
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

 DISI

 INGEGNERIA INFORMATICA

TESI DI LAUREA

in

Reti di Calcolatori M

Smart execution of distributed application

by balancing resources in mobile devices

and cloud-based avatars

CANDIDATO: RELATORE:

Giacomo Gezzi Chiar.mo Prof. Ing. Antonio Corradi

 CORRELATORE:

Chiar.mo Prof. Cristian Borcea

Anno Accademico 2014/2015

Sessione III

2

Abstract

L’obiettivo del progetto di tesi svolto è quello di realizzare un servizio

di livello middleware dedicato ai dispositivi mobili che sia in grado di

fornire il supporto per l’offloading di codice verso una infrastruttura cloud.

In particolare il progetto si concentra sulla migrazione di codice verso

macchine virtuali dedicate al singolo utente. Il sistema operativo delle

VMs è lo stesso utilizzato dal device mobile. Come i precedenti lavori

sul computation offloading, il progetto di tesi deve garantire migliori per-

formance in termini di tempo di esecuzione e utilizzo della batteria del

dispositivo.

In particolare l’obiettivo più ampio è quello di adattare il principio di

computation offloading a un contesto di sistemi distribuiti mobili, miglio-

rando non solo le performance del singolo device, ma l’esecuzione stessa

dell’applicazione distribuita. Questo viene fatto tramite una gestione di-

namica delle decisioni di offloading basata, non solo, sullo stato del de-

vice, ma anche sulla volontà e/o sullo stato degli altri utenti appartenenti

allo stesso gruppo. Per esempio, un primo utente potrebbe influenzare

le decisioni degli altri membri del gruppo specificando una determinata

richiesta, come alta qualità delle informazioni, risposta rapida o basata su

altre informazioni di alto livello.

Il sistema fornisce ai programmatori un semplice strumento di definizione

per poter creare nuove policy personalizzate e, quindi, specificare nuove

regole di offloading. Per rendere il progetto accessibile ad un più ampio

numero di sviluppatori gli strumenti forniti sono semplici e non richiedono

specifiche conoscenze sulla tecnologia.

Il sistema è stato poi testato per verificare le sue performance in ter-

3

mini di mecchanismi di offloading semplici. Successivamente, esso è stato

anche sottoposto a dei test per verificare che la selezione di differenti pol-

icy, definite dal programmatore, portasse realmente a una ottimizzazione

del parametro designato. Questi ultimi test sono stati eseguiti utilizzando

un numero variabile di dispositivi mobili.

