a valid competitor of the most

renowned opportunistic solutions, while maintaining its undiscussed superiority when

applied to deterministic environments.

PREFAZIONE

L'argomento di questa tesi è l'architettura di rete Delay-/Disruption-Tolerant

Networking (DTN), progettata per operare nelle reti “challenged”, dove la suite di

protocolli TCP/IP risulta inefficace a causa di lunghi ritardi di propagazione del segnale,

interruzioni e disturbi di canale, ecc. Esempi di reti “challenged” variano dalle reti

interplanetarie alle Mobile Ad-Hoc Networks (MANETs). Le principali

implementazioni dell'architettura DTN sono DTN2, implementazione di riferimento, e

ION, sviluppata da NASA JPL per applicazioni spaziali. Una grande differenza tra reti

spaziali e terrestri è che nello spazio i movimenti dei nodi sono deterministici, mentre

non lo sono per i nodi mobili terrestri, i quali generalmente non conoscono la topologia

della rete. Questo ha portato allo sviluppo di diversi algoritmi di routing: deterministici

per le reti spaziali e opportunistici per quelle terrestri. NASA JPL ha recentemente

deciso di estendere l'ambito di applicazione di ION per supportare anche scenari non

deterministici. Durante la tesi, svolta presso NASA JPL, mi sono occupato di argomenti

diversi, tutti finalizzati a questo obiettivo. Inizialmente ho testato la nuova

implementazione dell'algoritmo IP Neighbor Discovery (IPND) di ION, corretti i bug e

prodotta la documentazione ufficiale. Quindi ho contribuito ad integrare il Contact

Graph Routing (CGR) di ION nel simulatore DTN “ONE” utilizzando la Java Native

Interface (JNI) come ponte tra il codice Java di ONE e il codice C di ION. In particolare

ho adattato tutte le librerie di ION necessarie per far funzionare CGR all'interno

dell'ambiente di ONE. Infine, dopo aver analizzato un dataset di tracce reali di nodi

mobili, ho contribuito a progettare e a sviluppare OCGR, estensione opportunistica del

CGR, quindi ne ho curato l'integrazione in ONE. I risultati preliminari sembrano

confermare la validità di OCGR che, una volta messo a punto, può diventare un valido

concorrente ai più rinomati algoritmi opportunistici.

Index

1 INTRODUCTION..3

1.1 DTN architecture..3

1.2 DTN routing..4

1.3 The ONE simulator...7

2 DTN discovery (ipnd)...8

2.1 Introduction...8

2.2 IPND protocol..9
2.2.1 Broadcast, multicast and unicast beacons...9
2.2.2 Beacon period..9
2.2.3 Beacon format...10
2.2.4 Disconnection discovery...12

2.3 ION IPND implementation..12

3 CGR integration into ONE..17

3.1 The ICI package..17
3.1.1 The lyst library..17
3.1.2 The PSM library..19
3.1.3 The smlist and smrbt libraries...21
3.1.4 The SDR library..21
3.1.5 The RFX library..22
3.1.6 Utilities..22

3.2 The BP package...23

3.3 The ONE to ION interface...24
3.3.1 Global initialization...24
3.3.2 Node initialization...25
3.3.3 Java entry points..26
3.3.4 ONE to ION interface functions...27
3.3.5 CGR work flow...28

4 Opportunistic CGR..30

4.1 Motivations..30

4.2 The algorithm..31

4.3 The implementation..33
4.3.1 Confidence..33
4.3.2 Database modifications...34
4.3.3 Library modifications..35

4.4 Integration into ONE..40
4.4.1 Simulating contact history exchange..40

1

4.4.2 The native code...41
4.4.3 The Java code (ONE extension)..43
4.4.4 ONE settings for OpportunisticContactGraphRouter...................................46

4.5 Optimizations..47
4.5.1 Symptoms..47
4.5.2 Contact prediction optimization..47
4.5.3 Route calculation optimization...48

5 Conclusions...50

 Appendix 1: Compilation and simulation..51

 Files and directories organization..51
 The Java classes..51
 The native code...51

 Native library compilation..52

 ONE modifications...53
 Mandatory modifications..53
 Optional modifications..53

 Running the simulations..54
 Running batch simulations..55

 Acknowledgments...56

 Bibliography..57

2

1 INTRODUCTION

1.1 DTN architecture

The Delay-/Disruption-Tolerant Networking (DTN) architecture has been designed to

allow communications in those scenarios where the TCP/IP protocols are not able to

work, called “challenged networks”. In fact, the Internet architecture is based on some

fundamental assumptions that do not hold in these scenarios. These assumptions are:

short round trip times (RTT), low channel error rates, connected end-to-end path from

the source to the destination, channel symmetry, etc. If at least one of these assumption

is not verified, the network is defined ‘challenged’. Examples of challenged scenarios

are: interplanetary networks, where the RTTs are in the order of minutes and the

connected path to the destination is not always feasible (if a lander is on the opposite

side of a planet with respect to an orbiter), Mobile Ad-Hoc Networks (MANETs), where

the network may be often partitioned making not possible an end-to-end connected

transmission path.

The DTN architecture has been standardized and it is described in the [RFC4838]. The

main aspects are summed up below:

 A new layer is added to the TCP/IP communication stack, between the

application layer and transport layer on and nodes: it is named bundle layer, and

a packet at this layer is called bundle. The bundle layer can also be present in

some intermediate nodes, where it is on top of Transport and the last of the

stack, as Application is only on end nodes. The correspondent protocol of this

layer is the “Bundle Protocol” [RFC5050].

 The main goal of this layer is hiding the underlying layers to the application

layer, in order to have the opportunity to create a heterogeneous network. In this

way, an application just needs to interact with the bundle protocol, without

3

caring about the transport protocols under it.

 DTN nodes have the capability to store data, since in a DTN network the

presence of a continuous end-to-end path between source and destination cannot

be taken for granted, as links between consecutive DTN nodes can be

intermittent. To make communications possible it becomes necessary to store

data at DTN nodes, waiting for the availability of the next hop: the technique

just described is called store and forward and is a characteristic feature of DTN.

A bundle, once received by a node, can be stored for a long period (even 24

hours), until the next path becomes available. This mechanism, when coupled

with the “Custody Option” is also really useful in case of loss recovery with

very long RTTs, as the bundle can be retransmitted by an intermediate node,

called custodian, instead of the source.

 Two kinds of fragmentation, proactive and reactive, are supported. The former is

used to cope with scheduled intermittent contacts. A contact is an opportunity of

transmission between two nodes. Since contacts are limited in time, the

maximum amount of data that can be transferred during a contact, called contact

volume or contact capacity, is limited. As a result, if the bundle dimension is

larger than a contact volume, the proactive fragmentation splits the bundle a

priori, i.e. before the end of the contact. The reactive fragmentation, by contrast,

is used a posteriori, for example when a disruption, i.e. a random unavailability

of the link occurs, and allows the sender to re-transmit only the bundle part that

was not received before the disruption.

1.2 DTN routing

Bundle routing is a open research field in the DTN community. Indeed, there are several

problems that could affect the computation of a route, such as network partitioning,

scheduled intermittent links (available only in certain moments), limited storage in the

intermediate nodes (the price to pay for store and forwarding benefits), high delay and

disruption in the routing information exchange among nodes in the network.

Since DTN networks are highly heterogeneous, the best routing policy could be

4

different in various regions. In fact, given different scenarios, is really difficult to design

a general and optimal routing algorithm. Instead, a routing algorithm could be created in

order to cope with different scenario-specific issues. For example, while in a certain

environment the most important factor could be the bundle delivery time; in another one

it could be the overhead ratio. For these reasons, the best solution could be a hybrid

solution, which involves more than one routing scheme, and requires some nodes to act

as a gateway between different router domains. For example, a quite common case is a

network divided into two parts: a well – connected one that uses a normal static routing

algorithm, and a challenged part that uses a scenario-specific router.

DTN literature enumerates a large number of totally different routing algorithms,

usually cataloged into two families, considering how much the algorithm knows about

the status of the network and its configuration information: opportunistic algorithms,

where those information were not always updated, and deterministic algorithms, which

are assumed to have a perfect knowledge of the network.

Among the first group, we have algorithms based on an exchange of calculations and

measurement which allow them to a real time update of best route and forwarding

decisions. Moreover, these kind of approaches usually use a flooding–based strategy,

replicating the messages a number of times dependent from their algorithm. This group

of algorithm works very good in networks with high node mobility and no storage

problem (flooding based, so several copies of every message are possible), giving high

delivery success rate, even if the current network state is not known.

Examples of opportunistic replication-based routing algorithms are:

 Epidemic routing [Vahdat and Becker, 2000], the easiest routing algorithm,

which allows the nodes transmitting bundles every time they encounter a node

not carrying a copy of that bundle. Of course it is highly reliable, but storage

consuming too, because does not care of avoiding replication at all.

 ProPHET [Grasic et al., 2010] uses the non-randomness of contacts, replicating

bundles only if delivery probability is higher than a certain value. The second

version, ProPHET v2 is the latest and optimized version.

5

 Spray – and – Wait [T. Spyropoulos et al., 2005] replicates (“sprays”) a limited

number of copies in the network and waits until one of the node which received

a copy contacts the destination.

 MaxProp [J. Burgess et al., 2006] is based on a priority definition based on

likelihoods according to historical data and other complementary mechanism.

 RAPID [Balasubramanian et al., 2007] also evaluated on the same DTN bus

network, uses a random variable that represents the contact between two DTN

nodes and replicates bundles in decreasing order of their marginal utility at each

transfer opportunity. Utility is measured for three separate metrics aimed at

minimizing either the average delivery delay, or the missed bundle deadline

beyond which the bundle is no longer useful, or the maximum delivery delay.

Before talking about the deterministic algorithms, and moving from the “zero

knowledge” to the “complete knowledge” of the network, some authors in [S. Jain et al.,

2004] consider an intermediate group of algorithms belonging to a so called “partial

knowledge” category. In this group we find Minimum Expected Delay (MED), which

uses statistical information about contacts, Earliest Delivery (ED) which uses

information about contacts and its two further optimizations, Earliest Deliver with Local

Queue (EDLQ) and Earliest Delivery with All Queue (EDAQ), which respectively add

information about local and all queues.

As we said, a hybrid solution is usually used, and it could require some nodes to act as

gateways between different router domains. For example, a quite common case is a

network divided into two parts: a well – connected one that uses a normal static routing

algorithm, and a challenged part that uses one of the aforementioned algorithms.

