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Abstract. Lo streaming è una tecnica per trasferire contenuti 
multimediali sulla rete globale, utilizzato per esempio da servizi come 
YouTube e Netflix; dopo una breve attesa, durante la quale un buffer di 
sicurezza viene riempito, l'utente può usufruire del contenuto richiesto. 
Cisco e Sandvine, che con cadenza regolare pubblicano bollettini sullo 
stato di Internet, affermano che lo streaming video ha, e avrà sempre di 
più, un grande impatto sulla rete globale. Il buon design delle 
applicazioni di streaming riveste quindi un ruolo importante, sia per la 
soddisfazione degli utenti che per la stabilità dell'infrastruttura.
HTTP Adaptive Streaming indica una famiglia di implementazioni volta a
offrire la migliore qualità video possibile (in termini di bit rate) in 
funzione della bontà della connessione Internet dell'utente finale: il 
riproduttore multimediale può cambiare in ogni momento il bit rate, 
scegliendolo in un insieme predefinito, adattandosi alle condizioni della 
rete. Per ricavare informazioni sullo stato della connettività, due famiglie 
di metodi sono possibili: misurare la velocità di scaricamento dei 
precedenti trasferimenti (approccio rate-based), oppure, come 
recentemente proposto da Netflix, utilizzare l'occupazione del buffer 
come dato principale (buffer-based).
In questo lavoro analizziamo algoritmi di adattamento delle due famiglie, 
con l'obiettivo di confrontarli su metriche riguardanti la soddisfazione 
degli utenti, l'utilizzo della rete e la competizione su un collo di bottiglia.
I risultati dei nostri test non definiscono un chiaro vincitore, riconoscendo
comunque la bontà della nuova proposta, ma evidenziando al contrario 
che gli algoritmi buffer-based non sempre riescono ad allocare in modo 
imparziale le risorse di rete.
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Chapter 1

Introduction

Like almost every piece of information, videos are seen as files in the digital

world. In general we must download completely a remote file in order to

open it. This is not true if we speak about video streaming: the playback

starts potentially way before the end of the download; most people use it

everyday, for example when using services like YouTube or Netflix.

Cisco [1] states that video streaming will be 79% of all consumer Inter-

net traffic in 2018. Sandvine [2] declares that during peak hours in North

America, Netflix and YouTube are together responsible for the 48.9% of the

transfers towards the users. It is clear that video streaming is a topic with

a rising impact on today’s Internet. Badly designed applications may pose

problems not only to end users, but also to streaming providers and ISPs

(Internet Service Providers).

Services have some indicators to measure user satisfaction; these indicators

are gathered in the so-called Quality of Experience (QoE): a collection of

metrics, usually not so easy to measure (mostly because of their subjective-

ness), that evaluates the user satisfaction with the service. QoE for video

streaming is believed to heavily depend on two factors: rebuffering events

(when the video stops because of insufficient network throughput) and bit

rate obtained (the more the bit rate is high, the more the images are clear,

the more the user is satisfied).

In order to maximize the QoE in video streaming applications, HTTP Adap-
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tive Streaming (HAS) is widely used: it avoids rebuffering while at the same

time getting a high bit rate. This is done by switching the bit rate on the fly

while the playback is in progress, so as to absorb network fluctuations and

obtain a high video quality.

Current HAS implementations measure the download throughput in order to

chose the best bit rate sustainable, we’ll refer to this approach as rate-based;

as highlighted by [3, 4, 5, 6] and many more, this method could suffer from

some issues related to the interactions with the underlying layers.

Video streaming applications do not show immediately the data received

to the user; instead, they keep a playout buffer of a variable length which

absorbs the unreliability of the network, as there aren’t guarantees about the

timing, even if the network is relatively stable (i.e. packets could arrive in

bursts). An idea that comes from Netflix [7] suggests to choose the next bit

rate using as input the utilization of this buffer, without trying to estimate

the bandwidth at all, we’ll call this technique buffer-based. The authors

demonstrated that with their strategy, the Quality of Experience increased,

as the users obtained similar bit rates averages with less rebuffering events.

The objective of this work is to dig on the two families of rate adaptation al-

gorithms, and to compare some of the members of them, looking at metrics

concerning QoE, network and competition between clients sharing a bot-

tleneck; for the comparison we used VLC media player modified so to be

capable of running different algorithms, on a testbed which permits network

shaping, leveraging measurement tools to get the data from the clients, from

the TCP stack and from the network equipment between the server and the

clients.

In chapter 2 we provide an overview of the most important network tech-

nologies; the context of this work is provided in chapter 3, detailing the prin-

ciples of HAS and how the different algorithms cope with the problem. The

methodology and the details of the implementation are presented in chapter

4; a discussion of the results obtained is given in chapter 5.
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Chapter 2

The global network and its protocols

In this chapter we introduce the structure of the Internet and one of its most

important protocols: TCP, we will then talk about HTTP, an application

protocol built on top of TCP, that is responsible of the most part of the traffic

on the Internet.

2.1 The Internet

Figure 2.1.1: ARPANET in

1969: the first four nodes of the

future Internet

We can see the global network as an hetero-

geneous set of randomly-interconnected ma-

chines, where each of them can communicate

with any other one, directly or by using one or

more intermediate hops. An example, shown

fig. 2.1.1, comes from the first stages of the

Internet; we are in 1969, and this is the topol-

ogy of ARPANET, the first computer network;

each node in the picture is actually a couple of

machines: the one represented by a circle is in

charge of maintaining the links, while the other

is the actual host to connect. This structure is

still used in the current implementation: the so-called routers are responsi-

ble to manage the links and sort the traffic between end hosts.
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ARPANET was at the beginning a military project, intended to keep under

control the nuclear weapons in the USA territory even under a nuclear at-

tack; under this conditions, it is easy to imagine how a part of the nodes

could suddenly disappear. To raise the probability that every point remains

accessible, it is necessary to add links in a web-like topology; having thus

multiple possible paths between a given source and destination; for exam-

ple in fig. 2.1.1, two of the three nodes on the left side could communicate

between each other, even if the third one is down.

To exploit the multi-path topology, the information is split in packets, la-

beled with source and destination, as Donald Watts Davies and Paul Baran

suggested in the sixties [8]. The packets reach independently the destination

without any kind of reservation of the path, and without any confirmation

of the delivery; this is the most basic and lightweight communication mean

on the computer networks; the implementation of this protocol on the In-

ternet is called Internet Protocol (IP), with two versions that currently live

together, as the transition is in progress: IPv4 and IPv6.

Data

TCP
data

TCP
header

IP
header

Frame
header

Frame
footer Link

Internet

Transport

Application

IP data

Frame data

Figure 2.1.2: Encapsulation of data

through the layers, as described in

RFC1122[9]. Source: Wikipedia.

An IP packet is made by an header

and a payload; the header contains

source/destination pair, among other

things, while the payload carries the ac-

tual data to transfer. The machines are

identified by their IP address, that is

unique in the whole Internet.

IP is simple. This is one of its points of

strength that permitted its diffusion: it is

fairly easy to support it over any phys-

ical mean of communication: copper,

optical fiber, radio and so on. Fig. 2.1.2

shows the four layers of the Internet, as defined in RFC1122 [9]; IP sits in

the middle of the “Internet hourglass”: many protocols carry IP packets as

payload (Ethernet, Wi-Fi, UMTS...), and all standard protocols are built on

top of IP.
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On the transport layer, we find three different protocols that work over IP:

• ICMP (Internet Control Message Protocol): useful for debugging pur-

poses, carries simple informations and error notifications.

• UDP (User Datagram Protocol): it adds the concept of port, giving

thus the possibility to run simultaneously multiple network applica-

tions on the same host, routing the data to the correct one. There is no

guarantee concerning the correct delivery nor the order of the packets

received.

• TCP (Transmission Control Protocol): in addition to ports, it adds

some guarantees, such as delivery confirmation and packet order. It

aims to establish a connection between the end hosts, exchanging IP

packets both for control messages and user data.

Routing

The Internet is an heterogeneous set of different interconnected IP networks,

where each independent network is connected to a number of other net-

works; for each of them, the internal and external links are controlled by

routers, machines configured for this purpose (represented by a circle in

fig. 2.1.1). So the Internet could be seen as a graph, were the arcs are links

and the nodes are routers. Our computers and servers are then connected to

these routers, and all the data we exchange pass through the graph to reach

the other peer. The links have in general different performances, due to

physical reasons and depending on the quantity of data crossing them. Be-

cause of these differences, a router could see bursts of traffic coming from a

high speed link and going to a lower speed one; this is why, for each output

port, the routers maintain a buffer so to have a queue of outgoing packets

that empties at the link’s speed. When the amount of data flowing towards

a link keeps having an unsustainable rate (higher than the capacity of the

same link), this buffer could reach its limit; in this case, the router is forced

to drop the subsequent packets; and the link is congested.
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Without a specific mechanism to regulate traffic and avoid congestion, we

could expect the most part of routers out-of-order and no communication

possible across the Internet. For this reason, we need a mechanism to avoid

congestion and ensure, as much as possible, a fair allocation of the available

bandwidth; two approaches are possible: manage the traffic on the routers,

or make the end hosts to send the data at a convenient rate. For practical

reasons, the second approach was adopted at the first steps of the Internet

and bundled inside TCP, under the name congestion control.

As the memory price decreases faster than how the link speed increase, the

buffers tend to be oversized, especially on cheap, not-well-designed equip-

ment; an excessive buffer size yields bufferbloat: the packets sits on the

buffer, waiting to be routed for a time way longer than expected. This turns

into an important issue in some fields, such as VoIP calls, on-line games or

e-commerce web sites.