4

Contents

Contents 5

List of Figures 9

List of Tables 11

Introduction 13

1 Mobile Distributed Computing Assisted by the Cloud 17

1.1 Distributed Systems . 17

1.1.1 Features of Distributed Systems 18

1.1.2 Middleware for Distributed Systems 19

1.2 Middleware for Mobile Distributed Systems 24

1.2.1 Mobile Distributed Systems 24

1.2.2 Mobile Middleware 25

1.3 Related Works for Mobile Middleware 28

1.4 Middleware for Mobile Computing 30

1.4.1 Mobile Cloud Computing 32

1.4.2 Existing Work on Mobile Cloud Computing 35

1.5 Application Examples for Mobile Cloud Computing 40

2 Overview of Offloading in Mobile Cloud Computing 42

2.1 Offloading . 42

2.1.1 Performances Heuristic 44

2.1.2 Battery Optimisation Heuristic 47

2.1.3 Offloading Challenges 49

5

2.2 Existing Work on Offloading 51

2.2.1 Comparison . 57

3 Project Analysis 60

3.1 Avatar Project . 60

3.1.1 Architecture . 61

3.1.2 Moitree’s Programming model 65

3.2 Problem Statement . 66

3.3 Scenario . 68

3.4 Offloading Middleware Service 71

3.4.1 Design . 73

3.4.2 Programming Model 76

3.4.3 Offloading Distributed Decisions 82

4 Enabling Technologies 86

4.1 Android . 86

4.1.1 Architecture . 89

4.1.2 Application Framework 91

4.2 AspectJ . 94

4.2.1 The Aspect Oriented Programming 95

4.2.2 Custom Language . 99

4.2.3 Annotation-based Development 104

4.3 Java Language Tools . 108

4.3.1 Java Annotations . 108

4.3.2 Java Reflection . 112

5 Project Architecture 116

5.1 Architecture . 116

5.1.1 Interceptors Implementation 117

5.1.2 Decision Maker Implementation 120

5.1.3 Execution Manager Implementation 121

5.1.4 Synch Controller Service Implementation 124

5.1.5 Communication Interface Implementation 126

5.2 Evaluation . 128

6

5.2.1 Test Applications . 128

5.2.2 Metrics . 132

5.2.3 Micro-Benchmarks Results 133

5.2.4 Macro-Benchmarks Results 137

5.2.5 Results Considerations 142

Conclusions 144

Bibliography 146

7

8

List of Figures

1.1 Middleware layer . 20

1.2 CORBA Architecture . 22

1.3 Mobile Apps Download Increment 24

1.4 Nomadic Distributed System Topology 26

1.5 JMS High-level Architecture 29

1.6 Cloud Computing Topology 32

1.7 CloudCloud Architecture . 37

1.8 Cloudlet Multi-layer Architecture 38

2.1 Offloading basic components 43

2.2 Smartphone features survey 47

2.3 Example of face detention application 52

2.4 ThinkAir Architecture . 53

2.5 MAUI Architecture . 55

2.6 Cuckoo Architecture . 57

3.1 Avatar Architecture . 61

3.2 Avatar Group Management Service 64

3.3 Avatar APIs . 66

3.4 Disaster Rescue App Sample Conditions 69

3.5 Disaster Rescue App Sample Conditions 70

3.6 Offloading Framework Architecture 75

4.1 Worldwide Smartphone OS Market Share 87

4.2 Android Architecture . 89

4.3 Android Activity Lifecycle . 93

9

4.4 Proxy Pattern . 98

4.5 General AOP Architecture . 99

5.1 AspectJ vs Java Dynamic Proxy overhead 118

5.2 IExecutableBundle UML Representation 123

5.3 StatusCache UML Representation 125

5.4 Image Manipulation Test App 130

5.5 Image Manipulation Execution Time 134

5.6 Image Manipulation Execution Time with C++ implemen-

tation . 135

5.7 Image Manipulation Power Consumption 136

5.8 FaceDate Experiment Results with Two Devices 139

5.9 FaceDate Experiment Results with Three Devices 140

5.10 FaceDate Experiment Results with Four Devices 141

10

List of Tables

1.1 Middleware resources support 23

2.1 Related Works Design Choices 58

5.1 Offloading Overhead Table 137

5.2 Communication Overhead Table 137

5.3 FaceDate First Response Devices 142

11

12

Introduction

The mobile devices are becoming the center of the information tech-

nology. Since the cost of smartphones, tablets and wearable devices is

decreasing, this technology has become affordable to a larger and larger

number of users. While this factor has driven many companies to invest

their efforts and capabilities in it, at the same time the dedicated software

for this kind of device has evolved and so its features and expertise capac-

ity. Therefore, mobile development tools has been improved to achieve

new goals and new functions supporting also distributed systems.

Nowadays, it is possible to use a large number of distributed mobile

application on a standard mobile device with powerful system and ar-

chitecture to manage the complexity of the environment. The research

and industry community has adapted many tools from the traditional dis-

tributed systems scenario to the new mobile configurations. Some ap-

proaches allow to use directly a backbone structure to manage a mobile

distributed system as a traditional one. The development in the virtual-

ization technology and the resulting success of the Cloud Computing have

supplied new tools for the mobile computing apps. The possibility to ex-

ploit the computation and resources of powerful servers could enable the

execution of computing and communication intensive applications. The

mobile devices could indeed rely on the offloading of computation, com-

munication or data storage management through the Cloud Computing.

A suitable solution for this environment would be a system able to

provide a simple access to the Mobile Cloud Computing functions. The

programmer should be able to easily partition the application discerning

between functions to offload and to execute locally. The system should

13

also automatically analyse various parameters of the device state in order

to decide whether the offloadable code could be offloaded or not. However,

the user may want to define new policies in order to modify the automatic

offloading decisions and to endorse additional parameters not originally

considered by the automatic decision engine.

With the definition of custom policies, the system could also support

mobile distributed applications providing a powerful tool able to consider

more complex scenarios. Therefore, this system should improve the aver-

age performance of a distributed application taking decision based on the

global resources or on the users requests. Furthermore, the selection of

multiple policies could be also available to the final user at run-time pro-

viding to the final user a innovative tool to modify the behaviour of the

entire distributed application execution. For instance, a user wants a func-

tion completed as soon as possible from the group, this constrain would

be translated executing pieces of code remotely accelerating the time of ex-

ecution. In a different scenario a user may want to not share information

with the cloud infrastructure, and so the offloading system should execute

locally the methods dependent on this data.

The thesis is composed of five chapters.

The first chapter aims to introduce the distributed systems and the

middleware level software. After an overview on the traditional systems,

the chapter will focus on the mobile environment and its middleware level

software. The final task of the chapter is to introduce the idea of cloud

computing and show its application on the Mobile Computing, also called

Mobile Cloud Computing.

The second chapter gives an overview on the computation offloading

applied to the Mobile Cloud Computing presenting the heuristics use to

take decisions and some crucial challenges. It discusses some previous

projects on the mobile computing offloading and it highlights the main

differences between the projects.

The third chapter initially presents the Avatar system, the thesis project

is indeed integrated with this Mobile Cloud Computing system. The sec-

ond part of the chapter deepens the thesis project challenges and scenar-

14

ios. Finally, the chapter explains software design and the desired program-

ming model to provide.

The forth chapter gives a full overview about the enabling technolo-

gies necessary to implement the design shown in the previous chapters.

Finally, the last chapter focuses on the implementation architecture

and components of the thesis project. The results and the evaluations

about the final implementation of the code are discussed in the last part

of the thesis.

15

16

Chapter 1

Mobile Distributed Computing

Assisted by the Cloud

The purpose of this chapter is to explore the target scenarios of the thesis

project. The first section focuses on the distributed systems definition and what

are their main characteristics and peculiarities. After that, the main functions

of middleware level software are enlisted and it is explained how they can help

development and deployment of distributed applications. Since the previous sec-

tions are meant to give an introduction about the world of distributed systems,

the following section applies and expands the previous concepts to the mobile de-

vices environment. At this point, the chapter focuses on the mobile middleware

challenges and differences. In order to support the previous concepts, a section

is dedicated to the related works of mobile middleware. The rest of the chapter

is dedicated to the middleware for mobile computing software and what are the

motivations which drive the research on this matter. Finally, in the last section

of the chapter introduces some application examples which benefit of the mobile

cloud computing software.