Finally, in the deterministic group, we find algorithms that work well when contact are

predictable, achieving the best delivery rate and saving as much bandwidth and buffer

space as possible. These kind of algorithms have to consider also the aforementioned

contacts could fail to occur, leading the algorithms themselves to a re-computation of

the whole topology and best possible route. The most important ones are MARVIN and

the Contact Graph Router (CGR). These algorithms use contact predictions, spread all

6

over the network, in order to build network graphs and take forward decision on a hop-

to-basis. In particular, MARVIN encodes information about the operational environment

and infers contact opportunities from this knowledge; CGR, instead, obtains

information about contacts from the “contact plan”, and tries to calculate the best path

considering different routing metrics and performance indicators [Burleigh et al., 2015].

1.3 The ONE simulator

Performing tests on real opportunistic DTN environment is really hard due to the non-

deterministic and heterogeneous nature of nodes movements and capabilities. Therefore

to verify the validity of a opportunistic routing protocol the environment needs to be

synthesized and simulated.

The ONE simulator is an opportunistic networking evaluation system that offers a

variety of tools to create complex mobility scenarios that come closer to reality to many

other synthetic mobility models. GPS map data provides the scenario setting and node

groups with numerous different parameters are used to model a wide variety of

independent node activities and capabilities. ONE provides different node movement

models and simulates several DTN routing algorithms such as Epidemic, Spray-and-

Wait, PROPHET, etc.

The ONE simulator uses Java programming language and allows to add routing

algorithms by extending the built in routing classes.

7

2 DTN DISCOVERY (IPND)

2.1 Introduction

DTNs make no presumption about network topology, routing or availability. DTNs

therefore attempt to provide communication in challenged environments where, for

instance, contemporaneous end-to-end paths do not exist. Example of such DTNs arise

in a variety of context including mobile social networks, space communications, rural

message delivery, military networks, etc. [IPND]

In such dynamic and not deterministic scenarios, the identity and meeting schedule of

participating nodes is not known in advance. Therefore the ability to dynamically

discover other DTN nodes becomes a key factor for routing and services purposes. The

Internet Protocol Neighbor Discovery (IPND) is a standard specified in the DTN IP

Neighbor Discovery draft published in 2012. In contrast to link and physical layer

discovery, IPND enables a general form of neighbor discovery across a heterogeneous

range of links, as are often found in DTNs. IPND is particularly useful in mobile, ad-

hoc DTN environment where meeting opportunities are not known a priori and

connections may appear or disappear without warning. For example, two mobile nodes

might come into radio distance of each other, discover the new connection, and move

data along that connection before physically disconnecting.

In addition to neighbor discovery (i.e. contact discovery), it is often valuable to

simultaneously discover services available from that neighbor. Example of DTN

services include a neighbor's available Convergence Layer Adapters (CLAs) and their

parameters (e.g. TCP CLA), available routers (e.g. Prophet), tunnels, etc. It is usually

useful to decouple service discovery from neighbor discovery for efficiency and

generality. For example, upon discovering a neighbor, a DTN node might initiate a

separate negotiation process to establish 1-hop connectivity via a particular convergence

8

layer, perform routing setup, exchange availability information, etc.

IPND beacons thus optionally advertise a node's available services while maintaining

the ability to decouple node and service discovery as necessary. This flexibility is

important to various DTN use scenarios where connection opportunities may be limited

(thus necessitating an atomic message for all availability information), bandwidth might

be scarce (thus implying that service discovery should be an independent negotiation to

lower bacon overhead), or connections have very large round trip times.

2.2 IPND protocol

An IPND beacon is a small UDP message in the IP underlay that advertises the presence

of a node and optionally its available services (such as routers or convergence layers). A

beacon can be sent as either IP unicast, multicast or broadcast UDP packet.

2.2.1 Broadcast, multicast and unicast beacons

Broadcast beacons are designed to reach unknown neighbors in the local network

(within the boundaries where the broadcast packet transmission is limited). Multicast

beacons extend the scope of beacon dissemination to include different networks across

routed boundaries. Unicast beacons are sent only to explicitly known and enumerated

neighbors.

Upon discovering a neighbor and its services, a node can establish a connection to the

new neighbor via an IP-based Convergence Layer Adapter.

Generally the IP address of a potential neighbor is not known in advance. In this case,

IPND beacons are sent to broadcast or multicast destination addresses. However, since

multicast or broadcast discovery may not be always feasible over the Internet, the IP

addresses of potential neighbors reachable only across multiple underlay hops must be

explicitly enumerated for discovery. In fact, while the neighbor address is already

known, its availability is not.

2.2.2 Beacon period

An IPND node should send beacons periodically. The time interval between beacon

9

transmission is configurable, and should be set to a reasonable value with respect to the

network conditions. The beacon period should be advertised within the beacon itself so

that any neighbor can use this information to determine the state of the sender.

2.2.3 Beacon format

The beacon message contains the following fields:

• Version: the version number of the IPND that construct the beacon. This version

field is incremented if either the IPND protocol is modified or the Bundle

Protocol version is incremented. In this way the field can also used to determine

the BP version supported by a potential DTN neighbor.

• Flags: four flags are currently defined:

◦ Source EID present: indicates that the source node EID is advertised in the

beacon. (this flag should always be set).

◦ Service block present: indicates that a service block is present.

◦ Neighborhood Bloom Filter (NBF) present: indicates that a NBF is present

within the service block.

◦ Beacon period present: indicates that the beacon period is advertised.

• Beacon sequence number: integer field incremented once for each beacon

transmitted to a particular destination address.

• EID length: the length of the beacon source canonical EID.

• Canonical EID: the canonical end node identifier of the neighbor advertised by

the beacon. It is represented as a Uniform Resource Identifier.

• Service block: optional announced services in the beacon.

• Beacon period: optional field indicating the sender's current beacon interval in

seconds. A value of zero means that the beacon period is undefined.

Service block

A beacon can optionally include a service block used to advertise service availability on

10

the sender node. While the service block is intended to contain representations of

available CLAs, routers, a NBF, etc., it can also accommodate implementation specific

services provided by the advertising node.

In fact, while the source IP address of the beacon is sufficient to identify the neighbor at

the IP level, it cannot inform via which transport mechanism (TCP or UDP) or via

which transport port the neighbor is offering a connection. Likewise, nodes do not know

which routers are running on a remote node. Therefore, a beacon may contain a service

block which serves to notify nodes about the availability of these services.

Service definition

IPND uses Tag Length Value (TLV) encoding scheme to define the advertised services.

This provides for the standardization of services definitions using a format that focuses

on simplicity, flexibility and efficiency. IPND-SD-TLV structures are composed by

three parts:

• Tag: a numeric token which identifies the structure.

• Length: a numeric value which specifies the size of the content block.

• Value: the content block, which contains the value(s) described by the tag.

The detailed composition and usage of the IPND-SD-TLV structures is described in

[IPND].

Services

A service is an IPND-SD-TLV structure that represents an advertisement for a DTN-

related resource available on the beacon source node. Each service type has a unique tag

number in order to identify it within the service block.

An IPND node must support the service definitions for TCP-CLA-v4 and UDP-CLA-

v4; that is, a node must support the standard definitions for TCP CLA advertisements

and UDP CLA advertisements, respectively. The structure of these service definitions

contains the IP address and the transport port via which the advertising node is

accepting a connection or receiving packets. Moreover, a IPND node may support the

TCP-CLA-v6, CLA-UDP-v6, TCP-CLA-HN, UDP-CLA-HN, that is a node may

11

support the definition for TCP and UDP CLAs where the address is indicate as either an

IPv6 address or a string (hostname).

Finally a node may support any implementation-specific service.

Neighborhood Bloom Filter

Many routing protocols work correctly only when links are bidirectional. While in

wired IP networks link bi-directionality can often be presumed, this is not true for other

type of networks, such as Mobile Ad-Hoc Networks (MANETs). In fact if a node

receives beacon from a neighbor over a wireless medium, it is not generally safe to

assume that the link is bidirectional. MANETs often have links that are only

unidirectional due to differences in antennas, transmit power, hardware variability,

multi-path effects, etc.

In order to efficiently determine link bi-directionality, a node represents the set of its 1-

hop neighbors using a Bloom Filter, referred to as the Neighborhood Bloom Filter

(NBF). Upon receiving a beacon from a neighbor that contains NBF service

information, a node can quickly determine whether it is in the neighbor's NBF set, and

thereby determine whether the link is bidirectional.

The detailed description of the NBF service definition is depicted in [IPND].

2.2.4 Disconnection discovery

An IPND node should maintain state over all existing neighbors, that is maintaining a

current neighbor set. When IPND discover a new neighbor, it adds it to the current

neighbor set. Likewise, IPND removes from the set stale neighbors after the defined

neighbor receive timeout period elapses without receiving any beacon messages from a

particular neighbor.

Upon detecting that a neighbor is no longer available, IPND may informs the CLAs that

the neighbor is gone.

2.3 ION IPND implementation

ION IPND implementation has been developed in 2015 and distributed starting from the

12

ION 3.4.0 release. The ION IPND module is a daemon that manages beacon sending

and reception. This module allows the node to send and receive beacon messages using

unicast, multicast or broadcast IP addresses. Beacons are used for the discovery of

neighbors and may be used to advertise services that are present and available on nodes,

such as routing algorithms or CLAs.

The following ION IPND description is taken from the official ION IPND man page

that I wrote. [ION]

ION IPND module is configured using a *.rc configuration file. The name of the

configuration file must be passed as the sole command-line argument to the ipnd

command when the daemon is started. Commands are interpreted line by line, with

exactly one command per line. The formats and effects of the ION IPND management

commands are described below.

Usage

ipnd config_file_name

Commands

• 1

The initialize command. This must be the first command.

• #

Comment line. Lines beginning with # are not interpreted.

• e { 1 | 0 }

Echo control. Setting echo to 1 causes all output printed by IPND to be logged

into ion.log. Setting echo to 0 disables this behavior. Default is 1.

• m eid eid

Local EID. This command sets the advertised BP endpoint ID by which the node

will identify itself in beacon messages.

• m announce period { 1 | 0 }

13

Announce period control. Setting to 1 causes all beacons messages sent to

contain beacon period. Setting to 0 disables this behavior. Default is 1.

• m announce eid { 1 | 0 }

Announce EID control. Setting to 1 causes all beacons messages sent to contain

source EID. Setting to 0 disables this behavior. This should be always set to 1.

Default is 1.

• m interval unicast interval

Unicast interval. This command sets the beacon messages period on unicast

transmissions. Time interval is expressed in seconds. Default is 5.

• m interval multicast interval

Multicast interval. This command sets the beacon messages period on multicast

transmissions. Time interval is expressed in seconds. Default is 7.