2.2 TCP

TCP was first defined in RFC793 [10], as “a connection-oriented, end-to-

end reliable protocol designed to fit into a layered hierarchy of protocols

which support multi-network applications. The TCP provides for reliable

inter-process communication between pairs of processes in host computers

attached to distinct but interconnected computer communication networks”.

TCP by sending IP packets, establishes a connection between two end hosts

and exchange data in a reliable way. The two involved peers have different

roles, as the model is service-user: one acts as a server, exposing an open

port that accepts TCP connections, the other as a client, sending a special

packet to request the communication.

The connection is initiated by the client that sends a “synchronization packet”,

SYN, as in fig. 2.2.1a; the server acknowledges the reception replying with

a SYN+ACK packet; the client then ends the handshake sending a last ac-

knowledgement, ACK. When the server receives this ACK, both sides con-

sider the connection active, and identify it by the 4-tuple built with both

12
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ACK
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CLIENT SERVER

(a) three-way-handshake: the

connection initialization

DATA

ACK

PEER #1 PEER #2

R
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T
(b) ACK mechanism: reliabil-

ity and order

FIN

ACK

ACK

PEER #1 PEER #2

FIN

(c) four-way-handshake: the

end of the connection

Figure 2.2.1: TCP phases

IP addresses and both TCP ports. From this moment on, there is no more

difference between the server and client roles.

DATA

DATA

ACK

PEER #1 PEER #2

R
T

O

Figure 2.2.2: TCP, Re-

transmission Time-Out

A TCP connection, as seen from the upper layer, is

a streams of flowing data for each of the two op-

posite directions. These two flows, to adhere to

IP, must be split in packets, so to travel between

end hosts over the network. Each data packet con-

tains a sequence number that indicates its position

on the stream, this ensures an ordered delivery to

the upper layer even if the corresponding IP pack-

ets arrived out of order. For each chunk of data sent,

the receiver generate an acknowledge, that contains

the next sequence number expected, confirming at

the same time the reception of all the data; the time

passed between the sent of the packet and the recep-

tion of the ACK is called Round Trip Time (RTT), as shown in fig. 2.2.1b.

The reliability of TCP is obtained in a quite simple way: the memory area

corresponding to a data packet is erased only when the matching ACK is

received; if no ACK arrives, the sender will wait a Retransmission Time-Out

(RTO), and eventually resend the packet (fig. 2.2.2).

The connection is closed asymmetrically, by sending the control packets
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FIN, that are confirmed by an ACK; the flag FIN announces to the peer

that no more data will be sent in its direction; the connection is actually

closed when both sides closed their side (fig. 2.2.1c). TCP includes also a

mechanism to abort a connection, by sending a reset request (RST).

2.2.1 Flow control

The data is split into packets in order to travel through the network, and

every packet is acked, so to ensure reliability. Wait for the previous ACK

before sending the next packet, anyway, is not so effective.

An example scenario: the two end hosts connected through a 10Mbit/s Eth-

ernet link. For Ethernet, the MTU (Maximum Transmission Unit, the max-

imum payload size allowed) is 1500 bytes, the Ethernet header is composed

by 14 additional bytes, total: 1514 bytes; IP and TCP headers are 20 bytes

each; so the best-value TCP packet on Ethernet carries 1440 bytes of user

data. The time to transfer this packet will be 1.2 milliseconds, and the ACK

could be delivered 50 microseconds after (excluding the computation time

at the destination); but we have to take into account also extra delays, for

instance caused by the speed of light: if our link is 1500km of wire, we

have to add 5 milliseconds; the total time passed between the send of the

packet and the reception of the ACK is 11.2ms, with an average through-

put of about 1Mbit/s: ten times less the actual bandwidth of the underlying

medium. There is a number of other reasons that could cause delays, includ-

ing: the other peer isn’t processing the packets because of high load, the data

packets or the ACKs are stuck in queues on the intermediate routers.

To obtain better performances, TCP sends more than one IP packet at a

time, allowing a certain number of unacked packets. This receiver window

(RWND) is moved forward as ACKs arrive, so to maintain the number of

in flight packets equal to its size.

As a first strategy, the window must be sized to not overflow the receiver’s

buffer, as there is no point in sending data that the other peer can’t process;

for this reason, the TCP header contains a field to specify the amount of

14



free space on the receiving buffer. The sender will limit the transmission to

this amount of bytes, and update the window size to the advertised value on

every received packet (ACKs included).

2.2.2 Congestion control

The mechanism presented above is useful to limit traffic end-to-end, not

considering the status of all routers relaying the traffic; the main goal of

congestion control is to avoid overloading the intermediate network equip-

ment and links, while letting the machines dynamically get their own fair

share of the available bandwidth. The sender keeps a congestion window

(CWND), in addition to the receiver window of flow control; the effective

number of allowed unacked packets will be themin(RWND,CWND).

This CWND starts from a predefined size (initial window). The sender will

fill this window sending as fast as possible, it will then stop waiting for

ACKs. When an ACK arrives, the window size will be increased, and one

or more new packets will be sent. Conversely, the windowwill be decreased

when a loss is sensed (suspect congestion), i.e. when one packet remains

unacked while its successors are, or when the ACK does not arrive after a

certain timeout.

The exact behavior and the precise amounts for increases and decreases de-

pends on the chosen algorithm (for instance, in Ubuntu 14.10, 13 differ-

ent algorithms are available to be plugged into the kernel); although, some

guidelines are given in RFC5681 [11].

Slow start and congestion avoidance

MSS (Maximum Segment Size) is the maximum allowed size for the TCP

payload, it depends on many factors, and its rationale is to avoid fragmenta-

tion at the lower layers; the transfer of a big file, for example, will be divided

by MSS and produce a number of TCP packets.
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Figure 2.2.3: TCP slow

start, how the CWND

grows.

RFC5681 [11] recommends to set the initial win-

dow to a low value (between 2×MSS and 4×MSS),

and set a variable named ssthresh (slow start thresh-

old) to an arbitrarily high value; when the current

CWND value is less than the slow start threshold,

the slow start algorithm is used, otherwise conges-

tion avoidance is selected.

When in slow start, for every ACK received, the

CWND will be increased by a MSS, so the result-

ing congestion window is doubled after an entire

CWND sent and acked, or an RTT (see fig. 2.2.3);

in this phase, the window grows exponentially to

try to get to the maximum value quickly.

Congestion avoidance slows down the growth rate

to linear: the increment for each ACK will be

MSS×MSS/CWND, thus an MSS for each RTT;

this slow increase is meant to adapt to the channel bandwidth in a graceful

way, avoiding high congestion.

What happens upon loss

The first and most naive congestion control algorithm is named Tahoe; it

uses a timeout to determine the existence of a loss: if theACK is not received

before the expiration of the RTO, it will be considered a loss. The ssthresh

will be set to half of the current congestion window, and the congestion

window will be reduced to 1 MSS.

Stepping back to a very low CWND will suddenly drop the speed of the

transfer, and moreover there are some more hints that could drive to good

decisions without waiting for the RTO, in particular duplicate ACKs (DU-

PACKs): if a packet is lost, for each subsequent packets delivered, the re-

ceiver should produce a duplicate ACK of the last in-order packet received

(that is equivalent to ask for the missing packet).
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TCPReno exploit this information to improve the recovery performances: at

the third DUPACK, it will resend the requested packet (without waiting for

the timeout), halve the CWND and set the slow start threshold to the same

value, thus avoiding the slow start phase and reacting as soon as possible,

before the RTO. If, anyway, the RTO arrives, the behavior of Reno is the

same as for Tahoe.

As said, there is a number of other possible behaviors, currently deployed

on the Internet, that optimize the edge cases, or use other TCP options, such

as selective ACKs (SACKs), a mechanism that aims avoiding the resend on

already-received, out-of-order packets.

Congestion window behavior

In order to exploit the available bandwidth of a defined path, or to fill the

pipe, we intuitively need a certain number of in-flight bytes; this number

could be calculated by multiplying the bandwidth times the round trip time;

this is called bandwidth-delay product, or BDP, and we expect the conges-

tion window to tend spontaneously to this value. Conversely, we can affirm

that the current value of CWND, specifying the number of in-flight bytes,

indicates directly the instantaneous throughput of the corresponding flow.

Moreover, when in congestion avoidance, the CWND grows linearly and

decreases exponentially; this approach is referred also as additive increase

multiplicative decrease or AIMD. This strategy is vital in TCP, in particular

whenmany active connections compete on the same bottleneck: it is demon-

strated [12] that eventually each actor gets the fair share of the medium. It

is important to note that this process takes time, depending on the charac-

teristic of the links and on the congestion control algorithms in use.

2.3 HTTP

HTTP stands for Hypertext Transfer Protocol; it was used since 1990, and

its first version is defined in RFC1945 [13]; created to transfer HTML hy-
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pertext files, it is now used with almost every kind of data.

HTML, Hypertext Markup Language, is a file format that permits to link

different related documents; it introduces also a way to identify and locate

this related content: URLs (Uniform Resource Locator), pieces of informa-

tions specifying the protocol that must be used and other protocol-specific

data to obtain the document; HTML recommend but not enforce the use of

HTTP. The applications that fetch and render HTML pages are called web

browsers.

An HTTP URL is in the form http://servername/path/to/file.html,
where servername indicates the IP address or the hostname (mnemonic

name, from which the clients will find the IP address) of the server, and

path/to/file.html is the name of the document; to retrieve the docu-

ment, the browser will open a TCP connection to the server at port 80, and

send:

GET path/to/file.html
[optional headers]

The server will then reply with some headers, specifying details about the

file, such as the format, the modification date, etc., followed by the docu-

ment requested. The connection is then closed.