1.1 Distributed Systems

Before deepening into middleware software level and mobile systems,

it is necessary to introduce the base theory behind traditional middleware

and distributed systems. These concepts are expandable and applicable

17

to the mobile distributed systems and their middleware level with some

additional precautions. The Section 1.2 and Section 1.2.2 show how the

general concept are applicable to the mobile environments are what are

their benefits.

The improvement of networks and computation performances has sup-

ported the evolution of the computer systems and their architectures. In

order to provide more interesting and powerful services, industries have

adopted distributed systems. A distributed system is one in which compo-

nents located at networked computers communicate and coordinate their

actions by only passing messages [1].

1.1.1 Features of Distributed Systems

A group of computers connected by a network could be separated by

any kind of physical distance [2]. The conformation of a distributed sys-

tem is more complex of single computer architecture, so it is important to

take care of new complexity factors introduced by the communication and

synchronisation:

• Concurrency: In a distributed environment it is possible that every

user is executing separately his task. In addition, users could share

resources, such as files or databases. In order to manage the con-

currency of shared resources is possible to add further servers to the

network;

• Time Synchronisation: As mentioned earlier, multiple computers need

to synchronise their tasks in order to provide a common service or

achieve a shared goal. The idea of synchronisation is strongly related

to the idea of a shared time, it is therefore essential for a distributed

system to have a global clock. However, there are limits for the ac-

curacy of it. The lack of precision is a consequence of the messages

communication and there are many solutions based on the desired

quality of service;

• Independent failures: In a distributed systems the idea of failures is

18

more complex than in a single tier scenario. In fact, there are many

new ways in which the system could fail for network issues. The net-

work could fail denying the synchronisation and the message pass-

ing between the system members. This problem could open many

new scenarios to manage. For instance, one member fails and cannot

run its task any more or the network in itself fails and the comput-

ers cannot interact with each other. An advanced distributed system

should handle this kind of failures and try to isolate them. In this

way every member of the system could fail independently without

affecting the rest of the group execution;

The need to manage this complex scenarios and to support distributed

systems leads the research to introduce a dedicated class of software tech-

nologies. The Section 1.1.2 aims to deepen this software level.

1.1.2 Middleware for Distributed Systems

The idea of middleware was introduced to manage the complexity and

heterogeneity inherent in distributed system . As shown in the Figure 1.1,

middleware is a layer of software located between the operating system

and the application programs. It provides a common programming ab-

straction across the distributed system relieving application programmers

of this kind of complex and time-consuming programming. In addition,

middleware services often save the developer from implementation errors

and improves application performances.

In few words, the middleware software masks heterogeneity of hard-

ware and networks. Further, some advanced middleware is also able

to manage differences between operating systems and programming lan-

guages. A famous example of middleware is CORBA, it is a standard

definition not really an implemented software. The idea of the CORBA

specification is to hide from the developer the implementation choices and

design providing well-defined services and behaviours.

Finally, another important task for this kind of software is to provide trans-

parency for one or more of the following dimensions: location, concur-

19

Figure 1.1: Middleware Layer in a distributed system.

rency, replication, failures and mobility. Therefore, it is possible to classify

the middleware software based on their features and on the level of trans-

parency which they provide [3].

• Remote Procedure Call: The Remote Procedure Call (RPC) is con-

sidered an ancestor of middleware software. The RPC provides an

abstraction capable to invoke a procedure whose body is across a

network. The RPC has a not really flexible model and it does not

provide a good level of scalability. This software class does not take

care of resources optimization and it is strongly synchronous, for this

reason it is not possible to manage parallelism without using multi-

ple threads.

• Database Middleware: The Database middleware are designed to

mask the heterogeneity of databases proving a common interface to

the application level. It is indeed possible to have multiple different

databases in the network nodes but to use them as a single shared

resource.

• Message-Oriented Middleware: In the Message-Oriented Middle-

20

ware (MOM) the distribution of code and data is managed with the

message passing paradigm. This kind of software takes care particu-

larly of the communication and synchronisation between network

members, and they can provide support for persistent messages,

replication and real-time performances. This class of software is able

to provide spatial and time decoupling and manage various Qual-

ity of Service (QoS) specifications. JMS, Microsoft MSMQ and IBM

MQSeries are example of MOM systems.

• Distributed Object Computing Middleware: Distributed Object Com-

puting middleware (DOC) is designed to manage the distribution of

code and data using the object abstraction. In other words, it is pos-

sible to invoke methods of remote objects just like they are of local

object. From a software engineering point of view, the development

of distributed applications over a DOC middleware can benefit of

the same features and positive aspects of the object-oriented pro-

gramming techniques. The central part of this kind of software is

the Object Request Broker (ORB) and it is the component capable to

resolve remote object invocation and find proper services for a cer-

tain request. In the Figure 1.2 is given a simplified representation of

the CORBA architecture and interactions between a client and a dis-

tributed object. The ORB core is the essential player in the CORBA

environment and there are many different implementations with dif-

ferent tasks and objectives. CORBA is an example of DOC middle-

ware as COM, .NET and EJB.