• m interval broadcast interval

Broadcastcast interval. This command sets the beacon messages period on

broadcast transmissions. Time interval is expressed in seconds. Default is 11.

• m multicast ttl ttl

Multicast time-to-live. This command sets the multicast outgoing beacon

messages' time to live, in seconds. Default is 255.

• m svcdef id name child_name:child_type ...

Service definition. This command specifies definitions of "services", which are

dynamically defined beacon message data structures indicating the capabilities

of the beacon message sender. id is a service-identifying number in the range

128-255. name is the name of the service type that is being defined. The

definition of the structure of the service is a sequence of elements, each of which

is a name:type pair. Each child_type must be the name of a standard or

previously defined service type. Infinite recursion is supported.

• a svcadv name child_name:child_value ...

14

Service advertising command. This command defines which services will be

advertised and with which values. All types of formats for values are supported

(e.g. 999, 0345 (octal), 0x999 (hex), -1e-9, 0.32, etc.). For a service that contains

only a single element, it is not necessary to provide that element's name. E.g. it

is enough to write Booleans:true instead of Booleans:BooleanValues:B:true, as

BooleanValues is the only child of Booleans and B is the only child of

BooleanValues.

• a listen listen_socket_spec

Listen socket specification command. This command asserts, in the form

IP_address:port_number, the specification for a socket at which the IPND

daemon is to listen for incoming beacons. The address can be an unicast, a

multicast or a broadcast address. If a multicast address is provided all the

configured unicast addresses will listen for multicast packets in that group. If a

broadcast address is provided all the unicast addresses will listen for broadcasted

packets.

• a destination destination_socket_spec

Destination socket specification command. This command asserts the

specification for a socket to which the IPND daemon is to send beacons. It can

be an unicast, a multicast or a broadcast address.

• s

The start command. This command starts the IPND daemon for the local ION

node.

Examples

m scvdef 128 FooRouter Seed:SeedVal BaseWeight:WeightVal
RootHash:bytes

Defines a new service called FooRouter comprising 3 elements. SeedVal and WeightVal

are user defined services that must be already defined.

15

m svcdef 129 SeedVal Value:fixed16

m svcdef 130 WeightVal Value:fixed16

m svcdef 128 FooRouter Seed:SeedVal BaseWeight:WeightVal
RootHash:bytes

m svcdef 150 FixedValuesList F16:fixed16 F32:fixed32
F64:fixed64

m svcdef 131 VariableValuesList U64:uint64 S64:sint64

m svcdef 132 BooleanValues B:boolean

m svcdef 133 FloatValuesList F:float D:double

m svcdef 135 IntegersList FixedValues:FixedValuesList
VariableValues:VariableValuesList

m svcdef 136 NumbersList Integers:IntegersList
Floats:FloatValuesList

m svcdef 140 HugeService CLAv4:CLATCPv4
Booleans:BooleanValues Numbers:NumbersList FR:FooRouter

a svcadv HugeService CLAv4:IP:10.1.0.10 CLAv4:Port:4444
Booleans:true FR:Seed:0x5432 FR:BaseWeight:13
FR:RootHash:BEEF Numbers:Integers:FixedValues:F16:0x16
Numbers:Integers:FixedValues:F32:0x32
Numbers:Integers:FixedValues:F64:0x1234567890ABCDEF
Numbers:Floats:F:0.32 Numbers:Floats:D:1e6
Numbers:Integers:VariableValues:U64:18446744073704783380
Numbers:Integers:VariableValues:S64:4611686018422619668

This shows how to define multiple nested services and how to advertise them.

16

3 CGR INTEGRATION INTO ONE

The Contact Graph Routing algorithm code is contained in the ION distribution,

developed and maintained mainly by Scott Burleigh at NASA Caltech Jet Propulsion

Laboratory. The CGR logic is coded into the file libcgr.c and we wanted to integrate this

file into the ONE simulator with the minimum modification. In fact, like all libraries,

the CGR library is constantly evolving, and we do not want to modify the CGR code in

the ONE simulator every time a new CGR version is released. Moreover, translating the

whole CGR written in C into a brand new Java module would necessarily introduce

some unwanted differences with respect to the original, such as new bugs. Therefore,

we preferred to integrate the original ION CGR library into ONE using Java Native

Interface.

The code in libcgr.c, as most of the code of ION, uses many library functions whose

purpose is to provide an abstract, reliable, optimized and platform independent view of

operative system's resources, such as memory and persistent storage, and an easy to use

set of structures, such us linked lists and red and black trees. These libraries are

initialized at ION startup and are used by every ION module.

Our aim was to integrate CGR into ONE using the libcgr.c file as it is. However, this

code has been designed to run in an ION environment, with all the utility libraries

available; by contrast, into ONE we lack all of them. To use the actual ION environment

in the simulation would be a waste of resources. Instead, we decided to simulate the

ION environment in ONE, so that the libcgr.c code can run as it was in ION.

3.1 The ICI package

3.1.1 The lyst library

The first library we need to simulate in order to allow libcgr.c to run in ONE is the lyst

library. This library provides a set of functions for manipulating generalized doubly

17

linked lists. Since ONE already works in Java and since this environment provides

classes for manipulating doubly linked lists, we decided to use these classes for

simulating the lyst library through JNI function calls.

Lyst function declarations are in the lyst.h header file, implementations in lyst.c . In our

simulated environment we can use the same header file, as the CGR library calls the lyst

functions based on the signatures described there, but we need to change the

implementation in order to use JNI to access to the actual lists managed by the Java

virtual machine (JVM). The lyst library defines two structures: Lyst and LystElt; the

former contains information about the list, the latter contains a pointer to the list to

which is belongs and a pointer to the generic data to which it refers. These structures are

18

Image 1: Original ION libraries scheme

never directly accessed from the libcgr.c code, but always from lyst functions. Thanks to

that we could redefine these structures as jobject, a JNI type used for generic Java

objects.

On the Java side of the lyst library simulation, we defined two classes: cgr_jni.lyst.Lyst

and cgr_jni.lyst.LystElt. We can compare them to the respective lyst original structures.

The LystElt class only contains a reference to the list that owns the element, and a

pointer to the memory area where the data this element refers to resides. The pointer to

the data is converted from void* to long. The Lyst class contains a java.utils.LinkedList

object that stores the actual list and several static methods for manipulating the list. The

lyst library permits to set a custom delete function invoked on element deletion in order

to allow the user to free the memory used by the object referred by the deleted list

element. This behavior is recreated in our Java implementation saving a reference to the

delete function in the Java Lyst object. The static methods in the Lyst class have the

same signature as the functions declared in lyst.h.

We did not need to implement all the functions of the lyst library but only those used by

libcgr.c. For this reason we did not implement the list sorting mechanism. In our lyst.c

file basically every function wraps a JNI call to the respective static method of the Lyst

class.

The lyst library could have been alternatively developed without JNI by adapting the

original lyst.c file; this would have been a simpler solution. However, the method

chosen made me get started with JNI use and I think that the big effort was worthwhile.

3.1.2 The PSM library

An instrumental library in the ION environment is the PSM (Personal Space

Management) library, which provides functions that support high level memory

management and memory partitioning. PSM is designed to be faster and more efficient

than standard malloc()/free() and provides a memory management abstraction

that insulates applications from differences in the management of private versus shared

memory. This aims to enhance the portability of the code to those systems where

separate tasks using a shared memory partition are given different base addresses with

19

which to access the partition, such as Solaris. Basically PSM provides function for

translating absolute memory addresses to partition based offset addresses and vice

versa. It also provides a useful catalog abstraction that maps strings into addresses in a

partition. The catalog abstraction allows the user to save a memory address with a string

as key and later to locate the address by using the key. [ION]

In our case code portability and memory efficiency are not essential, therefore for our

use the standard malloc()/free() functions are adequate. However, partition

abstraction and catalog functionality are still necessary to allow several ION nodes to

run simultaneously on a unique host machine. Since an ION node uses a PSM partition

catalog to store working structures, we need a different PSM catalog for every simulated

node.

As done for the lyst library, we decided to use the original header file and to modify the

source file. Likewise, we decided to use the Java collections support to implement the

PSM partition management. Thus we created the cgr_jni.psm.PsmPartition class, which

contains a set of addresses and a map of entries (name, value) where the name is a string

and the value is an address. Addresses are C pointers, converted into Long Java type.

This class provides a method to add addresses to the address set and entries to the

catalog, or to remove them, and a method to retrieve an address from the catalog given

its name. Since a node can have multiple PSM partitions, we created the

PsmPartitionNodeManager class, which contains a map of entries (id, PsmPartition)

and methods to create, destroy and manage partitions. This class describes the PSM

partitions status of a single simulated node. Then we created a utility class

PsmPartitionManager with static functionality. This class contains a map of triples (id,

PsmPartitionNodeManager) where the id is the node number and provides methods for

creating, destroying and retrieving PSM partitions globally. Thus, every partition has an

id that identifies it within the partitions of the node and every node partition set is

identified globally by the node number.

On the C side we redefined the PsmPartition structure as a jobject that actually point to

a PsmPartition Java object. Then in the psm.c we implemented the PSM functions in

order to wrap JNI calls to PsmPartition class methods. Every time a memory area is

20

allocated within the partition, its pointer is saved into the PSM partition object and

likewise for memory deallocations and catalog operations. When a memory area is

freed, the catalog entry is removed. In this implementation we used standard

malloc() and free(), as memory management operations and the pointer to

partition offset conversion are just type casts.

3.1.3 The smlist and smrbt libraries

The smlist library provides functions to create, manipulate and destroy doubly linked

lists in shared memory. Like the lyst library does, smlist uses two types of object: list

objects and element objects. However, as these objects are stored in shared memory,

which is managed by the PSM library, pointer to these objects are carried as

PsmAddress values. Basically this library provides the same functionality as lyst, but it

uses PSM managed shared memory. For this reason, it also provides mutex to build

thread safe lists. [ION]

The smrbt library provides functions to create, manipulate and destroy red-black

balanced binary trees in shared memory. Smrbt uses two types of objects: Rbt objects

and Node objects. As these objects are stored in shared memory, which is managed by

PSM, pointers to these objects are carried as PsmAddress values. [ION]

Since we already had our PSM implementation, we were able to use the original

smlist.c file. The ONE simulator is a single-thread environment, therefore we could get

rid of the complexity added by list mutex management by converting mutex functions to

no op in the platform_sm.c file.