HTTP is stateless, as the connection is established to download a single

file, and no track is kept along the transfers; the cookiemechanism adds the

concept of state in HTTP, by inserting a piece of information in the headers

in both directions.

The currently most deployed version, HTTP/1.1 (defined in RFC2616 [14]),

introduces a number of new functionalities. One of them, particularly useful

for performance, is the connection header: when set to keep-alive, the
TCP connection is not closed right after the transfer, and could be used for

the next request; reusing the connection has two great advantages:

• reduces the latency of the order of one RTT: a new TCP three-way-

handshake is avoided,
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• reuses the old congestion windows, already tailored for the path be-

tween server and client.

Another functionality introduced in HTTP/1.1 is pipelining: the client could

pack multiple requests without waiting the corresponding responses, which

will be sent sequentially by the server in the same order; this approach

speeds up the transfer of multiple resources hosted in the same machine.

A new version of HTTP is defined in RFC7540 [15], dated 2015; HTTP/2

adds some interesting capabilities, helpful to gain somemilliseconds in page

load:

• header compression: depending on the transferred contents, the HTTP

headers could have a non-negligible share of the whole download;

• parallel transfers: concurrent HTTP requests and responses could be

run over the same connection;

• server push: a mechanism that allows the server to send unsolicited

data, predicting a future request, for example if an HTML document

includes some images (even though an image could be embedded di-

rectly inside the HTML code, usually it is kept on the server as a sep-

arate file, with its own URL), the server could assume that the client

will need them soon, and push them right after the document.

HTTP/2 is widely supported by the major web browsers, but not yet exten-

sively used on web sites, as it requires an update of both the infrastructure

and web development community.
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Chapter 3

Streaming over the Internet

The context of this work is characterized in this chapter: it starts presenting

how videos are represented in digital form, continuing with video streaming

and HTTP Adaptive Streaming, explaining then the basics of rate-based al-

gorithms and their drawbacks, followed by a description of the buffer-based

algorithms.

3.1 Video compression

A video file contains separately the audio and the images, because they are

digitalized using different strategies.

The audio is converted by taking the value of amplitude of the signal at reg-

ular intervals; this sampling has to be done in the order of thousands of times

a second, so to respect the Nyquist-Shannon sampling theorem, that estab-

lish the minimum frequency at which an analog signal must be sampled so

to be reconstructed from its digital form without distortion; in particular, if

the original signal is limited below a frequency fM , the sampling frequency

must be fs > 2fM . Human hearing works in the range 20 − 20.000Hz, so

to reproduce accurately a sound, fs must be greater than 40.000Hz.

The images are first split into a number of little squares, called pixels, in a

grid with previously defined size, called resolution, for example 1280x720;
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then, each of these pixels is saved extracting the value of three colors: red,

green and blue; this procedure is repeated on a predefined frequency, called

frame rate, for example 50 times per second.

Sound and images are compressed individually, using codecs. A codec is a

piece of software (or hardware, in some cases) responsible for compressing

or decompressing the media stream; a common parameter that a compress-

ing codec accepts is the bit rate, representing the average number of bits that

should be used to store a second of the content.

In a multiplexed video stream, the images would use much more space if

compared to sounds; so from this moment on, for simplicity, we’ll hypoth-

esize that videos don’t contain audio streams.

In particular, compression algorithms start from the assumption that a signif-

icant part of frames is similar to their predecessors, dividing thus the frames

(or parts of frames) in two main categories: key frames and delta frames.

Key frames are stored independently, while delta frames contain only the

differential part needed to transform the previous frame in the current one.

As a consequence, the bit rate used depends on the motion of the video itself

and changes along the content; codecs with this characteristic are called

VBR (Variable Bit Rate).

3.2 Video Streaming

Video streaming is a technique to deliver video contents to the users through

the network. When we say streaming we mean that the user starts enjoying

the contents as soon as possible, before the transfer itself is completed. For

example, watching amovie of 120minutes on-line couldmean downloading

a 1.5GB file through a 10Mbit/s link, which means that the transfer will last

about 20 minutes. But, given that the video data is spread sequentially on

the file, there is no need to wait for the complete download before starting

to display the movie to the user: the show could begin almost instantly.
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As the network (the underlying medium) does not provide guarantees about

bandwidth nor delay, it is not a good idea to show immediately the contents

to the user: if for some reason the data is delayed, the playback would freeze

until the bytes arrive. It is then crucial to store temporarily the contents in a

buffer, so to absorb brief network fluctuations.

Figure 3.2.1: Video Streaming

This buffer will have a minimum and a maximum length. When its size is

below the minimum, the player will wait for more data from the network

(this is called prefetch phase); while when its size becomes more than the

maximum, the player could ask the server to pause the transfer (in some

implementations, this decision comes from the server), and resume it later,

when the buffer depletes. This last behavior is called ON-OFF, and these

bursty short transfers could break some assumptions in networking proto-

cols, TCP in particular, and thus generate some problems to the underlying

infrastructure.

Currently, the preferred protocol to transfer video files is HTTP, for conve-

nience reasons: it is the standard for transferring web pages, so firewalls

and network equipment are already well-shaped to work with it. In partic-

ular, video providers should be able to rely on Content Delivery Networks

(CDN): groups of servers put in geographically strategic locations, in order

to be as near as possible to end users; the use of HTTP imposes little or no
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changes to existing CDNs.

Quality of Experience

Given a service, the QoE is the quality level, as perceived by the human

user. This is of course a subjective indicator, that can only be estimated.

There is anyway a set of well defined objective metrics that are believed to

have a direct impact on QoE.

Concerning video streaming, these are the main factors supposed to influ-

ence QoE, ordered by importance:

• Rebuffering events: when the network throughput is not high enough,

the buffer runs out, the playback stops, and the user must wait for the

new data before the playback could resume. This downtime is con-

sidered to be the most annoying issue in video streaming. Intuitively,

these events happen when the throughput is lower than the bit rate,

for a long period of time, depending on the buffer size and the ratio

between throughput and bit rate.

• Video quality: as said, a video could be encoded at different bit rates

(and with different codecs), the lower the bit rate, the lower the size of

the resulting file, but also the lower the quality of the video; the lower

the quality, the less the human eye will be able to see details on the im-

ages. Of course, also the user’s device impact on this metric: smaller

screen resolutions are not capable to display properly high video qual-

ity, so it is possible to obtain similar perceived quality with lower bit

rates.

• Startup delay: as said, the playback does not start before the prefetch

phase, while the user’s desire is to start the show immediately. It

should be noted that lowering artificially this delay (i.e. enforce a

smaller buffer) could trigger rebuffering, especially if the bandwidth

is not well higher than the bit rate.
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3.3 The principle of HAS

The main goal of HTTP Adaptive Streaming is, clearly, maximize the Qual-

ity of Experience. In particular, the target is to get a high video quality, while

avoid rebuffering events. This objective could be pursued by changing the

bit rate of the video during the playback, on the fly, reacting to network

fluctuations, adapting to the currently available bandwidth. It is worth to

note that every change of the bit rate during the playback could disturb the

user, thus impacting negatively on the QoE, especially if it is done often or

if the bit rate jump is considerable (if the bit rates are relatively close the

user could not even note the switch).

The main implementations currently used are:

• MPEG-DASH : is the international standard published by the MPEG

working group in 2012, as ISO/IEC 23009-1 [16].

• Adobe HTTP Dynamic Streaming: the Adobe’s version, supported in

Flash Player and Flash Media Server, from version 10.1.

• Apple HTTP Live Streaming: Apple’s implementation, part of Quick-

Time and iOS, supported since iPhone 3.0.

• Microsoft Smooth Streaming: on the server side, it is an IIS (Inter-

net Information Services, the HTTP server developed by Microsoft)

Media Services extension; on the client side, various software devel-

opment kits are available, compatible with Windows, Apple iOS, An-

droid, and Linux.

These implementations differ for the codecs used and the specific file for-

mats, but the general structure is shared: the video is split in segments

(or chunks) with a fixed duration (in general between 2 and 10 seconds);

these segments are then encoded at different (2-8) bit rates. A manifest file

will hold all these complementary informations (bit rates, exact durations,

URLs...). The client could decide to change the selected bit rate between

the downloads.

24



Figure 3.3.1: HTTP Adaptive Streaming

It is worth to remember that the nominal encoding bit rate is not dutifully re-

spected by the codec, when the compression is VBR: the instantaneous rate

depends directly on the motion present on the video contents; this is clear in

fig. 3.3.1, where the segments have all equal duration but the resulting file

sizes differ.

3.4 Rate-based algorithms (RBAs)

The easiest and most intuitive way to adapt the bit rate to the network is to

estimate the current bandwidth to base the choice. Proprietary adaptation

algorithms are not identical between each other, but in general, the predic-

tion is heavily based on the measured throughput during the previous down-

loads. As an example, in [4, 5] we can find a simplified algorithm believed

to mimic Microsoft Smooth Streaming client:

The player keeps two metrics related to the bandwidth: A, the throughput

of the latest downloaded chunk, and Â, the running average ofA. The value

of Â, after the download of the segment i, is:

Â(i) =

{
δÂ(i− 1) + (1− δ)A(i) i > 0

0 i = 0

with δ = 0.8.
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We assign to each available bit rate an index, from the lowest to the highest.

φcur denotes the currently selected bit rate index. The player downloads the

first segment with φcur = 0, the lowest bit rate.