Most of the middleware software does not require the user to learn

a new programming language to use its functionalities. They are gener-

ally designed to work with common languages, such as Java, C++ and C#.

Currently there are three main ways to program a middleware: a dedi-

cated library of functions, an external interface definition language (IDL)

or the language supports natively the distribution, for instance Java Re-

mote Method Invocation (RMI). The first method allows the user to call

middleware functionalities and services through a library software invok-

21

Figure 1.2: Simple representation of the CORBA architecture and its basic com-
ponents.

ing certain pieces of code. The second way is more flexible. The developer

has to define IDL interfaces, that means to add a medium level between

the middleware and the application level and so it is possible to use mul-

tiple languages inside the same distributed system. CORBA uses IDL and

supports a large number of programming languages. The last one is not

very flexible but from a performance point of view is clearly faster then

the IDL mechanism.

Another fundamental task of the middleware software is to exploit the

abstraction level provided to manage resources of the distributed system.

So, the middleware could abstract the three kinds of low-level resources

of an operating system: communication, computation and data storage.

In addition to a common operating system, a middleware provides a com-

plete view and management of these resources within the distributed sys-

tem. As mentioned earlier, the middleware software is classified depend-

ing on the services that they provide and how they manage synchronisa-

tion and data sharing [3]. It is possible to revise the classification consider-

ing the resources abstraction which they provide as it shown in the Table

1.1.

In addition to the resources management, there is another fundamen-

tal concept to mention about distributed systems: the Quality of Service

(QoS). The QoS is a new concept and it was introduced to describe the per-

22

Middleware Category Communication Processing Storage

Remote Procedure Call Yes Yes No
Database Middleware Yes Limitated Yes
Message Oriented Middleware Yes No Limited
Distributed Object Computing Middleware Yes Yes Yes

Table 1.1: Middleware categories support for low-level resources.

formances provided to the final user of distributed services. This new con-

cept helps to manage more properly the dynamic nature of a distributed

system. In few words, the goal of this idea is to capture the high-level re-

quirements and to translate it in low-level resources management. So, it is

not a static decision but it is something to modify and to adapt at run-time.

In this way the distributed system can adapt its resources and services but

it could also adapt itself to new requirements. For this reason, the QoS is

considered a novel concept for software engineering and maintenance of

distributed systems.

The middleware software is extremely suitable for the QoS concept. It

is indeed possible to exploit its programming abstraction in order to intro-

duce the QoS in the system and to also provide a simple way to manage

and configure it to the developer. Generally, the DOC middleware ex-

cels at QoS management and CORBA is particularly suitable for this task.

Therefore, a distributed application supported by a QoS management is

more stable because the available resources are variable based on the cur-

rent system state. On the one hand, the range of variation of the resources

is limited and well-known, so the application works in a safe context. On

the other hand, the application is more flexible because the resources con-

figuration is not hard-coded in the source code. Further, the decoupling

provided by the QoS-enabled middleware allows the developer to not fo-

cus on the low-level protocols or APIs used to provide the actual QoS to

the final user.

23

1.2 Middleware for Mobile Distributed Systems

The thesis project aims to provide a middleware offloading service for

distributed applications but, in particular, it is interested in mobile set-

tings. For this reason this section focuses on mobile distributed systems

and their novel challenges.

1.2.1 Mobile Distributed Systems

Smartphones and tablets have become sources of huge amount of data

and they are the first choice as personal device for most people. There are

a large number of applications for mobile devices which allow to share

information between users in order to provide new and rich experiences,

not only referring to social network and behaviour.

Figure 1.3: The graph show the amount of downloads of mobile applications in
the world.

Most of the enterprises and companies have already invested their ef-

forts on mobile applications or they are planning to extend their business

in this direction. The Figure 1.3 shows the number of mobile apps down-

loaded on devices across the globe from the year 2009 to the projection in

the year 2017. The market of mobile apps will keep on increasing in the

next years and with it also the revenues. The global mobile applications

24

market is strongly influenced by the mobile systems technologies and by

their manufacturers, such as Apple, Google, Samsung and LG. Initially,

the mobile applications were designed as thin clients for web services,

such as e-mail or messenger apps. Nowadays, the devices are always

connected to the Internet and they are equipped with a good amount of

hardware resources. In the last years the industries interest has been mov-

ing to more complex mobile services requiring advanced tools for the app

development. Applications of this kind introduce new challenging prob-

lems:

• High mobility: The mobile devices could temporary and asynchronously

lose the network connectivity for many reasons. It means slow con-

nection sessions and so the need to discover other hosts dynamically.

• Limited resources: As mentioned earlier, the hardware available in the

current mobile systems is progressively increasing. However, they

have scarce resources compared to other computing systems, such as

slow CPUs and little memories. Further, they have to deal with the

battery consumption which is an unavoidable constraint for mobile

application;

• Dynamic changes: The environment can change faster than in com-

mon systems, that could be related to the location or the context

conditions of the user. In addition, the network connectivity could

strongly vary without ceasing and it might introduce delays or de-

synchronisations.