3.1.4 The SDR library

The SDR (Simple Data Recorder) library contains functions that support the use of an

abstract data recording device for persistent storage of data. The SDR abstraction

insulates software not only from specific characteristics of any single storage device but

also from some kinds of persistent data storage and retrieval chores. The underlying

principle is that an SDR provides standardized support for user data organization at

object granularity, with direct access to persistent user data objects, rather than

supporting user data organization only at file granularity and requiring the user to

21

implement access to the data objects contained within those files. [ION]

As in our simulations we do not need to use persistent storage and the SDR

functionality, the simulation of the PSM library is enough. SDR provides a set of

function to work with lists and catalogs exactly as PSM does. In addition, since SDR

manages the persistent storage and input/output operations may be complex, it offers a

transaction mechanism to protect data integrity across a series of reads and writes. Thus

every transaction management function has been transformed in no-op and every other

one has been redirected to the respective PSM function. To do so the sdrxn.h header file

has been changed and the types Address and Object used by SDR have been both

redefined as PsmAddress and the type Sdr as PsmPartition. The file structure is the

same as in the official ION distribution, but all source files have been modified in order

to implement the changes previously described.

3.1.5 The RFX library

The RFX library contains functions to manage ION contacts and ranges. This library

uses PSM, SDR and Lyst functions. Since we have implemented a simulated version of

these libraries, the rfx.c and rfx.h files can be imported from the ION release without

any changes.

3.1.6 Utilities

The ICI package implements also a small set of utilities to support real-time interaction

with the ION environment. The main utility is the standalone program ionadmin to

manage contacts and ranges. It can be used by inserting commands either from prompt

or a configuration file. Since a contact plan must be provided to every node in the

simulation, ionadmin must be used to initiate their status. Basically ionadmin performs

the command parsing and the invocation of the correct RFX function for

adding/deleting/listing contacts and ranges. Because in our simulation contact and range

information are not stored in persistent but in volatile memory, ionadmin must be used

within the simulator. For this purpose we can use the runIonAdmin() function, to

read a contact plan from a file, or the processLine() function, to execute just one

command. These functions are in ionadmin.c, which is identical to the original but small

22

compilation fixes.

The utils.c file contains some initialization and finalization functions used by ion.c. The

ION runtime structures initialized here are IonDB (Ion database) and IonVdb (Ion

volatile database). The former is stored in the SDR space (persistent) and contains

information about the contact plan and ranges; the latter, is in the PSM space and

contains the same information as IonDB, but differently organized in order to provide a

faster access speed. Moreover, the utils.c file contains functions for managing the Java

PsmPartition objects used by each ION node, as Sdr and PsmPartion.

3.2 The BP package

The only part of the ION BP package (the part of ION that contains Bundle Protocol

related functions)that is necessary to import in ONE is the CGR library, implemented in

the libcgr.c file. Our primary aim is to make possible the use in ONE of the original

ION file without any modification. This is a fundamental requirement to avoid by root

all the problems related to a parallel implementation in Java: code inconsistency and

maintenance cost.

23

Image 2: Adaptation of ION libraries. Red blocks are the modified ones.

The libcgr.c file requires a set of header files, all in the include directory. Moreover, it

calls several functions of libbpP.c file; these functions are supposed to interface CGR

with the ION runtime environment, therefore, we need to redirect them to ONE

simulator runtime environment.

3.3 The ONE to ION interface

The ONE to ION interface code is contained in the jni_interface directory. This code

contains the entry point functions for ONE to interact with the simulated ION

environment and vice versa. It also provides functions to manage multi threading

operations and initialization/finalization of ION nodes.

The result of the compilation of our ION adaptation is a shared library that can be used

by the Java VM hosting the ONE simulator. Before performing route calculations, the

library needs to be initialized both globally, in order to provide a consistent runtime

environment, and locally, i.e. for each node.

This library has to provide entry points for the ONE simulator running in the Java VM

to use the ION adaptation. The entry points are native functions invoked by the Java

code.

3.3.1 Global initialization

Even if the ONE simulator is single-threaded, the ION adaptation library has been

designed to work in a multi-threaded environment, assuming that each node runs on a

single thread at a time. This can be useful if ONE will eventually provide support to

multi-threaded simulations. Every information about the local node is thus stored in

special thread-specific data area: thread-specific variables are managed by the

pthread_setspecific() and pthread_getspecific() function of the

pthread library. Each thread-specific variable is identified by a key stored in a global

variable.

There are 3 thread-specific keys defined in shared.h:

• nodenum_key the local node number. It is updated every time ONE

invokes an ION function, i.e. in every native function called by Java.

24

• jniEnv_key a reference to the current JNI environment. It is updated

every time a native function is called by the Java environment and it is used to

invoke JNI methods from native code (such as psm_locate()).

• interfaceInfo_key this key refers to a structure containing informations that

needs to be local to the node but global with respect to the function invocations.

The init_global.c source file contains functions that manage the global-level and node-

level initialization and the simulated time.

ION uses the system time as a reference and it works in real time, while ONE, being a

simulator, uses a non real time reference where time 0 is the simulation start instant.

Unless we want to set all our experiments back in the '70s (the origin of the POSIX

time) we need to convert the ONE time to the ION time. To do so when the ION

environment is initialized, the current system time is stored in a global variable and its

value is taken as reference as the ONE simulation start time. Every ONE time is thus

considered as an offset with respect to this reference time. Fortunately, libcgr.c uses the

function getUTCTime() in ion.c to get the current system time, so it is enough to

modify the call to getSimulatedUTCTime() in init_global.c, which returns the

current simulated time from ONE via a JNI call.

3.3.2 Node initialization

To understand the interface between ONE and ION it is important to know how

simultaneous operations on multiple nodes are supported. Each ION node uses one SDR

partition and one PSM partition. Since our SDR implementation basically relies on

PSM, we can conclude that each ION nodes uses 2 PSM partitions. These partitions are

managed by the Java class PsmPartitionManager and each node must maintain a

reference to both partitions. The file bp/utils.c defines the structure IonPartitions as

that:

typedef struct
{

PsmPartition partition[2];
uvast nodeNbr;

} IonPartitions;

25

This structure contains the number of the local node and the two PSM partitions used by

the node as a reference to the PsmPartition Java objects. The Java class

PsmPartitionManager has a global knowledge of all partitions of all nodes. Thus to get

either the PSM or SDR partition of a node, the Java partition manager needs to be

invoked via JNI. Since the invocation of a JNI method carries considerable overhead,

the partitions of the current local node are stored it the IonPartitions structure. The

utils.c source file contains the functions for managing this structure.

The ION code and in particular the libcgr.c code retrieves the working partitions using

the functions getIonwm() for the PSM partition and getIonsdr() for the SDR

partition, respectively. Both of them are defined in ion.c, thus we have redefined them to

use getIonWm() and getIonSdr() in ici/utils.c instead. These functions use the

partition informations cached in the IonPartitions structure to return the needed ION

partition. Every time a node partition is requested, if the current node number stored in

the thread-specific space is different from the one registered in the IonPartitions

structure, the whole structure is updated to contain the current local node partitions.

The main reason for having those two partitions is to store and catalog the IonDB object

in the SDR partition and the IonVdb object in the PSM partition. These two objects are

both initialized during the node initialization. The functions to initialize, finalize, and

retrieve the objects at runtime are defined in ici/utils.c .

3.3.3 Java entry points

The Java class cgr_jni.Libcgr declare a series of native methods used as entry points to

the ION library. All of these methods are defined in the source file cgr_jni_Libcgr.c.

Each function performs environmental checks and updates before invoking the actual

working function. In brief, each function updates the current node number reference in

the thread-specific space, so that every subsequent invocation of partition related or

node management functions uses the right structures. In addition to that, each function

updates the thread-specific JNI environment reference, so that every subsequent JNI call

from native code uses the right reference.

The entry points are used for node initialization and finalization, contact plan updating

26

and contact graph route calculation.

3.3.4 ONE to ION interface functions

The file ONEtoION_interface.c contains several functions that support information

exchanges from the Java runtime to the ION library and vice versa. The functions

defined in this file retrieve information from the ONE environment, such as bundle

source and destination, creation time, time-to-live and payload size. In addition to that it

supports CGR specific bundle fields that have been recreated in ONE as Message

properties, such as deliveryConfidence and xmitCopies. There are also functions that

support outducts information exchanges. All these functions contain JNI calls to specific

methods of the cgr_jni.IONInterface class.

In this file are also defined the functions that convert Java Message objects into C

Bundle structures and Java Outduct objects into C Outduct structures. In these

conversions only the structure fields used by CGR are set with sensible values; every

other field is set to 0.

ONEtoION_interface.c also contains a set of functions and a structure that manage the

workflow of the CGR simulation.

The structure InterfaceInfo is defined as follow:

struct InterfaceInfo_t {
jobject currentMessage;
Object outductList;
Object protocol;
int forwardResult;

};
typedef struct InterfaceInfo_t InterfaceInfo;

This structure contains information whose scope is a single cgrForward()

invocation. The currentMessage variable contains a reference to the Java Message that

needs to be forwarded. This reference is needed in case the bundle should be enqueued

in an outduct or put into limbo. The outductList contains a SDR list filled by CGR. This

list is needed because the code in libcgr.c pretends to have outduct references stored in a

SDR list; since we do not want to change the CGR code, we have to recreate that list

27

and make it available to CGR. The protocol variable contain a reference to a ClProtocol

structure. ION uses this structure to store protocol information, such as overhead per

frame, frame size and nominal transmission rate. The CGR library does not use this

information but still does a null check on the outduct protocol variable, so a dummy

ClProtocol structure is created and referenced into the outducts structures. The reference

is stored into the InterfaceInfo structure so that every outduct can reference the same

object. The forwardResult variable is an integer that indicates the outduct that the

current bundle has been forwarded to.

3.3.5 CGR work flow

When a simulated node needs to forward a bundle, it calls the cgrForwardONE()

function via the entry point previously described. This function performs the

initialization of the InterfaceInfo structure and the conversion of the Message Java

object to a Bundle C structure. Subsequently, it invokes libcgr.c cgr_forward()

passing the converted bundle as a parameter; it also passes as a parameter a function

28

Image 3: sequence diagram of a cgrForward() routine (function names and
signatures have been renamed for a better reading)

pointer to getONEDirective(). This function is defined in the

ONEtoION_interface.c file and it is used by libcgr.c to retrieve the outduct reference

from ONE. If CGR succeeds in finding a route to destination for the current bundle, it

invokes bpEnqueueONE(), which performs a JNI call to the Java method that

enqueues a bundle into an outduct in ONE. It also updates the route expiration time, i.e.

the time until the node tries to forward the bundle to the selected neighbor; if the bundle

cannot be sent within the expiration time, the route must be recalculated. The

bpEnqueueONE() function stores in the InterfaceInfo structure the number of the

outduct to which the bundle has been enqueued and, finally, cgrForwardONE()

returns this value (or 0 if the bundle is in limbo). This is an easy way to provide ONE

with a result that indicates if a route has been eventually found or not and the outduct

that the bundle has been enqueued to. The whole ION adaptation work flow is based on

the assumption that every simulated node puts each bundle into limbo before invoking

CGR. In this way, if no route is found and bpEnqueueONE() is not called, the bundle

is already in limbo and no further operations are needed.