The next candidate profile φ is obtained by:

φ = max
{
i : bi < c× Â

}
where c = 0.8 is used to absorb encoding and bandwidth fluctuations. φcur

is updated following this algorithm:

if φ > φcurthen

increase φcur by one

else if φ < φcurthen

decrease φcur by one

else

no action

Figure 3.4.1: HAS states

Moreover, the player have two dif-

ferent states: buffering and steady

state. While in buffering phase, the

player continuously downloads seg-

ments, until the buffer reaches a pre-

defined size (30 seconds). It then

stops downloading and switches to

steady state, in which the buffer size

is maintained almost constant: a new segment is downloaded after the com-

plete playback of the current one. This generates the well-known ON-OFF

behavior: the player downloads a segment then it stops for some time, then

it downloads a new segment, then it stops, and so on. The duration of ON

and OFF periods depends on the ratio between the selected bit rate and the

throughput: the former indicates how fast the data is consumed, while the

latter denotes the speed of new arrivals. For example, if the throughput is

twice the bit rate, the two periods are likely to be equal (fig. 3.4.1); con-
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versely if the throughput and the bit rate are similar, we don’t expect to see

OFF periods.

The importance of ON-OFF behavior becomes clear if we think that:

• It is not given that user’s device has enough memory to keep the entire

file. Think about an entire movie stored in RAM: this is not sustain-

able, as is would consume for example, half of the available memory.

• More importantly, network resources are expensive, so it is essential to

avoid wastes as much as possible; the user could abandon the playback

in any moment, so there is no point in downloading a big amount of

data.

Real world clients would have more elaborate approaches. For example, it

is reported that some of them integrate current buffer size in the behavior:

they became more conservative when the buffer is low, and bet more when

it is in a healthy state.

3.4.1 Interplay with TCP and client competitions of RBAs

Figure 3.4.2: Rate based algorithms: interac-

tion between control loops

The algorithm explained above does

its best to estimate the available

bandwidth, but maybe that is not

the answer to the question which bit

rate should I chose? [3]. In prac-

tice, the stream selection we intro-

duced is a control loop (fig. 3.4.2),

which has as output the next bit rate,

as input the measured throughput,

and internally a mechanism that ig-

nores completely what is happen-

ing on the lower layers: in fact, by

choosing the bit rate, it will implic-

itly choose the size for the next file to download, and this could have an
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impact on the next measured throughput value, re-impacting then on the

next decisions. The reason is the existence of another control loop, running

on the transport layer: TCP congestion control.

Interactions between loops

Each time the player asks for a new segment using HTTP, a new transfer

over TCP will be made from the server to the client; as said, the CWND di-

rectly controls the throughput of TCP transfer, and the rate-based algorithms

depend directly on the throughput, so the two control loops (stream selec-

tion and congestion control) behave as a “nested double feedback loop” [4],

something notably hard to predict.

The bit rate adaptation mechanism does not (and it is not supposed to) have

access to the CWND value, also because they are located on the opposite

sides of the communication: respectively the client and the server. So to

measure the throughput, the client simply calculates the average throughput

of the current segment, dividing the segment size by the time spent to down-

load it. TCP, in the meantime, continuously changes the transmission rate

trying to dynamically adapt to the fair share of the medium; a strategy that

actually works well for long transfers, but does not guarantee optimal results

for short transfers: upon a loss (or even without losses), the CWND could

drop, and because of the length of the transfer, there wouldn’t be the time

to grow back to a good value. This could unnecessarily force the stream

selection to a lower profile. The impact of the losses on throughput is well

explained in [6], where The the impact of a single loss on a segment transfer

is analyzed, depending on the position of the lost packet relative to the begin

and end of the download.

The lower the bit rate, the smaller are the sizes of the segments, the harder

becomes make the CWND grow, as reported in [3] while studying the effect

of a long flow competing with an HAS session. The authors detailed the bad

cooperation between the side TCP flow and theHASON-OFF behavior, and

tried to find some viable solutions.
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Competition between RBAs clients

Table 3.1: Estimation inaccuracy for competing

HAS players [5]

Moreover, it is worth to note

that bandwidth estimation uti-

lizes data taken only when a

download is in progress. Ta-

ble 3.1 [5] spots some peculiar

cases of possible errors when

two competing clients in steady

state share the same bottleneck

link with capacity C. When is

steady state, as said, the player

shows an ON-OFF behavior to

keep the playout buffer as con-

stant as possible. This could

generate strange scenarios in which the intermittent measurements yield in-

sidious results.

• In the first example, player 1 downloads segments that are a little bit

bigger than the ones downloaded by player 2. In this particular config-

uration, player 2 will experience correctly half of the capacity of the

link, while player 1, because of the fraction of time it was downloading

alone, will measure more. This overestimation could drive player 1 to

wrong bit rate decisions.

• The second case is an example where the players are downloading in a

mutually exclusive fashion. In this case, they will both wrongly mea-

sure the full link capacity, and so they are likely to be pushed towards a

higher bit rate, in which the segments will be bigger; this is obviously

unsustainable, and the players will eventually step back to a lower bit

rate.

• The last example shows the best case: both players are getting half of

the capacity, their estimation should be correct.
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It is noteworthy that overestimation is not always an issue: if the error is neg-

ligible compared to the distance between the available bit rates, no switch

would be triggered; algorithms usually have a safety margin that prevents

this, among other inconveniences.

3.4.2 Huang et al. algorithm

In [3], Huang et al. propose some modifications to a rate-based algorithm

so to get better rates when a competing long flow shares the bottleneck link.

The authors first reproduced a commercial HAS video player, then intro-

duced these variations:

• Less conservative: increased the aggressiveness from the initial c =

0.6 value of their baseline algorithm to c = 0.9; TCP guarantees in

any case that the client don’t get more than the fair share.

• Better filtering: instead of calculating the moving average, the authors

used medians and quantiles; considering the 80th percentile the vulner-

ability to outliers is greatly reduced.

• Bigger segments: by requesting five segments at once, it’s possible

to let TCP reach the optimum CWND size, improving the throughput

and the decision taken by the algorithm.

3.4.3 Sabre

In [17], Mansy et al. analyze the bufferbloat effects caused by HAS, stating

that it could easily add a delay of one second or more in residential con-

nections. The proposition aims to minimize the impact on the buffers by

limiting the amount of in-flight bytes; this could be done on the client side

shaping the TCP receiver window, an effect that could be obtained by:

• HTTP pipelining: not waiting the end of the previous download before

asking the next segment; if the receiver buffer is empty, the RWND
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will be at its maximum, and the next transfer will start with a burst

of packets, causing bufferbloat; keeping the HTTP pipeline non-empy

make the RWND controllable.

• Reading the receiver buffer at a specified rate: in order to smooth the

buffer fluctuations, the buffer must be emptied at a target_rate similar

to the corresponding video bit rate; the throughput will follow, avoid-

ing thus bursts of data.

As the throughput will be then measured by the client to choose the next bit

rate, it is important to not limit it too much. Because of that, the algorithm

works in two states, depending on the current buffer level:

• Refill:

if the buffer drops below refill_thresh,

target_rate = λ×Rh, with λ > 1, where Rh is the maximum bit rate;

• Backoff:

if the buffer exceeds backoff_thresh,

target_rate = δ ×R, with 0 < δ < 1, where R is the current bit rate.

The player will start in refill mode, download smoothly but anyway having

the possibility to get the Rh. When the buffer reaches an high occupancy

value, the algorithm won’t stop downloading, but it’ll limit the throughput

slightly lower than the current bit rate; the buffer will then decrease, until

the refill_thresh is met, and so on.

3.4.4 Festive

Jiang et al, in [18], focus on efficiency, fairness, and stability on competing

players. The proposed approach has these properties:

• Randomized scheduling: in order to avoid synchronized downloads

which bias themeasurements, as table 3.1 second case, the requests are

anticipated or delayed, by randomizing the maximum buffer capacity.
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• Stateful bit rate selection: as in table 3.1 first case, players selecting

high bit rates will tend to see higher throughputs; the proposition is to

use the current bit rate as a status for the selection, making the selection

more aggressive if the current value is low and more conservative if it

is already high; this could be easily done by letting the rate switches

being frequent for low bit rates and sporadic for high bit rates.

• Delayed bit rate update: the previous point introduces instability; in

order to limit the impact, the result of the stateful selection is taken as

an advice, and a concrete choice is taken after calculating and com-

paring the costs in term of stability and efficiency for both proposed

and current bit rates.

• Harmonic mean: the bandwidth is estimated by calculating the har-

monic mean of the last 20 transfers’ throughput; this mean is more ro-

bust to large outliers, if compared to the running average; this is partic-

ularly important as the randomized scheduler increases the possibility

of encountering throughput outliers: the number of competitors could

vary greatly between segment downloads.
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3.5 Buffer-based algorithms (BBAs)

Figure 3.5.1: Buffer based algorithms: what

we want to control is part of the loops

As [3] suggested, maybe it is not

a good idea to try to measure the

bandwidth when the first goal is to

avoid the rebuffering events, while

maximizing in the meanwhile the

video quality delivered to the user.

People from Netflix [7] agree: their

data indicates that the throughput

the single users get is far from be-

ing constant, but conversely it is

quickly variable, between 500kb/s

and 17Mb/s, and so it is almost im-

possible to try to predict what is go-

ing to happen on the wire looking

directly at the past throughput.

The idea proposed in [7] is: base the decision as much as possible on the

playout buffer occupancy, as that is the main state variable we want to con-

trol. This is not always possible, for example during the start up phase the

buffer does not contain yet enough data to drive to a good decision, so at the

beginning it is in some way necessary to measure the available bandwidth.