1.2.2 Mobile Middleware

As mentioned in the Section 1.1, the developer should not focus on the

distribution problems, such as heterogeneity and resource sharing. The

traditional middleware software indeed takes care of this issues and pro-

vides high-level tools. In the same way, the mobile middleware services

also have to support the high mobility for mobile distributed application

25

[4]. An existing solution is to use a mixture between totally fixed and to-

tally mobile systems. This kind of distributed systems is named Nomadic

Distributed System. In few words, the mobile devices move from a location

to another maintaining an active connection to a fixed infrastructure as it

shown in the Figure 1.4 [1]. The nomadic distributed systems are partic-

ularly interesting for the purpose of the thesis. This project will indeed

integrated in a nomadic distributed system, Avatar [5]. Avatar will be pre-

sented better in the Section 3.1.

Figure 1.4: Topology of a Nomadic Distributed System network.

The backbone network is the core of distributed nomadic system, it is

able to provide services to the mobile devices and to carry the computa-

tion and connectivity load. In this scenario it is possible to manage trans-

parently the network disconnections or variations. In addition, dedicated

services for re-synchronisation are provided. Some of the requirements

shown in the Section 1.1 for fixed systems are still valid for the nomadic

distributed system. However, the heterogeneity in this scenario is com-

plicated by the presence of node with different nature, mobile and fixed.

It is also possible that different mobile connections coexist in the same

network. Finally, the scalability is similar to the fixed system, in other

words, it is the capability to manage a large number of mobile devices at

the same time. The fault tolerance depends on the application purpose,

in some cases it might be possible that a network disconnection is consid-

ered not a fault but just a regular behaviour of the program. The scenario

26

could vary additionally if the mobile devices could assume the role of ser-

vice providers as the backbone servers. In this case the result would be

strongly different in terms of discovery, quality and failure management.

The alternative to the nomadic distributed systems is the Ad-hoc mo-

bile distributed system. Since one requirement of the thesis is to be inte-

grated with the Avatar project it is not really fundamental to explain this

topology of systems. However, the main difference of a Ad-hoc system

respect to the nomadic systems is the absence of a fixed infrastructure. So,

the devices could join different clusters and communicate with the other

members or in some case use the intra-cluster communication. The system

is highly dynamic and generally more complex to manage.

The Ad-hoc and nomadic systems are similar for many aspects, for this

reason some mobile middleware are feasible for both models [1]. Gener-

ally when the choices which influence a mobile middleware design are

related to three main aspects:

• Computational Load: Unlike the fixed systems the hardware and

so forth the computational resources available in mobile devices are

relatively scarce and limited. Therefore, the middleware services de-

signed should be lightweight and not impact negatively on the per-

formance. It is indeed worth to sacrifice some functionalities like

replication or intensive synchronisation operations.

• Asynchronous Communication: It is ordinary that a mobile device

access to the network only when it needs some data or service. As

mentioned previously, during the interaction with the service or data

provider the connectivity could vary by orders of magnitude in the

time. In addition, the connection could cease totally. It is important

to provide a communication base on asynchronous requests and re-

sponses. In this way even if the device lose the connection it can

reconnect later and collect the result.

• Adaptability: This characteristic is similar to the previous one but it

is correlated with the availability of services. The dynamic and un-

predictable nature of this kind of system causes new scenario respect

27

to fixed ones. A mobile device indeed could lose the connectivity

with a service provider. For that reason the middlware behaviour

should manage this situations and it should use context-aware tech-

niques to manage better dynamic scenarios.

1.3 Related Works for Mobile Middleware

This section aims to show some related works on the mobile middle-

ware scenario. Many common middleware solutions has been adapted to

the mobile environment. This traditional middleware software has been

modified in order to be lighter-weight and to be suitable for the mobile

nature of these networks.

As mentioned in the Section 1.2.2, a main challenge in the mobile dis-

tributed systems is the reliability and the network variations. Some of the

traditional middleware level software could be modified in order to fit

this issues. In this section it will be shown how the different categories of

middleware could handle the problem with various approaches.

Object-oriented middleware is the most spread category of this soft-

ware level. For this reason the community has adapted them to the mobile

distributed systems in order to exploit their advanced features. This task

has been not simple because this software is generally heavy and it does

not support mobile protocol by default. As mentioned previously, CORBA

[6] is an important example of DOC middleware and so the developers has

worked on it trying to make it suitable for the mobile environment. As

shown in the Figure 1.2, the core component of the CORBA architecture

is the ORB, in particular the Internet Inter-ORB protocol (IIOP) [7] allows

the communication among devices. This protocol has successfully been

ported to mobile settings and it could be used as a simplified version of

the standard ORB. An example is the DOL-MEN project [8] which manage

medium wireless unreliability using the Light-weight Inter-Orb protocol

(LW-IOP). In addition, in order to keep track of hosts location the names of

the machines are translated using a dynamic naming server. This mecha-

nism partially solves the mobile middleware challenges stated in the Sec-

28

tion 1.2.2. CORBA and IIOP are combined with the Wireless Access Pro-

tocol (WAP) [9] stack in order to use the standard CORBA services on the

fixed network with mobile devices connect through WAP and a gateway.

In this configuration IIOP manages the message exchange functionalities

[1].