29

4 OPPORTUNISTIC CGR

4.1 Motivations

The main purpose of CGR in ION is to calculate deterministic routes for bundles. ION

indeed was developed mainly to deal with deep space networks, where contacts between

nodes (orbiting spacecraft, satellites, landers and rovers) are well known in advance.

Since DTN architecture should also work with all the challenging networks where

deterministic routing is not a choice, such as terrestrial mobile networks, ION needs to

provide a mechanism to perform probabilistic and opportunistic routing if it wants to

cover also these scenarios.

The current CGR implementation (ION 3.4.1) supports probabilistic contacts that have

to be inserted manually into the contact plan. A probabilistic contact is a contact which

probability (confidence) is less than 1.0. CGR, while computing the routes, takes into

account the probability of each route hop and based on the resulting route probability

(delivery confidence) it decides whether forward the bundle on one route only or to

replicate the bundle and send it via multiple routes. This feature can be exploited to

implement Opportunistic CGR by providing an algorithm that automatically fills the

contact plan with predicted contacts.

There are many opportunistic routing algorithm in literature [caini2011]: from the basic

ones (Epidemic, Spray and wait), which are basically controlled flooding mechanism, to

the smartest ones, like PROPHET. The Opportunistic Contact Graph Routing algorithm

wants to be an extension of the classic CGR, therefore it uses the same concept of

contacts and uses the same route calculation algorithm based on Dijkstra search. The

main difference with respect to classic CGR is that the contact plan can contain non-

deterministic contacts (i.e. contacts with confidence less than 1.0), and that these

contacts are automatically inserted in the contact plan by a contacts prediction algorithm

30

that tries to guess the next contacts based on previous encounters history. The base idea

is that the more often a node had a contact with a specific neighbor, the more likely it is

going to encounter it again; this assumption is at the basis of other opportunistic routing

algorithm, like PROPHET. In addition to that, the prediction algorithm tries to guess the

start time of next contacts and their capacity. This is necessary because we do not want

to modify the route calculation mechanism based on contact plan, thus even if the

predicted contacts can never have a confidence of 1.0, we need to insert them in the

contact plan with fixed start and end times and transmission rate.

4.2 The algorithm

The OCGR algorithm has been firstly conceived by Scott Burleigh; then, I contributed

to its design during its implementation in ION by means of a continuous and intense

exchange of ideas with its inventor. Datasets analysis have shown that contacts

properties of a pair of nodes are not completely random, but most of the times they

follow a certain probability distribution. The contact properties we are interested in are

contact duration (interval between start and end instant of a contact), contact gap

(interval between the end instant of a contact and the start instant of the next one) and

the nominal transmission rate. On the base of previous contacts history, we can find the

mean and the standard deviation of those contact properties for a pair of nodes. The

mean value of the previous contacts properties will be used as the actual properties of

the predicted contacts while the standard deviation give us an indication of the history

randomness: with a low standard deviation we can say that the contacts history for a

pair of node is likely following a pattern, so we can have a higher confidence on the

predicted contacts. On the other hand, if the standard deviation is high, we can assume

that the history is kind of random, thus we can attribute a low confidence to the

predicted contacts. The actual link between mean value and variance depends form the

kind of distribution; here we have assumed that those two values can be related, thus the

threshold chosen to establish if the standard deviation is high or low is the mean value

itself: i.e. if the standard deviation is lower than the mean the confidence of the

predicted contact will be higher.

We also want to take into account the number of previous contacts while calculating the

31

confidence of a predicted contacts series. In fact, when we have a short contact history,

the mean and standard deviation values are less significant, therefore the confidence of a

predicted contact has to be low. Therefore, in order to compute the final confidence of a

predicted contact, we define the following parameters for each sequence of contact

history entries comprising all and only entries for some single sending node and some

single receiving node:

• Base confidence: is the confidence we initially attribute to the series of predicted

contacts. It can be high or low:

◦ High base confidence: attributed when the contact duration standard

deviation is less than the mean and the contacts gap standard deviation is

less than the mean. It is temporarily defined as 0.2.

◦ Low base confidence: attributed otherwise. This means that the history is

random. It is temporarily defined as 0.05.

• net confidence: it is the final confidence of the predicted contacts. It is:

1.0 – (1.0 – base confidence)N

where N is the number of contacts. This means that the more entries are in the

contact history, the higher will be the predicted contacts confidence.

These parameters are just a first guess and no studies have been done to prove that they

are somewhat acceptable, due to lack in time. In fact, all these parameters need to be

empirically tuned, a work that will require effort and time before reaching the most

appropriate values.

Guessing the correct confidence for a predicted contact is a key issue for OCGR

performances. In fact if the contacts confidence is overestimated, OGCR will often find

a high confidence route for a bundle and will enqueue it to a specific outduct without

trying any alternative route. If the chosen route turns out to be wrong, the bundle will

wast much time stuck in a dead end outduct, without the possibility to be forwarded via

a better route. On the other hand, it the contacts confidence is underestimated, OCGR

will often find a low confidence route for a bundle, thus it will enqueue it to multiple

outducts, possibly causing network congestion and overhead.

32

We define “prediction horizon” for a pair of nodes the instant calculated as the current

time plus the difference between the current time and the start time of the firs contact in

the history log, related to that pair of nodes. This is the end time of our prediction: we

only predict into the future as far as we can see into the past.

Therefore for each pair of nodes the contact prediction algorithm inserts into the contact

plan several predicted contacts which durations, gaps, and capacity are the mean values

of the previous registered contacts, until the prediction horizon is hit. The confidence of

those predicted contacts is based on the calculated standard deviation of the previous

contacts durations and gaps.

CGR then uses its existing probabilistic route calculation algorithm to decide which

neighbor the bundle should be forwarded to.

4.3 The implementation

In order to support this new opportunistic routing algorithm the ION code needs to be

changed. The main features we need to implement are the contact history log and the

contact prediction algorithm. In addition other little modifications are needed to make

the code consistent.

4.3.1 Confidence

The current ION version (3.4.1) uses the term “probability” to refer to non-deterministic

contacts likeliness of happening. We have no theoretical basis to allocate a specific

probability to any element of predicted contacts and route calculations, but we can

freely assert that we feel a given level of confidence in each prediction. Therefore all

references to “probability” in ION 3.4.1 have been changed to “confidence” in this

experimental OCGR version. Also the cgrBets, cgrBetsCount, and deliveryProb fields in

the Bundle structure have been renamed xmitCopies, xmitCopiesCount and

dlvConfidence.

33

4.3.2 Database modifications

Contact Plan

The ION contact plan continues to reside in the ION database (the IonDB object in the

SDR partition), listing anticipated intervals of contact between nodes and intervals of

times when the distances (“ranges”) between nodes are as noted.

A contact with confidence value less than 1.0 is termed “predicted contact”. Predicted

contacts can be added to the database manually via ionadmin as before, but they

normally should be generated or deleted automatically by the contact prediction

algorithm.

The contact automatically inserted and terminated by the “eureka” library, which acts as

an interface between ION and the neighbor discovery daemon, always have confidence

level 1.0; they are termed “discovered contacts” and can be identified as such by the

value of the discovered flag, newly added to the IonContact and IonCXref structures.

The stop time of a discovered contacts is initially set to MAX_POSIX_TIME.

Contact history

New contactLog (contact history) lists are added to the ION database, one for the

contacts reported by the sending node and one for the contacts reported by the receiving

node, including all completed discovered contacts that the current node has personally

experienced or that have been reported to it by other nodes. The contact history log

contains only discovered contacts that have already terminated. OCGR want to list only

known facts in the contact history; the contact history is the base for the contact

prediction algorithm and since the prediction result is probabilistic by construction,

OCGR does not want to add any level of uncertainness in the prediction base that would

dramatically lower the prediction confidence. The only tolerated uncertain value is the

stop time of a discovered contact. In fact, while the start time of a discovered contact is

certain, as identified by the neighbor discovery in the same moment for both the sender

and the receiver nodes, the stop time can be different between the two nodes as often

identified by a timeout expiration of the neighbor discovery daemon. We consider the

stop time reported by the sender node as more accurate than the one reported by the

34

receiver node; this is the reason why we implemented the contact history as a double

list: the entries in the sender list have higher priority than the ones in the receiver list.

An entry in the receiver list is used for the prediction if and only if there is not the

corresponding entry in the sender list.

In order to facilitate read and write operations within the contact history log, entries in

each list are sorted by:

• Sending node (ascending)

• Receiving node (ascending)

• Contact start time (ascending)

Contact history administrative record

A new contact history administrative record is defined. Its data are two sequences of

contact history entries: all entries in the SENDER contactLog list, followed by all

entries in the RECEIVER contactLog list, followed by all discovered contact currently

in the contact plan other than the contact with the node to which the record is sent.

This administrative record is not yet implemented and will be developed as soon as the

simulations confirm that OCGR can be a valuable opportunistic routing strategy.

4.3.3 Library modifications

The RFX library

The RFX library manages the contact insertion and deletion and now it has been

modified to manage the contact history log and to implement the contact prediction

mechanism as well. Therefore this is the library that has undergone the biggest

modifications.

The new function rfx_discovered_contacts() is added; it removes every

discovered contact in the contact plan that constitutes a contact with the indicated peer

node.

Whenever rfx_insert_contact() is called, the new contact is checked for

overlap with an existing contact. If the new contact's confidence level Is 1.0 (managed

35

or discovered), every predicted contact with which it overlaps is automatically deleted.

This means that every insertion of a discovered contact will erase all predicted contacts

for the affected sender/receiver, because the discovered contact's end time is

MAX_POSIX_TIME, thus it overlaps with everything by definition. Any other overlap

causes the new contact to be discarded rather than inserted.

Whenever rfx_remove_contact() removes a discovered contact whose

sender/receiver node pair includes the local node, the new function

rfx_log_discovered_contact() is called; the function adds a contact history

list entry. Whenever any discovered contact is deleted, the new function

rfx_predict_contacts() is called for the affected nodes pair: the discovered

contact that caused the pair's predicted contacts to be removed due to overlap when it

was inserted is now gone, so predicted contacts for this node must now be reinstated.