There are four different flavors in this suggested buffer-based family:

• BBA-0: an initial version that draws the idea.

• BBA-1: variability of segment size is taken into account. The resulting

choice is more tailored on the next segment to download.

• BBA-2: at the beginning of the playback, the buffer is empty, but this

does not mean that the bandwidth is small. This version adds some

simple throughput estimation to ramp up the buffer quickly in the start-

up phase.
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• BBA-Others: looking ahead to future segments, it tries to smooth the

bit rate changes, believed to penalize the QoE.

3.5.1 BBA-0

Figure 3.5.2: BBA-0 rate map. Source: [7]

The first algorithm of the family is

an initial version to draw and vali-

date the idea. In fig. 3.5.2 is pre-

sented the rate map, a function that

ties the rate selection to the amount

of data contained in the buffer; on

the x-axis there is the playout buffer

occupancy, measured as time, on

the y-axis the video bit rates.

The buffer is split into three zones:

reservoir, cushion and upper reser-

voir.

• The reservoir is meant to protect the buffer from draining; to under-

stand its usefulness, it is important to add a couple of hypotheses: it

is not possible to abort a download, and a different bit rate could be

chosen as soon as the current transfer is completed. Thanks to the

reservoir, the player can safely finish downloading a big segment even

if the bandwidth drops (this is the meaning of safe area). When the

buffer occupancy is between 0 and the reservoir size, the algorithm

will recommend the lowest bit rate.

• The cushion is where the algorithm linearly choose a bit rate depending

on the current buffer occupancy. There is not direct link between the

decision and the experienced throughput.

• The upper reservoir allows the player to get the maximum bit rate;

without it, the client would choose the highest rate only when the

buffer is exactly full, while the whole area is actually safe enough.
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In the paper’s implementation, segments are 4 seconds long, the buffer size

is 240 seconds, the reservoir is set to 90 seconds, the upper reservoir to 24

seconds (10% of the total).

As said, when the buffer occupancy corresponds to the reservoirs, the player

will get the respective bit rate. On the cushion, the algorithm first calculates

the value of the f(B) function, which transforms the current number of sec-

onds of video in the buffer in a continue value of bit rate (so normally, a bit

rate that does not exist in the manifest file), then it follows these rules:

if Ratecur+1 exists and f(B) ≥ Ratecur+1 then

increase cur by one

else ifRatecur−1 exists and f(B) ≤ Ratecur−1then

decrease cur by one

else

no action

Where the bit rates available are ordered from the smallest to the greatest,

cur denotes the index of the currently selected bit rate (zero-based), and

Rateindex indicates the specific bit rate value.

It is worth noting that in the BBA family, the ON-OFF behavior is mostly

avoided: segments are downloaded continuously, and if the buffer keeps

growing, the algorithm would barely select a higher bit rate. There is only

one case in which the algorithms could stop downloading: if the buffer is

full (but in this case the player is downloading segments from the highest

bit rate).
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3.5.2 BBA-1: VBR encoding

Figure 3.5.3: The size of 4-second chunks of

a video encoded at an average rate of 3Mb/s.

Note the average chunk size is 1.5MB (4s

times 3Mb/s). Source: Te-Yuan Huang

et al. [7]

As shown in fig. 3.5.3 the segment

size is highly variable; as said be-

fore, the VBR compression algo-

rithms use an amount of bytes that

depends on the motion of the spe-

cific scene. A direct effect of this

characteristic is that the download

of two different segments (encoded

at the same nominal rate) could take

a hugely different amount of time,

even if the network is relatively sta-

ble.

The main implementations of HAS

do not carry the segment size in the manifest file; it is anyway not problem-

atic to add these informations, this is way BBA-1 exploit these clues and use

them instead of the average bit rates, as they are much more precise than the

averages. Specifically, BBA-1 utilizes the segment size to build a dynamic

reservoir and to choose the next bit rate being aware of the real bit rate of

the corresponding segment.

In order to calculate reservoir size, we assume to have a client with an avail-

able bandwidth equal toRate0, and we expect this player to stream the low-

est quality without rebuffering events. This could be actually true if the

instantaneous bit rate for all the segments is equal to the nominal average;

as in that case the time to download any segment is equal to the segment

duration; but the story changes if the segment has a higher or lower instan-

taneous bit rate, and it is especially problematic if the segment size is above

the average, as in this case the buffer will shrink. We need then to dimension

the reservoir to absorb these bit rate variations.

The player defined above will have a playback free from rebuffering if its

reservoir size is equal the sum of the amount of seconds that the client will
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play minus the amount of data that it will download, during the nextX sec-

onds. In the paper, X is set to the double of the buffer size: 480 seconds.

The reservoir is dynamically and continuously calculated, with extra safety

bounds: between 8 and 140 seconds (respectively 2 segments and 35 seg-

ments).

While the reservoir is now dynamic, the cushion doesn’t change its size; on

the other hand, the rate map is substituted with a chunk map: with respect

to the buffer occupancy, while in the cushion, the algorithm will choose a

segment size, and not a rate; in this way the selection is more tailored to the

specific instantaneous bit rate.

The upper reservoir follows the variations of the reservoir to keep intact the

total maximum size of the buffer.

3.5.3 BBA-2: the start-up phase

At the beginning of the streaming session (or after a seek on the video),

the buffer is empty; BBA-0 and BBA-1 fail interpreting this phenomenon

as low-capacity network, and applying a conservative behavior; this is not

always a good choice, as with some probability the network could safely

give more. In these conditions, where the buffer does not hold informations,

it is necessary to estimate the available throughput; doing so, it is possible

to make the buffer grow faster in an initial phase.

In practice to ramp up in bit rates, the ratio between download time and

playback time for the last downloaded segment should be bigger than a cer-

tain factor. At the beginning, this factor is equal to eight, decreasing then

linearly as the buffer grows up through the cushion. BBA-2 keeps staying

in this start-up phase until the chunk map (BBA-1) gives a higher bit rate or

the buffer starts decreasing.
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3.5.4 BBA-Others: instability and outage protection

Figure 3.5.4: Chunk map increases instabil-

ity. Even if the buffer level and the mapping

function remains constant, the variability of

segment sizes can make BBA-1 often switch

between rates. The lines in the figure rep-

resent the chunk size over time from three

video rates,R1,R2, andR3. The crosses rep-

resent the points where the mapping function

suggests a rate change. Source: [7]

There is still some issues running

on that could cause problems to end

users: Temporary network outages

can show up for example on resi-

dential ADSLs or because of Wi-Fi

interferences, and the instability is

introduced by the choice to rely on

segment size in BBA-1. In this con-

text, instability indicates how often

bit rate is changed, and it is a direct

effect of the variable segment size,

as reported in figure 3.5.4. Insta-

bility has a bad impact on QoE, as

frequent bit rate switches could dis-

please the user.

BBA-Others aims to both reduce in-

stability and protect from network outages, with two strategies:

• The reservoir is bound only to grow, but not to shrink; this helps keep-

ing an extra amount of reservoir, useful in case of network issues, and

stabilizes the bit rate selection, as the chunk map will move less fre-

quently.

• Before choosing to a higher bit rate, the algorithm will look ahead to

next segments, avoiding the switch if with the current conditions it

would take the opposite choice soon. We could expect that the bigger

the amount of look ahead, the more it will smooth the rate; in [7],

the authors propose to look ahead to the same number of segments

currently held in the buffer. Note that the rate change is not avoided

if the chunk map suggested to decrease the bit rate, so to maintain a

good resiliency to rebuffering events.
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Chapter 4

Investigating BBAs performances:

the empirical approach

This chapter proposes a methodology to compare the families of algorithms:

the testbed and the metrics.

Buffer based algorithms have been tested directly in the wild, through the

Netflix service, for single client metrics, in [7], and it is demonstrated that

they succeeded to decrease the impact of rebuffering events while obtain-

ing almost the same bit rates in average as the rate based algorithm used

at Netflix at the time. This work aims to compare the algorithms in a con-

trolled environment, focusing on other metrics, representing the impact on

the network and the competition between the clients.

4.1 Testbed

The testbed run entirely on top of VirtualBox, a hypervisor, orchestrated

with Vagrant. The configuration files hold all the informations concerning

the virtual machines (VM), in this way the set of VMs could be regenerated

and automatically configured with a single command.

Each box in fig. 4.1.1 represents a virtual machine in the VirtualBox envi-

ronment. There are different (virtual) networks between the VMs, so that the
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Figure 4.1.1: The testbed

packets are forced to flow through the bottleneck emulation (bandwidth+de-

lay).

HTTP Server

HAS protocols do not require particular server configurations for the Video

OnDemand part (this is not true for Live video streaming, that anyway is not

our case), so the HTTP server implementation is a simple node.js instance

that serves static files.

Bandwidth and delay

These two machines are meant to simulate the bottleneck. They both use

tc-netem Linux tool, from the traffic control suite to shape the traffic so to

emulate a link with given bandwidth and delay, respectively.

Clients

For simplicity, we preferred the Apple HTTP Live Streaming (HLS) proto-

col. The clients run a modified version of VLC player1, so to behave like

the simplified player in [4, 5]; the libcurl library was linked to allow the

1http://www.videolan.org/vlc
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reuse of the TCP connection between the downloads, and all the BBA fam-

ily presented in [7] was implemented. The resulting application is capable to

run different configurations by passing specific parameters as environment

variables.

4.2 Metrics

The tests run on the testbed are classified by looking at specific metrics,

concerning the Quality of Experience, the network utilization and the com-

petition between the clients.