For what concerns the Message-oriented middleware there are many

successful attempts to port them in the mobile environment. Java Mes-

sage Service (JMS) [10] has been successfully ported to mobile distributed

systems. As the standard edition it supports both point-to-point and pub-

lish/subscribe models. The publish/subscribe paradigm is based on top-

ics, a device could register on a topic and publish or be notified every

time a message is delivered to its queue. For the point-to-point commu-

nication a mobile message can directly send a message in another device

queue. Summarizing, JMS is strongly based on queues, the topics could

be considered as multiple listener queues. In the Figure 1.5 is given a re-

ally simple but representative representation of the JMS architecture. The

MOM is a good solution for asynchronous communication. In particular

the publish/subscribe model would be a good support for disconnected

operations and distributed services.

Figure 1.5: A general representation of the high-level architecture of Java Mes-
sage Service.

The communication and message passing paradigm are the main fea-

ture for mobile middleware in nomadic distributed systems. However, as

mentioned earlier the adaptability and the dynamic variation of the con-

text are really important for what concerns the QoS management. It is

29

fundamental that a middleware level services is adaptable to different sce-

nario in order to guarantee an established Quality of Service. A very rele-

vant example in QoS-oriented middleware is Mobiware [11], it is based on

CORBA and IIOP and developed in Java. It is capable to adapt the system

in order to maintain a certain level of QoS. A mobile device is seen as a ter-

minal node of a network, the main operations and services are offered by

the Asynchronous Transport Network (ATM). Mobiware is based on the

hypothesis that every device connectivity is fluctuating but almost contin-

uous. So, a every device is always directly connected to an access point

and it could switch to a new access point in order to keep the connectivity

with the backbone network.

1.4 Middleware for Mobile Computing

The fixed and mobile distributed systems have different issues and

peculiarities. In the Section 1.2.2 is shown how there is possible to merge

the two architectures in order to benefit of their features. The nomadic dis-

tributed systems are the implementation of this concept. The combination of

cloud computing, mobile computing and wireless networks is commonly

defined as Mobile Cloud Computing (MCC) [12]. Before deepening into the

specific model of the Mobile Cloud Computing, it is necessary to give an

overview about the concept of Cloud Computing (CC). It is a model which

enables the execution of heavy computation applications using a remote

resources provided on-demand through the Internet. The main goal of

the Cloud Computing is to supply quickly the necessary resources and

to decrease their management costs [12]. The Cloud Computing could be

divided in three different layers of services:

• Software as a Service (SaaS): The SaaS level is the higher of the lay-

ers. It provides applications, such as a web application or a mobile

application, to manage the software which is running on the cloud

architecture. The user of this services is totally unaware of the com-

plexity of the distributed systems and he does not need to concern

30

about system configurations.

• Platform as a Service (PaaS): The user may need more control on the

cloud architecture, for this reason the PaaS level allows the user to

customise some configuration. The user has the freedom to select the

operating system to deploy on the servers and then he can proceed

in the software development.

• Infrastructure as a Service (IaaS): This level is dedicated to more expert

users. In addition to the operating system he can set up the computa-

tion environment. The user has at his disposal a powerful processing

core and a considerable amount of data storage in order to execute

heavy computational software.

The Cloud Computing model is designed to achieve the following fea-

tures:

• on-demand: the architecture provides only the necessary resources to

the user software;

• elastic: the architecture is highly scalable and it can adapt the pro-

vided resources to the dynamic need of the user application.

• quality of service guarantee: it is able to supply the QoS necessary to

the application.

• pay-per-use: the user is charged only for the cost of the actual used

resources.

As mentioned earlier, the availability of wireless network enables mobile

devices to be almost always connected to the cloud. The Cloud Comput-

ing has evolved to support mobile distributed application and it generates

a the Mobile Cloud Computing model. An overview of the Cloud Com-

puting topology is shown in the Figure 1.6.

31

Figure 1.6: A simple representation of the Cloud Computing topology with some
example services.

1.4.1 Mobile Cloud Computing

The Cloud Computing can enable a mobile device the execution of

complex and heavy applications supplying the needed resources. For in-

stance, an employee could bring his personal device to his workplace, and

use it to access privileged enterprise content and applications stored in

the cloud [12]. The Cloud Computing can provide scalable mobile com-

putation and support the big data mobile applications. Furthermore, the

appearance of the handsets benefits of the cloud support, the manufac-

turers can indeed rely on the cloud resources limiting the sizes for their

products.

The Mobile Cloud Computing could be define as a computational model

combining mobile computing and the cloud, where the cloud can handle

large storage and processing for mobile devices remotely [12].

The architecture of the Mobile Cloud Computing is based on the Mobile

Computation Augmentation model. The augmentation is the process to im-

prove, to enhance or to optimising computation capability of a mobile de-

vice by leveraging varied feasible approaches, hardware or software [13].

32

The hardware approaches involves the use of high-end physical compo-

nents, such as CPU, memory, storage, and battery.