New functions rfx_predict_contacts() and

rfx_predict_all_contacts(), described later, are added.

The EUREKA library

The eureka library, which provides functions supporting contact discovery, has been

modified to implement operations triggered by a neighbor discovery. In particular,

whenever the eureka library adds a new egress plan, it triggers the generation and

transmission of the contact history administrative record to that neighboring node.

Whenever the eureka library discovers that a contact from the current node to another

node has been lost, it passes that node to the new function

rfx_remove_discovered_contact() noted above: because the current node is

no longer in contact with that node, it has also lost the knowledge about other nodes

with which it is in discovered contact.

The information exchange between two neighbors actually has not been implemented

yet; it will be implemented as soon as simulations confirm that OCGR can be a valuable

opportunistic routing strategy.

36

libbpP.c

The processing of administrative records has been modified: when a contact history

administrative record is received:

• Every discovered contact in that record is inserted into the contact plan with stop

time set to MAX_POSIX_TIME.

• Every contact history entry in that record that is not already included in the

node's corresponding contactLog list is inserted into that list.

• The rfx_predict_all_contacts() function of rfx.c is invoked.

Contact prediction

The new rfx_predict_all_contacts() function performs the actions listed

below. Note that rfx_predict_contacts() does the same, but only for a single

sender/receiver pair, i.e., a single prediction sequence:

 All predicted contacts are removed from the contact plan.

 A prediction base is dynamically constructed from the contactLog lists, the

SENDER list followed by the RECEIVER list. Each element of each contactLog

list, in order, is inserted in the reconstructed contact plan in the usual way.

Inserting all SENDER log entries before the RECEIVER log entries ensures that

a contact reported by a receiving node that has also been reported by the sending

node is excluded from the contact plan due to time overlap; the report from the

sending node is always assumed to be more accurate. Elements of the prediction

base are ordered by:

o Sending node

o Receiving node

o Start time

For each element of the prediction base, the duration of the element is the contact’s Stop

time minus its Start time and the volume (or capacity) of the element is the contact’s

duration multiplied by its nominal data rate.

37

 A prediction sequence is any sequence of entries in the prediction base

comprising all, and only, entries for some single sending node and some single

receiving node. A gap in a prediction sequence is the time interval between the

Stop time of some entry in the prediction sequence and the Start time of the next

entry in the prediction sequence.

 For each prediction sequence:

o The mean duration MC of all contacts in the prediction sequence is

computed.

o The corresponding standard deviation DC is computed.

o The mean duration MG of all gaps in the prediction sequence is

computed. If the prediction sequence contains no gaps, then MG is zero.

o The corresponding standard deviation DG is computed, except that if

MG is zero then DG is zero.

o The mean capacity MV of all contacts in the prediction sequence is

computed.

o If DC < MC and DG < MG then the contacts appear to be somewhat

non-random and we assert our base confidence for this prediction

sequence to be 0.2; otherwise we detect no discernible pattern in the

contacts and our base confidence is 0.05. (These values are just a first

guess; they need to be tuned as we experiment with the system.)

o Our net confidence for this prediction sequence is 1.0 – (1.0 – base

confidence)N where N is the number of contacts in the prediction

sequence.

o The prediction horizon for this prediction sequence is the current time

plus the difference between the current time and the Start time of the first

contact in the prediction sequence. (That is, we only predict into the

future as far as we can see into the past.)

o We then insert predicted contacts as follows:

38

 Set Time to the Stop time of the last contact in the sequence.

 Until Time is greater than the prediction horizon:

 Predicted gap’s Start time is Time. Predicted gap’s Stop

time is its Start time plus MG, minus DG; if the computed

Stop time is less than the computed Start time, set the

Stop time to the Start time (i.e., the predicted gap duration

is zero). Gap duration is intentionally underestimated.

 Predicted contact’s Start time is the predicted gap’s Stop

time. Predicted contact’s Stop time is its Start time plus

MC, plus DC; contact duration is intentionally

overestimated. Predicted contact’s data rate is MV

divided by predicted contact duration (Stop time minus

Start time). If the predicted contact’s data rate is greater

than 1 byte per second and its Start time is greater than

the current time, set the predicted contact’s confidence

level to the net confidence for this prediction sequence

and insert the predicted contact into the contact plan.

 Set Time to the Stop time of the predicted contact.

The CGR library

The libcgr.c source file has been modified to get rid of “ranges” for discovered and

predicted contacts. The reason is that CGR wants every contact to happen in a interval

where a range is defined. The range indicates the light distance between a nodes pair,

i.e. the time it takes to the light to travel from a node to its neighbor. If the contact plan

contains a contact scheduled in a moment when no ranges are defined or if the contact is

not completely scheduled within a range, this contact will not be taken into account for

route calculation.

Assuming that in an opportunistic environment such as a terrestrial mobile network the

light distance between two neighbors can be ignored, OCGR needn't ranges for

39

discovered and predicted contacts and for each discovered or predicted contact it

assumes the light distance between the nodes pair as 0.

4.4 Integration into ONE

To integrate the new Opportunistic Contact Graph Router protocol into ONE we needed

to extend the classic CGR integration. On the C side we had to provide new entry points

in order to support the information exchange between nodes that discover each other

and the contact prediction. On the Java side we created the

OpportunisticContactGraphRouting class that extends the ContactGraphRouting class.

4.4.1 Simulating contact history exchange

Since ION is not actually running in the simulator, the population of the contact plan

with predicted contacts and the information exchange between neighbors must be

simulated. Therefore, in addition to the new ION libraries modifications, we need to

create an additional simulation library that performs as follows:

• Whenever the simulated start of a contact between nodes A and B occurs:

◦ All current discovered contacts in the contact plan of node A are copied into

the contact plan of node B, and vice versa.

◦ All entries in each contactLog of node A are copied in the corresponding

contactLog of node B, and vice versa.

◦ The rfx_predict_all_contacts() function is invoked on both node

A and node B.

◦ Operation of the eureka library is simulated:

▪ New discovered contacts (in both directions between the two affected

nodes) are inserted into the contact plans of both nodes.

◦ At node A and node B, for each bundle currently in limbo, the

cgr_forward() function is performed.

• Whenever the simulated termination of a contact between nodes A and B occurs:

40

◦ The rfx_remove_discovered_contacts() function is invoked at

both nodes. This has the effect of removing the discovered contact(s) and

updating the local contact history.

4.4.2 The native code

cgr_jni_Libocgr.c

The new entry points are defined in the cgr_jni_Libocgr.c source file and basically they

wrap calls to the operational functions defined in the chsim.c source file. The entry point

functions perform the same environment updates as the ones described in the CGR

integration. The functions defined in cgr_jni_Libocgr.c reflect the methods of the

cgr_jni.Libocgr.c java class; they are:

• predictContacts() called upon the discovery of a new contact. This

function triggers the contact prediction based on the new contact history

enhanced by the contact history exchange between the two neighbors.

• exchangeCurrentDiscoveredContacts() called upon the

discovery of a new contact. This function triggers the simulation of the

discovered contacts exchange between the two neighbors.

• exchangeContactHistory() called upon the discovery of a new contact.

This function triggers the simulation of the contact history exchange between the

two neighbors.

• contactDiscoveryLost() called upon the lost of a discovered contact.

This function triggers the deletion of a discovered contact from the contact plan

and the insertion of it in the contact history log.

• applyDiscoveryInfo() this function was defined to support a new

discovery contacts exchange protocol now disbanded as considered premature

optimization. The function has not been deleted to be easily re-enabled

whenever this protocol will be useful.

The aim of this functions is to support the simulation of the discovery management that

in a real ION framework should be done by the eureka library.

41

chsim.c

The file chsim.c defines the functions used to simulate the information exchange

between two nodes that acquire or lose a connection. While the cgr_jni_Libocgr.c

source file only defines the entry points for the ONE framework, here the real

operational functions are defined.

In order to simulate the current discovered contact information exchange between two

nodes we need to look through the whole contact plan of a node, store the found

discovered contacts in a list and insert each contact of the list in the contact plan of the

peer node using the specific RFX function. The

exchangeCurrentDiscoveredContacts() function performs the information

exchange in both ways, so it is supposed to be invoked only once per pair of nodes. The

RFX function rfx_insert_contact() insert the contacts in the contact plan and

takes care of possible duplicated contacts.

Likewise, to simulate the contact history exchange, we need to look through the contact

history log of a node, copy all the entries in a list and insert them in the history log of

the peer node using the specific RFX function

rfx_log_discovered_contact(). This function is used when a node lose a

discovered contact and it takes care of possible duplicated entries as well. The

exchange_contact_history() function is supposed to be invoked only once

per pair of node since it performs the contact history exchange in both ways.

The RFX functions we use to insert discovered contacts and history log entries are

defined in the ici/rfx.c, file that we don't want to modify. Every RFX function uses the

PSM and SDR partitions of the local node so if we want to copy the history log of node

A to the node B we need to set the thread-specific local node number reference to A,

read the history log from the IonDB object, copy all the entries in a list, set the thread-

specific local node number to B and call the RFX function to insert in the history log of

node B all the entries earlier saved in the list. This can be done because the thread-

specific local node number represent the node the ION code is managing: every time

this value changes, the PSM and SDR partitions references are updated to point the new

local node runtime space.

42

The insertDiscoveredContact() is invoked when a node discover a new

neighbor and opens a connection to it; it uses the RFX function

rfx_insert_contact() to insert a new discovered contact and its symmetric one.

Respectively the contactLost() function is invoked when a node lose a connection

to a neighbor and it uses the RFX function

rfx_remove_discovered_contacts() to remove the discovered contact from

the contact plan and to insert it in the contact history log.

The function predictContacts() is invoked after any information exchange

between two nodes and it uses the RFX function rfx_predict_all_contacts()

to trigger the contact prediction algorithm that will fill the contact plan with

probabilistic contacts based on the contact history.

The functions notifyNeighbors() and applyDiscoveryInfo() simulate a

discovered contacts exchange protocol now disbanded as considered premature

optimization.

4.4.3 The Java code (ONE extension)

43

Image 4: sequence diagram of function invocations triggered by the discovery of a new
contact. The exchangeContactHistory() has not been expanded as it behaves similarly
to the exchangeCurrentDiscoveredContact(). Function names and signatures have been
renamed for a better reading.

Since we already extended ONE to support the simulation of the CGR, in order to

simulate OCGR as well we need to extend the ContactGraphRouting class. The new

OpportunisticContactGraphRouter class basically provides methods to inform the ION

libraries of the acquisition or the loss of a discovered contact. It also provide a

mechanism to support a epidemic routing drop back if no routes can be found for a

bundle.