4.2.1 QoE metrics

As cited before, the important metrics regarding Quality of Experience, are:

rebuffering events, bit rate and instability.

Rebuffering events

This is the most important metric impacting QoE. A rebuffering event hap-

pens when the player suddenly stops the playback, because the buffer got

empty. Note that if a segment is not completely downloaded, it is not avail-

able to the player.

To characterize the impact of rebuffering, we could:

• Count the number of rebuffering events in a session. This could be a

good idea, but it is implicitly tied to other variables: video duration

and segment duration. The first is pretty clear: the shortest the video,

the less data to download, the less opportunities to have problems.

For the second, if the playback continuously stops after each segment

waiting for the next one to be downloaded, it is clear the the longer

the segments are, the less the rebuffering events will be. It should be

noted, also, that the cardinality of rebuffering events could be artifi-

cially lowered, forcing longer waiting times.
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• Calculate the rebuffering ratio: the idea here is to measure the fraction

of time spent waiting for new data, dividing the sum of the duration of

all the rebuffering events by the total duration of the session. In other

words, it is the fraction of time while the player was in rebuffering

state.

Bit rate

To evaluate the bit rate obtained by the clients, three metrics could be inter-

esting:

• average bit rate: simply obtained by summing the nominal bit rate for

each segment downloaded and dividing by the number of segments.

• average relative bit rate: the average bit rate divided by the bottle-

neck capacity, so that measures coming from different tests (i.e. with

different bottleneck capacities) could be compared.

• average quality level: the bit rates are not spread uniformly, but the

higher the bit rate, the bigger is the distance with its neighbors. This

metric takes the average of the indexes of the bit rates of the down-

loaded segment and scales it as a percentage.

Instability

The metric for instability, as in [5], is obtained by dividing the number of

bit rate switches by the total number of segments.

4.2.2 Network metrics

Congestion window

The congestion window (CWND) is the parameter that auto-adapt the TCP

flows to the current network conditions. It is an important metric to under-
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stand how the data is exchanged on the network. To capture the value, we

used the kernel module tcp_probe.

Router buffer

The simulated bottleneck is preceded by a buffer, that is emptied at the rate

imposed; this buffer has a maximum length and it grows and decreases as

time passes, depending on the network activity; it is possible to poll traffic

control to get its current status.

As the maximum buffer capacity is not constant between the tests, we chose

to take also the average value relative to the maximum.

Round Trip Time

We impose a static delay to the packets, but they could experience an ad-

ditional delay, caused by the combination of the said router buffer and the

bottleneck capacity. We recorded the average RTT perceived, relative to the

base we enforced.

Link utilization

It is interesting to see how much of the bottleneck capacity is actually ex-

ploited by the HAS flows. For this purpose we took a copy of the headers for

each packet arrived and departed from the bandwidth VM, using tcpdump;

sampling the time in hundredths of second, we then counted the number

of packets, and bytes. We used these samples to obtain the network rate

entering and leaving the bottleneck link.
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4.2.3 Competition metrics

The metrics about competition denote various aspects that arise when the

bottleneck is shared between HAS clients.

• bit rate unfairness: the absolute value of the difference between the

two average bit rates.

• average bit rate unfairness: the difference between the bit rates di-

vided by the bottleneck capacity.

• quality level unfairness: the absolute value of the difference between

the two average quality levels.
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Chapter 5

Assessment results of BBAs: the

client and network perspectives

This chapter presents a description of both the algorithms and the videos in-

volved in the tests; a part of the results obtained follows, concerning single-

client, two-clients and three-clients sessions, under different points of view:

QoE, network and competition metrics.

Videos

Tests were conducted over two videos with peculiar characteristics: the first

presents a constant segment size and four bit rates, the second is a real movie

with high variability and eight quality levels.

Apple’s BipBop

For testing purposes, and to get the first results, it is useful to have a video

without segment size variability (i.e. Constant Bit Rate, CBR). Some initial

tests were run against a video with this characteristic, before switching to a

real movie.

This video is the basic example for the HLS protocol, as provided byApple1;

it contains constant motion, so as a result, there is almost no variability in

1https://developer.apple.com/streaming/examples/basic-stream.html
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segment size: even if the codec used is VBR. The entire run time is 30

minutes, with 181 ten-seconds segments (the last is 4 seconds long).

Available bit rates are:

• 232 kbit/s at 400×300 pixels,

• 650 kbit/s at 640×480 pixels,

• 1 Mbit/s at 640×480 pixels,

• 2 Mbit/s at 960×720 pixels.

Big Buck Bunny

It is an open source movie, freely downloadable from the project web site2,

re-encoded using ffmpeg3 to prepare HLS segments and manifest files. The

video duration is about 10 minutes, 299 two-seconds segments. For the

lowest bit rate, the biggest segment is 2.2 times the nominal average.

Available bit rates are:

• 350 kbit/s at 320×176 pixels,

• 470 kbit/s at 368×208 pixels,

• 630 kbit/s at 448×256 pixels,

• 845 kbit/s at 576×320 pixels,

• 1130 kbit/s at 704×400 pixels,

• 1520 kbit/s at 848×480 pixels,

• 2040 kbit/s at 1056×592 pixels,

• 2750 kbit/s at 1280×720 pixels.
2https://peach.blender.org/
3http://ffmpeg.org
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Figure 5.0.1: Time-line of data ex-

changed between the peers

These are the bit rate decision algorithms

tested:

classic: inspired from the simplified player

in [4, 5]. The available bit rates are

compared with the running average of the

obtained throughput, multiplied to 0.8 as

safety margin. This throughput is obtained

by dividing the segment size by the time

span between the start of the HTTP request

and the end of the response.

classic_est: mostly as classic, but measur-

ing the throughput as the segment size divided by the time span between the

first and the last received bytes. The difference between the two is shown in

fig. 5.0.1: classic starts measuring the time at the beginning of HTTP GET,

while classic_est at the beginning of the data stream.

Both classic and classic_est were tested with two different playout buffer

sizes: 30 seconds, as in [4, 5], and 240 seconds, as for the BBA family.

BBA-0, BBA-1, BBA-2, BBA-Others: as defined in [7]. BBA-Others was

further modified halving the look-ahead window, to frame the impact of

this mechanism on the metrics.

Tests performed

Various tests were run against both of the videos cited above, with different

network configuration and different number of clients, on all the algorithms

presented. We ran experiments with both constant and variable bottleneck

capacity, with different router buffer limits and dropping policies, and with

different delay values. Each experiment ran twice if one client was involved,

four times otherwise, to ensure a good confidence interval on the results.
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5.1 Quality of Experience metrics for a single client

As a first glance, we analyze single-client sessions, to study the behavior

for Quality of Experience metrics, on the simplest environment imaginable:

all network settings are fixed in each experiment, and no competition is

imposed.

5.1.1 Constant bottleneck capacity

BipBop

A batch of 20 different experiments, with fixed delay (200ms) and fixed

bottleneck capacity (ranging from 300kbit/s to 2.2Mbit/s), was run twice.

Concerning the rebuffering ratio, there is not a particular difference between

the algorithms, but we clearly noted a divergence on the bit rate obtained:

the average bit rate weighted on the link capacity got by BBAs is around

90%, while for RBAs it is less than 55%; two factors could explain this gap:

• The highest bit rate is wrongly reported as 2Mbit/s in the manifest file

(taken directly from Apple), while instead it is 1.5Mbit/s; this infor-

mation, in buffer based family, is utilized only by BBA0 to build the

rate map, but it does not have the same impact on the choice as for the

RBAs.

• The rate-based algorithms stick to the highest bit rate below the sup-

posed link capacity, while the buffer-based oscillate to between two bit

rates as the current buffer occupancy suggests, taking sometimes an

unsustainable bit rate and stepping back when needed, without impact

on rebuffering. This second point drives the analysis to the instability:

RBAs are around 1%, BBAs get obviously an higher value, 4%; this

is not problematic, as 4% means 8 rate switches, in this 30-minutes

video.
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Big Buck Bunny

To check dependency on network shaping, tests with various conditions

were run on this video. We made vary not only the bottleneck capacity,

but also the delay and the router buffer size, imposing a fixed value and

a Bandwidth-Delay Product (BDP) fraction. Values used are: for capacity

400kbit/s to 3Mbit/s, in 100kbit/s steps; for delay 100ms, 200ms and 400ms;

for router buffer 200 packets, 100%, 50%, 25%, 10% of BDP.

The rebuffering ratio grows, in most cases, with the delay and the inverse of

the router buffer size: high RTT and small buffers make difficult to obtain

high throughputs, and this could lead to rebuffering, if the capacity is already

small; comparing to BipBop video, the rebuffering ratio is at least ten times

more, probably because of the spikes in instantaneous bit rate (VBR: the

segments have different file sizes).

A curious case is classic_est, as it shows high values for 400ms delay, due

probably to the way it measures the bandwidth: it does not take into account

the HTTP handshake, that is at least an RTT, needed to have the video data,

as shown in fig. 5.0.1. This is not a problem in most cases; but when the

delay gets big enough to be comparable to the duration of the subsequent

transfer, it starts to impact on the download itself and should be taken into

account. Note that the RTT value is problematic only at the time of the

HTTP request, so in this case the experienced RTT is the base RTT: 400ms,

as the router buffer has just been emptied. The delay impact less on the other

algorithms as it is implicitly considered, on the throughput for classic or on

the download duration for BBAs. The introduction of HTTP/2 [15], and in

particular the ability that allows the server to proactively send contents to

the client, called server push, could mitigate this issue; but the algorithms

should be completely redesigned so to take advantage, and moreover, the

server might have to be part of the decisional process.