The software approach could be the computation offloading, remote data

storage, wireless communication, resource-aware computing or remote

service request. The applications which can benefit of the Mobile Com-

putation Augmentation are generally computing intensive, data intensive

or communication intensive. An example application for the first kind is

a speech or image recognition software, for the second kind it could be

an enterprise software and for the last kind it could a video streaming

software. A particular kind of Mobile Computation Augmentation is the

Mobile Cloud-Based Augmentation [13]. It is a synonymous of Mobile

Cloud Computing. It is important to explore what are the advantages of

such approach:

• Empowered Processing: The mobile device can perform virtually a task

using the support to the computation. In few words, a device could

be not able to complete a task because the CPU or the memory could

be not enough or the battery could be too low. So, the mobile de-

vice can offload the entire application or part of it to the cloud. In

this way the device could perform the task and deliver the results of

applications beyond its native capabilities. The Cloud can guarantee

a higher-level reliability and availability than the hardware solution

or another architecture.

• Battery Conservation: The hardware augmentation can be achieve us-

ing very powerful CPU or memory. The side effect of this solution is

the power consumption. Improving the performance often means to

manufacture new components which need an higher amount of en-

ergy to be empowered. The Mobile Cloud Computing can save bat-

tery offloading tasks to the Cloud. Migrating the code would help

the device to perform computation intensive application but also to

save energy. Therefore, a fundamental task of the MCC is to optimise

the energy consumption. The execution migration could potentially

decrease the energy consumption but it is important to consider that

33

in some scenarios the mobility support and the resource elasticity

can neutralise the offloading effects.

• Expanded Storage and Data Safety: Accessing data in the Cloud could

seriously improve the storage capability of a mobile device. The re-

quirement is to be connect to the Internet in order to upload or down-

load data. In addition, it is necessary to synchronise manually or

automatically the device with its relative cloud storage space. Fur-

thermore, storing data on a mobile device could be not totally safe, it

is possible to lose the device or that a malicious person could access

to personal data. Device malfunctions or physical damages are other

causes of data loss or corruption. It is also not possible to apply en-

cryption on mobile device storage because it could cause too much

overhead and it could negatively affect the responsiveness. There-

fore, using a reliable cloud storage, the user can avoid the issues re-

lated to physical damages of the hardware or robberies. In addition,

the data stored in the Cloud are ubiquitously accessible. The user

can change the device or the location and be sure that it can always

rely on the cloud storage.

• Protected Offloaded Content: The MCC is based on virtualization tech-

nology to isolate the user execution environment from other users

and also from the infrastructure stack software. The Cloud infras-

tructure could provide powerful encryption technologies to protect

the user data from other users of the platform.

• Heterogeneity: the application development for MCC applications could

be simplified in terms of heterogeneity management. A cloud com-

ponent indeed could be built once and it can be used for different

mobile target platform, such as Android, iOS or Windows Phone.

A company could save money and resources avoiding the multi-

platform development for a single application.

The Mobile Cloud Computing model could be implemented in differ-

ent ways. It is indeed possible to identify three main categories related on

34

the position of the cloud resources.

• Distant Immobile Cloud: This infrastructure is composed of private or

public cloud services based on a large number of stationary servers

located in vendors or enterprises properties. The advantages of this

typology of infrastructure is the high availability, reliability and elas-

ticity of the cloud resources. On the other hand, public cloud re-

sources could be subjected to security glitch. So, it is possible that

malicious users exploit some weakness of the infrastructure to ac-

cess to private data of other users. Furthermore, the WAN latency

related to the distance between the two endpoints of the communi-

cation generates sometimes considerable delays on the interaction.

• Proximate Immobile Computing Entities: This infrastructure is com-

posed of stationary computers located in public areas nearby the mo-

bile devices. Nowadays, the amount of computers in public place is

huge, and this machines are often executing light task wasting most

of their resources. The concept of this infrastructure is to exploit such

computational power to augment the mobile devices capabilities. So,

on the one hand they can assist the computation of mobile devices

taking charge of their task. On the other hand, since the distance

between this computers and the mobile devices is small, they can

reduce latency and wireless network traffic. This infrastructure also

suffer of security issues.

• Proximate Mobile Computing Entities: In this infrastructure every sin-

gle mobile device can play the role of cloud-based server for other

devices. So, devices can cooperate to obtain heavy task migrating

execution to other members of the group. The limitation of this in-

frastructure is also related to the device hardware specification.

1.4.2 Existing Work on Mobile Cloud Computing

This section aims to give some examples of existing works about the

Mobile Cloud Computing. In the Section 1.4.1 it is shown that is possi-

35

ble to categorise the Mobile Cloud-Based Augmentation in three macro

groups: Distant Immobile Cloud, Proximate Immobile Computing Entities and

Proximate Mobile Computing Entities. In order to distinguish better this

three categories, this section lists some example per each of them.

Avatar [5] is a Distant Immobile Cloud project. In particular, the thesis

project will be integrated with the Avatar system. For that reason more

details are given in the Section 3.1. However, briefly, Avatar is a system

designed to leverage cloud resources to support fast, scalable, reliable, and

energy efficient distributed computing over mobile devices. The system

assigns resources to a single user as a dedicated virtual machine which

supports the user mobile device computation.

CloneCloud [14] is another example of Mobile Cloud-Based Augmenta-

tion. The CloneCloud system is a system capable to migrate entire mobile

platforms into the cloud infrastructure and runs mobile applications with-

out requiring any kind of modification in their original source code. It

is designed to be fine-grained and thread-level, it can indeed execute lo-

cally the remaining application when the cloud infrastructure is running

the intensive computation tasks. However, if an application needs to ac-

cess to a shared memory the system is able to migrate it to the cloud.