Contact discovery

• The method discoveredContactStart() has been implemented. It is

invoked whenever a new discovered connection is acquired. It performs:

◦ The current discovered contact exchange between the nodes pair. This

operation is simulated by the chsim.c library that provides the function

exchangeCurrentDiscoveredContacts(). This function is

supposed to be invoked only once per nodes pair, thus it is called only if the

local node is the connection's initiator.

◦ The contact history exchange between the nodes pair. This operation is

simulated by the chsim.c library that provides the function

exchangeContactHistory(). This function is supposed to be invoked

only once per nodes pair, thus it is called only if the local node is the

connection's initiator.

◦ The contact prediction on both nodes.

◦ The insertion of the new discovered contact in the contact plan of both

nodes.

• The method discoveredContactEnd() has been implemented. It is

invoked whenever a discovered connection is lost. It performs on both nodes the

deletion of the discovered contact from the contact plan, the insertion of the

discovered contact in the history log and the contact prediction.

• Whenever a connection between two nodes changes status, the ONE framework

invokes the method changedConnection() on both ends of the connection.

44

This method has been overridden in our class. It invokes:

◦ The method discoveredContactStart() if the connection is up.

◦ The method discoveredContactEnd() if the connection is down.

Epidemic drop back

Our simulation of the OCGR provides a epidemic drop back mode that can be enable to

enhance the delivery ratio of bundles in the early stage of the simulation, i.e. when the

contact history is too short to support a valuable contact prediction. Generally the

epidemic drop back mode is useful when a node needs to forward a bundle whose

destination cannot be reached using the information of the contact plan. It can be due to

the fact that the local node has never encountered the bundle destination node or that the

bundle destination node resides in a partitioned area of the network that has never been

in touch with the local area.

The epidemic drop back takes control only if OCGR could not find any route to the

bundle destination. If this is the case, the epidemic drop back tries to send the bundle to

every neighbor currently in contact with the local node.

In order to implement this mechanism a new property has been added to the Message

object: the epidemicFlag property. This property is a boolean: it is set to true if OCGR

could not find a route to the destination for the bundle.

The epidemic drop back mechanism performs as follows:

• Whenever a bundle is created or received, its epidemicFlag property is set to

false.

• Whenever OCGR can not find a route for the bundle, the epidemicFlag property

is set to true.

• Whenever OCGR can find a route for the bundle and the bundle is enqueued in a

outduct, the epidemicFlag property is set to false.

• Whenever the local node has an active connection with a neighbor and it is not

transferring any bundle, for each active connection:

45

◦ it looks for the first bundle in limbo that has the epidemicFlag property set to

true and it tries to send it to the neighbor.

◦ If the transfer successfully starts, the bundle's epidemicFlag property is set to

false and the node waits for the end of the transfer, otherwise the node tries

to send the next bundle in limbo with the epidemicFlag property set to true

◦ repeat the previous step until either the transfer successfully starts or there

are no more bundle in limbo with the epidemicFlag property set to true.

The reason why a transfer can fail to start is because a peer node can refuse to accept the

incoming bundle if it already has a copy of it. If this is the case, the epidemic drop back

avoids to send a redundant bundle.

The OGCR specific MessageStatsReport

ONE can provide a series of report as result of the simulations. The main report is the

MessageStatsReport that contains statistical informations about the simulation such as

the number of bundles created, forwarded and delivered, the overhead ratio and the

delivery probability. Each report type is defined in a class by ONE and the compilation

of a specific report must be requested in the settings file before starting the simulation.

We implemented a OCGR specific MessageStatsReport called

OCGRMessageStatsReport that shows different counters for the OCGR-forwarded

bundles and for the epidemic-forwarded ones, in addition to the cumulative counters.

This report is implemented in the report.OCGRMessageStatsReport class, that extends

the report.MessageStatsReport class, and it is enabled in the settings file like all the

others reports. This report does not work with other routers than the

OpportunisticContactGraphRouter.

4.4.4 ONE settings for OpportunisticContactGraphRouter

The OpportunisticContactGraphRouter like other ONE routers can be initialized with

settings read by ONE from a settings file at the beginning of the simulation.

OpportunisticContactGraphRouter supports the following settings:

• epidemicDropBack if set to true the epidemic drop back mode is enabled.

46

Default is true.

• preventCGRForward if set to true the function cgrForward() will never be

invoked. This is useful only for test and debug purposes. Default is false.

• debug if set to true ONE will print useful debug informations to the standard

output. Default is false.

4.5 Optimizations

4.5.1 Symptoms

The first tests revealed that the simulation speed of OCGR in ONE is way slower than

the other protocols speed. For example the same simulation would take a few minutes to

finish with PROPHET routing while it would take days to finish with OCGR. This is

due to the fact that while the simulation runs, the contact history of each nodes becomes

longer and the prediction horizon moves further; therefore the contact plan will contain

a huge amount of contacts (thousands). The route calculation performs a Dijkstra search

through all the contacts in the contact plan, thus, with a huge contact plan, this results to

be really slow.

Speed is not the only issue we had to deal with: in fact during a Dijkstra search through

a huge contact plan, the structures used to store routes information become very large,

until the whole system memory becomes full and the operative system throws a memory

error. Thus the simulation cannot finish. In order to have any result from the

simulations, we needed to optimize the code and the algorithm to be faster and less

memory hungry.

4.5.2 Contact prediction optimization

The total number of contact plan entries depends mainly on how many contacts are

inserted by the contact prediction algorithm. In fact for each nodes pair it can insert as

many contacts as the number of contact history entries that involve the same nodes pair.

We can optimize this behavior performing as follows for each nodes pair:

• Instead of inserting all the predicted contacts in the contact plan only one contact

47

will be inserted.

◦ The start time of this contact is the current time (now).

◦ The end time of this contact is the current time plus the prediction horizon

(current time minus the start time of the first contact in the contact log).

◦ The capacity of this contact is the sum of the capacities of the contacts in the

contact log.

◦ The confidence of this contact is calculated as before.

This optimization makes the contact plan length depending only on the number of nodes

listed in the contact log, while before it was depending also on the total contact log

length. This is an approximation of the OCGR that speeds up the simulation and reduces

the memory usage, while maintaining the functionality and the forwarding ability of the

algorithm.

4.5.3 Route calculation optimization

The CGR library defines three different payload classes and performs route calculation

for each one of them. Each payload class defines a contact capacity floor threshold:

every contact whose capacity is less than the threshold size for the class is not taken into

account in route calculation. The payload classes define the following threshold:

• Payload class 0: 1 kB.

• Payload class 1: 1 MB.

• Payload class 2: 1 GB.

Therefore, instead of performing three times the Dijkstra search, we limited the route

calculation to only the payload class 1, that is: any contact whose capacity is less than 1

MB is omitted from the route calculation. This enhances the route calculation speed but

may deprives the bundle of some routes. Anyway ONE does not support bundle

fragmentation and the simulated bundles size is often from 500 kB to 1 MB. Also, with

the contact prediction optimization that enlarge the predicted contacts capacity, we can

say that a contact whose capacity is less than 1 MB is unlikely to happen or at least not

48

useful.

In addition, we limited the route calculation to those routes whose first hop is a

discovered contact, i.e. currently active. In fact if the route's first hop is not a discovered

contact, the bundle can not be forwarded.

49

5 CONCLUSIONS

This thesis has been carried out at NASA JPL in Pasadena (California), under the direct

guide of my co-supervisor, Scott Burleigh, leader of the DTN research in NASA. As

that, it was natural to focus the thesis work on the most urgent topic, which at present is

the extension of the application field of the ION DTN implementation, from space

networks to terrestrial non-deterministic environments, such as MANETs. In brief, the

aim is to transfer, once again, the results of the most advanced aerospace research to the

terrestrial field, as done so many times in the aerospace history.

Neighbor and service discovery capabilities may not be necessary in space

environments, where node contacts can be scheduled in advance, but they are an

instrumental feature in non-deterministic environments. For this reason, I started my

work by testing the brand new ION IPND implementation , removing bugs and writing

the official documentation (main page).

Then I moved on routing, another interesting topic. Firstly, I integrated into “The ONE”

the ION CGR algorithm. This one guarantees optimal performances in deterministic

networks, but it is not operable, as it is, in an opportunistic environment. Therefore,

starting from the analysis of a mobility trace dataset, I collaborated with Scott Burleigh

to the development of the Opportunistic CGR (OCGR) extension, and then I have

integrated it, into ”The ONE” DTN simulator, by extending the previously developed

CGR integration. Preliminary simulation results show that OCGR seems to have a great

potential: once properly tuned, it could become a serious competitor of the best

opportunistic routing algorithms, while maintaining its dominance in the deterministic

space environments.

50

APPENDIX 1: COMPILATION AND SIMULATION

Files and directories organization

The ION integration for ONE that support the simulation of CGR and OCGR comes

within a single packet that contains the Java classes that extend the ONE framework and

the native code that simulates the ION environment.

The Java classes

The Java code is organized following the Java standard guideline for packages and

classes: each file contains a class and its name is ClassName.java and each file is

contained in a folder whose name is the package that contains the class. The root

directory of the Java code is the folder src.

Since we want to use our classes in the ONE framework, we needed to use the same

packages used by ONE. The packages and classes used directly by ONE are:

• package routing: classes OpportunisticContactGraphRouting and

ContactGraphRouting

• package test: classes OpportunisticContactGraphRoutingTest,

ContactGraphRoutingTest and TestUtilsForCGR

• package report: class OCGRMessageStatsReport.

All the other classes manage the JNI interaction with the ION integration native code

and are defined within the cgr_jni package.

The native code

The C source and header files are in the ion_cgr_jni folder that tries to follow the

original ION distribution file organization. This folder contains the following sub

directories:

51

• bp folder: contains the libcgr.c source file and all the needed headers exactly

as in the original ION distribution.

• ici folder: contains all the source files of the ICI libraries and the needed

headers exactly as in the original ION distribution.

• jni_interface folder: contains all the source and header files that support the

JNI interaction between the ONE framework and the ION adaptation.

• test folder: contains source and header files used for JNI and simulated

libraries tests. Not used for simulations.

All the above mentioned folders and their parent contain a Makefile used for the library

compilation. The result of the compilation of the native code is the libcgr_jni.so shared

library, linked at runtime by the Java virtual machine hosting the ONE framework.