The difference of the bit rate obtained by the two families blurs, if compared

to BipBop: BBAs lose 15 to 30 percentage points, while RBAs gain about

10; on the other hand, gaps and similarities between the algorithms within
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the families become clear:

classic_est sees an higher bandwidth, and so as expected takes an higher bit

rate if compared to classic, of 5 to 10 percentage points. The instability is

around 4% for both of them. As said, the RBAs were tested with both 30s

and 240s playout buffer, and no sensible differences were observed between

the two options.

BBA-1 and BBA-2 take a bit rate a little bit higher than classic_est, but with

the downside of an high instability: they switch more than 60 times in this

10-minutes video. These algorithms work on the chunk map, meaning that

they switch between bit rates also depending on the segment sizes. More-

over, the reservoir size is dynamic, depending on the size of a number of

future segments; this moves continuously the chunk map, increasing the in-

stability.

BBA-Others loses about 10 percentage points in bit rate, compared to BBA-1

and BBA-2. Two new elements were added in this version: rate smoothing

and outage protection; the first was done introducing look-ahead, that avoid

switching to an higher bit rate if there is the risk to step back soon, and both

of them by letting the reservoir only to grow. The rate smoothing succeeded

indeed, cutting the instability by two thirds, to about 7% (that is 20 changes).

In this particular case, the rate smoothing had a little impact: halving the

look-ahead window does not have an influence on bit rate, nor instability;

this could be a video-dependent observation, anyway, as this video present

a peak in the segment size at the beginning, as shown in fig. 5.1.1; because

of this, the resulting reservoir in BBA-Others is quite big and, in practice,

constant. This interplay could be an explanation for the low instability and

low bit rate obtained by the algorithm: it is pushed to an extreme of its

behavior.

Differences in link utilization depend on RTT, router buffer size and playout

buffer size. Taking the subset of algorithms with the playout buffer of 240s

(excluding the RBAs with 30s buffer), for a given couple of (RTT, router

buffer size), the link utilization differs at maximum 3.8 percentage points.
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Figure 5.1.1: Instantaneous bit rates for single segments. Big Buck Bunny

RBAswith smaller playout buffer tend to show lower link utilization. To ex-

plain this phenomenon, we split the typical RBA streaming session in three

parts: start-up phase, ON-OFF phase, ending phase. In the start-up phase

the client downloads continuously segments until it reaches the upper bound

of the playout buffer; in the ON-OFF phase it lazily downloads segments to

maintain the buffer level; in the ending phase it had already downloaded all

the video data and it empties the buffer without touching the network. The

link utilization metric is taken only on the first two parts. Independently

of the playout buffer maximum size, we expect the player to download the

entire video, at similar bit rates; a client with a smaller buffer however, will

spend less time on the start-up phase and especially on the ending phase. In

this way, the same download is spread in a bigger amount of time, giving

thus a lower link utilization value.

5.1.2 Variable bottleneck capacity

Fig. 5.1.2 shows a session of classic_estwith variable bottleneck bandwidth,

streaming Big Buck Bunny. In this case, it is clear that the algorithm is not
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Figure 5.1.2: classic_est with variable bottleneck capacity

able to detect the bandwidth drop quickly enough, because the running av-

erage as defined in [4, 5] does not converge quickly enough: the rebuffering

ratio is 8.2%. The average bit rate obtained is 1936kbit/s, with 10% insta-

bility. Conversely BBA-2 succeeds in avoiding completely the rebuffering

events, as shown in fig. 5.1.3; the average bit rate is lower: 1592kbit/s, and

the instability has more than doubled, as expected by the design of the algo-

rithm: 23%.

It is necessary to note that average bit rate and rebuffering ratio metrics are

at the opposite sides: for example we could code an algorithm that always

chooses the highest bit rate, but obviously it will keep rebuffering after each

segment; or we could avoid rebuffering events by choosing always the low-

est bit rate; clearly both of them are wrong approaches, resulting in long

waiting times or low quality, degrading in both cases the Quality of Experi-

ence.
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Figure 5.1.3: BBA-2 with variable bottleneck capacity

In fig. 5.1.4 we see BBA-Others: the instability is around 8%, even less than

with classic_est, and the average bit rate is 1368kbit/s. Figures 5.1.2, 5.1.3

and 5.1.4 exhibit the differences between the three algorithms:

• classic_est closely follows the running average of the throughput (brown

line).

• BBA-2 is harder to understand because it bases the choice on the play-

out buffer (blue line), but is also influenced by the reservoir size, which

depends on the size of the following segments; the segment size is

heavily variable, as shown in fig. 5.1.1, and so is the reservoir.

• BBA-Others, by limiting the variations of the reservoir, sticks more on

the current buffer occupancy.

Figures 5.1.2 and 5.1.3 also show implicitly the effects of variable segment

size: in fig. 5.1.2 there is a drop on the buffer occupancy at about 580s

(circled in orange); we can find the same drop, but in the value of the bit rate

selected, in fig. 5.1.3, at 480s (circled in orange): these drops correspond to

the download of the same group of segments. These segments are bigger

than the average, as shown by fig. 5.1.1.
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Figure 5.1.4: BBA-Others with variable bottleneck capacity

5.2 TCP metrics for a single client

Zooming in to the network activity of the single downloads, it is possible to

see the impact on TCP behavior, and of TCP on the streaming algorithms.

5.2.1 How CWND grows

Figure 5.2.1: BBA-Others, Big Buck Bunny, capacity: 900kbit/s, RTT: 200ms, router

buffer: 200 packets. Detail.
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Fig. 5.2.1 present how the congestion window and the router buffer interact

during segment transfers. We can see two interesting examples of transfer:

• Themajority of the downloads are like the first one, on the left (152.5s).

The server sends almost all the segment’s data in an unique burst at

the beginning (the red vertical line). The router buffer grows to the

CWND value, and the packets are slowly released, as the limitation

imposes.

• The segment sent during second transfer (154.5s) is bigger. In this

case, the congestion window is not large enough to contain all the

packets, so the server waits for the first ACK to make it grow and

send more packets, entering in the so-called ACK-clocking phase of

TCP: send new packets upon ack reception; the light red vertical lines

in the plot represent these time-spaced transmissions. Obviously the

router buffer increases in size, too.

Even if, like in fig. 5.2.1, the segments are downloaded one next to the other,

the router buffer occupancy oscillates continuously, going to zero at the

end of each transfer; this burstiness is a characteristic of HAS and does not

happen for instance during the transmission of long files, where the buffer

hardly goes to zero.

5.2.2 CWND idle reset

During OFF phases (mainly for rate-based algorithms, but also for buffer-

based, when the buffer occupancy is high), there is the risk that the con-

gestion window is reset to a lower value: initial_window_size, even if the

connection is not closed. This could happen after relatively long periods of

inactivity, in the order of the Retransmission Time-Out (RTO) [11].

Some examples are circled in figure 5.2.2a, where the congestion window

drops by one half; note that the window size was decreased some time before

the drop is visible on the figure; indeed if we look at the corresponding
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(a) slow_start_after_idle enabled (b) slow_start_after_idle disabled

Figure 5.2.2: classic algorithm, Big Buck Bunny, capacity: 900kbit/s, RTT: 200ms, router

buffer: 200 packets. Detail.

transfer we can see that the initial burst is about 50 packets (from the router

buffer occupancy), but a non negligible amount of data is sent after the first

ACK, and this would not happen if the CWND was ~90pkts. The delay on

the plot is probably a glitch of tcp_probe, the tool used to inspect the TCP

internals: it looks like it updates its status only upon ACK reception.

It is possible to disable this “window timeout” behavior, so to prove that the

CWND drops are due to it, we run the same test with the feature disabled

(fig. 5.2.2b). To prevent the behavior it is enough to run as root on the server

machine:

echo 0 > /proc/sys/net/ipv4/tcp_slow_start_after_idle

As you can see in fig. 5.2.2b, the congestion window for the very same

downloads, does not drop; in this way we expect to have better perfor-

mances, as throughput is directly proportional to CWND. It is interesting

to see that in this case there isn’t any impact on obtained average bit rate

(354kbit/s in both cases) nor on throughput (564kbit/s in both cases).

To understand better this behavior, we run a similar test using BipBop video

(fig. 5.2.3); this video has longer segments (10 seconds instead of 2 sec-

onds), so the OFF phases will be longer; letting us expect a bigger impact

on the results.
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Figure 5.2.3: classic algorithm, BipBop, capacity: 900kbit/s, RTT: 200ms, router buffer:

200 packets, entire run.

above: slow_start_after_idle enabled, below: disabled

The measured throughput has only a little gain when slow_start_after_idle

is disabled: from 775kbit/s to 781kbit/s. This is probably because when the

window is reset, slow start4 is triggered, so the previous CWND is quickly

restored (note that slow start threshold is left untouched).

A bigger impact could be observed when the available bandwidth is much

higher than the selected bit rate: in this case, the segments are quite small

4Slow start is a mechanism in TCP to make the window quickly grow at the beginning of the

connection: for each ACK, the CWND is increased by one and two packets are sent. This works

until the CWND value reaches the slow start threshold
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and there isn’t enough time for the congestion window to grow up to the op-

timal value. As an example: BipBop video, classic algorithm, bottleneck at

10Mbit/s. With idle detection, the measured throughput is about 5.8Mbit/s,

while without it we measure 8.4Mbit/s.

5.3 Two competing clients

What happenswhen two clients share the same bottleneck? Previouswork [5]

underline some issues with the rate based algorithms. Does it still hold with

buffer based family?

5.3.1 Constant bottleneck capacity

BipBop

As for the single-client scenario, experiments were run with 200ms delay

and 200 packets router buffer; we doubled the value of bottleneck capacities,

ranging from 600kbit/s to 4.4Mbit/s; all experiments were run four times.

These are the main differences comparing to single-client tests:

• All the clients get in general an higher bit rate. Approximately the

BBAs get +3 percentage points, while the RBAs +20 p.p. The families

are nearer, while keeping a solid distance of 25 percentage points. The

big grow of RBAs is not unexpected: for each test we doubled the

number of clients but also the bottleneck capacity, and there is always

the possibility for a single player to take the entire channel during the

OFF phase of the other client. Conversely, BBAs have almost never

OFF phases5, so this possibility is very rare for the family.

• The trend for instability is growing for rate-based algorithms and de-

creasing for buffer-based, even if the differences are not so sharp (1-2

p.p., meaning 2-4 switches).

5Any buffer-based algorithm switches to ON-OFF behavior when the playout buffer is full; in

fact, it could happen only when the throughput keeps higher than the highest bit rate
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• Unfairness: the RBA family shows values around 20%, while the

BBAs around 10%. This indicates a better fair allocation of the re-

sources by buffer-based algorithms. Note that unfairness is calculated

as difference of the averages of the bit rate: any good value of this

metric could hide unfair clients; for example the clients could keep

oscillating between the perfect fair allocation, fail to get it and keep

changing; for this reason, unfairness should be compared to instability.

Big Buck Bunny

The same tests as for the single-client case were run, but with the bottle-

neck capacity doubled: so with different delays (100ms, 200ms and 400ms),

router buffer limits (200 packets, 100%, 50%, 25%, 10% of BDP) and ca-

pacities 800kbit/s to 6Mbit/s, in 200kbit/s steps.

Looking at rebuffering ratio, we note that:

• classic_est, on big router buffer, shows high values also for smaller

RTTs (from 15% to 43%). The roots are probably the same as for

single-client: the algorithm does not take into account the delay intro-

duced by the HTTP handshake before the actual download (fig. 5.0.1);

with two clients, the effect is more explicit as at the time a client issues

an HTTP request, the other client probably has some packets on the

router buffer, inflating the delay.

• For router buffer depending on the BDP, the value of rebuffering ratio

tends to be half if compared to single-client sessions; it should be noted

that the value is biased by the lowest bottleneck capacity imposed,

that does not permit to stream the lowest bit rate (because of VBR

and TCP/HTTP overhead) for single-client sessions, but is doubled for

two-clients sessions; in this case the clients could alternatively exceed

the fair share, obtaining, in this way, lower rebuffering.

Comparing to single-client tests, all the players take higher bit rates. The

increase is particularly significant for RBAs, being around +10 percentage
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points; note that for RBAs also the instability grows, while BBA’s instability

is almost untouched.

Figure 5.3.1: BBA-1, BipBop, capacity: 600kbit/s, RTT: 200ms, router buffer: 200 pack-

ets. The two plots correspond to the two clients.

We see that in average the unfairness is bigger for bigger router buffers. This

is true in particular for BBA1-2 and classic_est; other metrics suggest that

these algorithms are the most aggressive. A possible scenario that explains

the issue is:

• Both clients are downloading at a good rate (CWND have similar val-

ues).

• It could happen that the router buffer is near to the maximum when a

new transfer starts.

• The bottleneck router drops packets when the buffer reaches its max-

imum; so in this situation, most of the packet of the initial burst are

dropped.

• The sender believes that the channel is heavily congested, and it shrinks

the congestion window to a very low value; the corresponding client

starts experiencing low throughput, and its buffer starts decreasing;

eventually, it could experience rebuffering.
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At this point, the two cwnd are different, and we expect tcp to take them

back to similar values, but this does not happen because:

• The “unlucky” client asks low size segments, that are smaller and “re-

quire” a smaller CWND.

• The “lucky” one gets higher throughput as the leftover is bigger, the

buffer will increase and a higher bit rate will be selected.

Until the opposite happens, and the clients switch between each other.

5.3.2 Variable bottleneck capacity

Figure 5.3.2: classic_est with variable bottleneck capacity

Figure 5.3.3: BBA-Others with variable bottleneck capacity

Figures 5.3.2 and 5.3.3 show two examples of the behavior of competing

clients on a bottleneck with variable capacity. The colored stripes on top
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of the images represents the rebuffering events; we note that there is no re-

buffering events for BBA-Others, while the rebuffering ratio for classic_est

clients is 16.2%±3.3 (averaging on four different runs of this same exper-

iment). Each cross represent a segment download. The purple dotted line

is the fair share, half of the bottleneck capacity. The average bit rate ob-

tained by classic_est is higher thanBBA-Others: respectively 1816±34kbit/s

and 1305±236kbit/s; but as said before, an high value is not so significant

when also the rebuffering ratio is high. On the fairness side, classic_est

seems behave better compared to BBA-Others in this test case; as they re-

spectively get 78±5kbit/s and 514±196kbit/s; BBA-2 gives a better result:

338±138kbit/s, with high instability: 26%, that is comparable to the single-

client average instability, but it could still indicate an oscillating allocation

of the resources.

5.4 Three competing clients

Some tests were run with three competing clients over constant bottlenecks.

In this case the packet were delayed by 200ms and the router buffer limit was

set at the BDP; the bottleneck capacities 1.2Mbit/s to 9Mbit/s, in 300kbit/s

steps. The algorithms show similar results as in two-clients sessions.

5.5 Final remarks

In order to clarify the performances concerning QoE, network and competi-

tion, we ran some tests using both algorithmic families; our tests shed light

on some of the strong and weak points of the strategies, not claiming, how-

ever, a winner: the algorithms we tested behave in general within acceptable

boundaries. In particular, rate-based algorithms are more stable, while rate-

based tend to be more resilient to highly variable available bandwidth.

Netflix [7] compared its proprietary rate-based algorithm with the buffer-

based family presented here; the tests were conducted in a high variable
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scenario, the real life, where the available bandwidth it is not stable at all

and could differ by an order of magnitude between the subsequent trans-

fers. BBA-Others got similar bit rates in average, but succeeded reducing

rebuffering events by 20-30%. Even if the test conditions were quite differ-

ent, our results don’t contradict Netflix outcome.
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Chapter 6

Conclusions

Video streaming is a technology that delivers multimedia contents across

the Internet, enabling a nearly instant access to the content; as an example,

YouTube and Netflix are two services that use this mechanism: after a short

wait, during which a safety buffer (playout buffer) is filled, the player can

play the video. Cisco and Sandvine [1, 2], observing Internet traffic, agree

that video streaming has a significant influence on today’s and tomorrow’s

global computer network: the design of streaming applications plays an im-

portant role for user satisfaction and infrastructure stability.

While the network status is objective and measurable, user satisfaction is

subjective; depending on the service type, some indicators could give an

idea of the Quality of Experience (QoE). For video streaming, important

(and opposite) indicators are rebuffering and bit rate; the former denoting

video pauses for insufficient bandwidth, the latter being direct responsible

for image and sound quality. User satisfaction has a fundamental influence

especially for commercial services, as dissatisfied users are likely to quit the

service and eventually switch to a competitor.

Designing protocols and applications meant to widely run over the Internet

is a critical task, as the scenario is complex and the interactions with other

net citizens difficult to predict; in order to have a strong implementation it

is necessary to match the theoretical model with empiric tests.

Buffer-based HAS strategy is an interesting proposition, already validated
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by Netflix in the global case, with good outcome; it still needs, anyway,

experiments in specific cases to understand better the client behavior.

Our tests confirm the value of the proposition, revealing on the other hand

some cases in which the algorithm does not yield a fair allocation of the

network resources; worth to note that our research is far from being complete

and exhaustive: future work section gives some pointers on the possible

extensions of the test cases.

Future work

At a first step, additional video resources should be added to the testbed: the

results we obtained could have being biased by specific traits of the videos

we used; thus, more videos should produce more trustworthy outcome.

It would be interesting also to see more refined rate-based strategies, closer

to the market counterparts, for example the proposition of Huang et al. [3],

Sabre [17] and Festive [18]; these proposals indicate some changes to the

plain rate-based strategy presented here, improving performances and com-

petition.

Looking at the tests framework, it should be broaden to support experiments

closer to facts that could normally happen in residential Internet connec-

tions, like:

• competition with stable flows, as in [3];

• concurrent streaming sessions from different services, that are likely

to use adaptation algorithms from different families, so to see the level

of compatibility between the opposed strategies;

• interactions between HAS streaming and interactive traffic, such as

VoIP calls.

Looking at the network structure in the results presented, the router buffer

queues weremanaged in themost naive way: drop the arriving packets when
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the buffer is full (drop tail). There are however, other interesting policies

(AQMs: Active Queue Management) that could indirectly change the be-

havior of the clients, for instance:

• Adaptive Random Early Detection (A-RED): packets are dropped with

a probability that depends on the current queue size, avoiding the con-

gestion by signaling, in fact, the status of the link;

• Constant Delay (CoDel): a parameterless policy that aims to limit

bufferbloat, by recognizing bad queues and dropping probabilistically

packets so to maintain an acceptable delay.

These policies, meant to help the peers to fairly use the network, would have

an impact on the allocation of the resources on streaming applications.

As a last thought, we could investigate on more complex bottleneck con-

figurations, so to simulate, for instance, a Wi-Fi client competing with an

Ethernet client on the same ADSL line.
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