Native library compilation

The provided Makefile in the ion_cgr_jni directory takes care of the compilation. The

make program should be invoked as follows:

make ONE_CLASSPATH=<ONE_classpath> [DEBUG=1]

The ONE classpath is the root directory of the packages containing the .class files result

of ONE compilation. If DEBUG is defined, the CGR debug prints are enabled. In

addition, the environment variable $JAVA_HOME needs to be set in order to let the

compilator to find the JNI header files. It is usually set to /usr/lib/jvm/java-8-oracle/

depending on which version of JRE is installed. If this variable is not set, the

compilation fails.

Also, this Makefile assumes that the Java classes of the cgr_jni package are compiled in

the bin directory, as Eclipse does. If this is not the case, the classpath of these classes

needs to be appended to the ONE classpath parameter upon make invocation as follows:

make ONE_CLASSPATH=<ONE_classpath:cgr_jni_classpath>

52

ONE modifications

Even if we tried to keep our code completely separate from the ONE code in order to

distribute our package as a external module easily integrable into a existing ONE

installation, we needed to perform a few changes in the ONE code to make the ION

adaptation to work.

Mandatory modifications

Without these modification, the ION adaptation will not work. The ONE code needs to

be changed as follows:

• class core.DTNHost

◦ line 21: initialize nextAddress with 1.

◦ line 105: assign 1 to nextAddress.

These modifications are needed because ION can not handle a node whose

number is 0, therefore we need to start to assign the host address to the node

from 1.

• file one.sh: append the environment variable $CGR_JNI_CLASSPATH to the

-cp parameter of Java invocation.

java Xmx512M cp
.:lib/ECLA.jar:lib/DTNConsoleConnection.jar:
$CGR_JNI_CLASSPATH core.DTNSim $*

This modification is needed because we need to tell the JVM where to find our

ION integration classes, and we do that by adding an environment variable to the

Java classpath. In this way whenever we change the location of the ION

integration classes we do not need to change this file again.

Optional modifications

The following changes are needed only if we want to use the OCGR specific message

stats report. This is not necessary and the simulations can be done with the original

code.

53

• Class report.MessageStatsReport line 178, modify as follows:

write(statsText);
write(getMoreInfo());
super.done();

}

protected String getMoreInfo() {
return "";

}

That is: define the getMoreInfo() method and write the string returned to the

output stream before closing it. This method is overridden in our

report.OCGRMessageStatsReport class.

Running the simulations

ONE provides two ways to performs simulations: graphic mode and batch mode. The

graphic mode opens a graphic user interface that shows the nodes moving in the map

and allows the user to interact with the simulation with the pause, step and fast forward

buttons. The batch mode allows the user to perform a series of simulations

automatically changing a parameter (such as bundle size or expiration time) each run.

While the first mode is used to see how the nodes move, the second one is used to do

actual performance tests.

For both modes ONE is started with the one.sh script. Before invoking the script we

need to set the $LD_LIBRARY_PATH and the $CGR_JNI_CLASSPATH environment

variables. The first informs the JVM where to find the libcgr_jni.so native library, the

second informs the JVM where to find our Java classes. To set these variables the

following commands need to be execute:

export LD_LIBRARY_PATH=/path/to/libcgr_jni.so/dir|
export CGR_JNI_CLASSPATH=/path/to/cgr_jni/classes

at this point the one.sh script can be executed passing as parameters the settings file and

(if needed) the batch mode options.

54

Running batch simulations

In order to simplify the simulation set up and results analysis processes, a utility script

has been developed. The script name is batch_test.sh and it is in the simulations folder.

This script exploits the ability of ONE to read the simulation settings from separate files

in a certain order. In fact ONE reads the settings files in the order they are presented to

the command line, and for each setting value read, it overrides any previously read

setting with the same name.

We define mode of the simulation the parameter that we want to change for each run.

According to [SATRIA] the following three modes are defined:

• Buffer:the nodes buffer size changes.

• Message: the bundle size changes.

• TTL: the bundle time to live changes.

The simulations show the variations of the performance of a routing algorithm upon

specific parameter modifications, but also allows to compare the performances of

different routing algorithms running the same parameters. For this reason the batch

script allows to easily choose the routing algorithm we want to use in our simulation: in

the simulations directory there is a subdirectory for each router we want to use. In the

subdirectory there is the router-specific settings file, that basically define the routing

class for the simulation.

The simulation is thus invoked passing the settings files in this order: global settings,

mode settings, router settings. The output of the simulation is saved in the router folder.

55

ACKNOWLEDGMENTS

I would first like to thank my thesis co-supervisor Scott Burleigh of NASA JPL for

letting me work on this ambitious research project directly from inside the JPL, one of

the coolest place in the world, and for his availability any time I needed a hint or a help.

I would also like to thank the School of Engineering and Architecture of the University

of Bologna for providing me with a scholarship in order to conduct this research abroad.

Then I would like to thank my family for always supporting me.

Finally I would like to thank all the people that made this amazing experience

memorable: Lourdes, Alfredo and all my extended Mexican family; my loyal bearded

companion Giulio; the dream traveler Felicitas; my office mate Lorenzo and all the

people of the awesome JPL lunch crew; the crazy friends of the PCC; and all those who

I cannot list because they would be too many for a regular “acknowledgment” page.

Thank you to all of you.

Michele Rodolfi

BIBLIOGRAPHY

[A. Keränen, 2010] Keränen, Ari, Teemu Kärkkäinen, and Jörg Ott. "Simulating
Mobility and DTNs with the ONE." Journal of Communications 5.2 (2010): 92-105.

[Apolonnio et al., 2013] P. Apollonio, C Caini, M Lülf “DTN LEO satellite
communications through ground stations and GEO relays” - Personal satellite services,
2013

[Balasubramanian et al., 2007] Balasubramanian, Aruna, Brian Levine, and Arun
Venkataramani. "DTN routing as a resource allocation problem." ACM SIGCOMM
Computer Communication Review 37.4 (2007): 373-384.

[Bezirgiannidis et al., 2014] Bezirgiannidis, N.; Caini, C.; Padalino Montenero, D.D.;
Ruggieri, M.; Tsaoussidis, V. "Contact Graph Routing enhancements for delay tolerant
space communications", Advanced Satellite Multimedia Systems Conference and the
13th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2014 7th,
On page(s): 17 – 23.

[Burleigh et al., 2015] Scott Burleigh; Giuseppe Araniti; Nikolaos Bezirgiannidis;
Edward Birrane; Igor Bisio; Carlo Caini; Marius Feldmann; Mario Marchese; John
Segui; Kiyohisa Suzuki “Contact graph routing in DTN space networks: overview,
enhancements and performance”

[DTNRG] DTN Research Group, http://www.dtnrg.org/wiki/Code

[E. Birrane et al., 2012] E Birrane, S Burleigh, N Kasch “Analysis of the contact graph
routing algorithm: Bounding interplanetary paths” - Acta Astronautica, 2012

[Grasic et al., 2010]Grasic, Samo, et al. "The evolution of a DTN routing protocol-
PRoPHETv2."Proceeding. ACM, 2011.

[I. Bisio et al., 2008] Bisio, Igor, Mario Marchese, and Tomaso De Cola. "Congestion
aware routing strategies for DTN-based interplanetary networks." Global
Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE. IEEE, 2008.

[ION] ION manual at https://sourceforge.net/

[IPND] DTN IP Neighbor Discovery (IPND). IETF draft.

[J. Burgess et al., 2006] Burgess, John, et al. "MaxProp: Routing for Vehicle-Based
Disruption-Tolerant Networks." INFOCOM. Vol. 6. 2006.

[PROPHET] Probabilistic Routing Protocol for Intermittently Connected Networks,
Mar 2006

[RFC4838] Delay-Tolerant Networking, http://tools.ietf.org/html/rfc4838

[RFC5050] Bundle Protocol Specification, http://tools.ietf.org/html/rfc5050

57

[RFC5325] Licklider Transmission Protocol – Motivation,
http://tools.ietf.org/html/rfc5325

[SATRIA] Deni Yulianti, Satria Mandala, Dewi Naisien, Asri Nagad, Yahaya
Coulibaly, “Performace comparison of Epidemic, PRoPHET, Spray and Wait, Binary
Spray and Wait, and PRoPHETv2”.

[T. Spyropoulos et al., 2005] Spyropoulos, Thrasyvoulos, Konstantinos Psounis, and
Cauligi S. Raghavendra. "Spray and wait: an efficient routing scheme for intermittently
connected mobile networks." Proceedings of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking. ACM, 2005.

[Vahdat and Becker, 2000] Vahdat, Amin, and David Becker. "Epidemic Routing for
Partially-Connected Ad Hoc Networks."

58

	1 INTRODUCTION
	1.1 DTN architecture
	1.2 DTN routing
	1.3 The ONE simulator

	2 DTN discovery (ipnd)
	2.1 Introduction
	2.2 IPND protocol
	2.2.1 Broadcast, multicast and unicast beacons
	2.2.2 Beacon period
	2.2.3 Beacon format
	Service block
	Service definition
	Services
	Neighborhood Bloom Filter

	2.2.4 Disconnection discovery

	2.3 ION IPND implementation
	Usage
	Commands
	Examples

	3 CGR integration into ONE
	3.1 The ICI package
	3.1.1 The lyst library
	3.1.2 The PSM library
	3.1.3 The smlist and smrbt libraries
	3.1.4 The SDR library
	3.1.5 The RFX library
	3.1.6 Utilities

	3.2 The BP package
	3.3 The ONE to ION interface
	3.3.1 Global initialization
	3.3.2 Node initialization
	3.3.3 Java entry points
	3.3.4 ONE to ION interface functions
	3.3.5 CGR work flow

	4 Opportunistic CGR
	4.1 Motivations
	4.2 The algorithm
	4.3 The implementation
	4.3.1 Confidence
	4.3.2 Database modifications
	Contact Plan
	Contact history
	Contact history administrative record

	4.3.3 Library modifications
	The RFX library
	The EUREKA library
	libbpP.c
	Contact prediction
	The CGR library

	4.4 Integration into ONE
	4.4.1 Simulating contact history exchange
	4.4.2 The native code
	cgr_jni_Libocgr.c
	chsim.c

	4.4.3 The Java code (ONE extension)
	Contact discovery
	Epidemic drop back
	The OGCR specific MessageStatsReport

	4.4.4 ONE settings for OpportunisticContactGraphRouter

	4.5 Optimizations
	4.5.1 Symptoms
	4.5.2 Contact prediction optimization
	4.5.3 Route calculation optimization

	5 Conclusions
	Appendix 1: Compilation and simulation
	Files and directories organization
	The Java classes
	The native code

	Native library compilation
	ONE modifications
	Mandatory modifications
	Optional modifications

	Running the simulations
	Running batch simulations

	Acknowledgments
	Bibliography