The CloneCloud infrastructure executes the mobile applications as dis-

tributed computing code, however the developer is totally unaware of this

behaviour. As mentioned earlier, this system is capable to offload local

threads to the servers, the local execution will proceed normally but the

intensive computation tasks are execute remotely. When CloneCloud mi-

grates a thread it is also able to block other local threads if they have a

shared state with the first one. An overview of the CloneCloud architec-

ture is shown in the Figure 1.7.

One the one hand, the overall execution time could be sensibly re-

duced by the threads migration.

On the other hand, the communication overhead required to move the en-

tire mobile platform, the application code, and the memory state can miti-

gate the advantages of the augmentation. Furthermore, in order to keep the

state of the execution synchronised the CloneCloud systems has to deal

36

Figure 1.7: CloneCloud architecture with the system components used to support
the execution on mobile devices.

with multiple communication which are a further overhead.

Summing up, the CloneCloud model has the most relevant benefits when

the computation is substantially heavy and the overhead generated by the

communication is lighter. This is a common consideration for computa-

tion offloading and general mobile computation augmentation, and the

Chapter 2 gives further details about this trade off.

Cloudlet [15] is an example project of the Proximate Immobile Com-

puting Entities model. A variable number of computers collaborate and

communicate in order to augment the devices performances, this entities

takes the name of Cloudlet. So, a device using a WiFi network can offload

directly to the Cloudlet its heavy computation tasks. The proximate in-

frastructure could even be supported by a distant cloud layer in order

to manage backups and help the Cloudlet in case of lack of resources.

The advantages of this approach is that it is capable to reduce the secu-

rity risks, to provide a one-hope offloading mechanism and in addition to

minimise the time of communication. The devices are thin clients of the

Cloudlet infrastructure, it is possible to see this architecture similar to the

client/server model. The resources are managed by an virtual machine

abstraction. The Cloudlet could also exploit the hardware virtualization

technology in order to guarantee more security and privacy of the mobile

device user. Furthermore, this technology could simplify the management

37

of the heterogeneous resources at the same time. The motivation to use

VM is the possibility to isolate the offloading mobile environment from

the permanent software of the Cloudlet physical computers. The applica-

tion scenario of the Cloudlet project is a public place as a restaurant or a

shop which uses the underexploited computing resources to augment the

nearest mobile devices, for instance costumer handsets.

The main difference with CloneCloud is that Cloudlet does not need

to migrate the entire OS but the mobile environment should be already

running on the VM abstraction. Unlike CloneCloud which transfer the

entire mobile device memory stack in the beck-end cloud infrastructure,

Cloudlet use lightweight software interface for the heavy computation

components, the authors decided to call it VM overlay. In the Figure 1.8 is

possible to see that Cloudlet has three levels. The first level is dedicated to

the device which need to be supported by the cloud. In the second there

are all the proximate machines described earlier. However, there is also a

third level of fixed cloud services capable to support the heaviest tasks.

Figure 1.8: The tree layers of the Cloudlet architecture.

On the one hand, the success of this project has been made by the flexi-

bility of the model. It indeed allows to private owners of unused resources

to deploy the Cloudlet abstraction on their own computers. That is pos-

sible because the cost of the maintenance, the security and privacy level,

and also the energy consumption.

38

On the other hand, from a mobile user prospective the delay generated by

the offloading mechanism is sometimes unacceptable.

MOMCC [16], or Market-Oriented Mobile Cloud Computing, is an ex-

ample of Proximate Mobile Computing Entities model. MOMCC is based

on the Service Oriented Architecture (SOA) [17]. In few words, MOMCC

creates a cluster of mobile devices in order to run resource-intensive tasks.

A mobile cloud computing application for MOMCC is a composition of

prefabricated blocks, services, developed by expert programmers. It is

possible to develop independent services and publish it on the Universal

Description Discovery and Integration (UDDI) [18]. UDDI is a discovery

service use by the SOA architecture, in this way the services published are

visible to the mobile devices. For instance, a provider of an UDDI service

could be a mobile network operator.

The actual execution of services is made by a large number of nearby

devices, which can be reward for their resources sharing with money. The

model provides a distant cloud support in case the available resources

around the service request are not enough for the task.

Summing up, the mobile devices which want to provide some resource

sharing have to register with the UDDI and negotiate the services to host.

Mobile devices which want to receive support for resources-intensive tasks

could query the UDDI for a service at run-time. The service applicants

have to pay for the provided support.

MOMCC is a not complete project, the Proximate Mobile Computing

Entities model is an open challenge.

On the one hand, the business model proposed is not still considered a

applicable to the real market but potentially it could be a good source of

incomes for mobile device owner.

On the other hand the security and privacy issues are still a sensible prob-

lem to solve for the MOMCC authors.

39

1.5 Application Examples for Mobile Cloud Com-

puting

As mentioned in the Section 1.4.1, many applications can benefit of the

Mobile Cloud Computing technologies. Developers of mobile resources-

intensive applications can design thin clients and move all the heavy tasks

on the cloud-based background infrastructure. The aim of this section is

to show some application examples suitable for the MCC model.

Lost Child [5] is an application developed by the Avatar team. The ap-

plication is based on image recognition algorithm and so it is computation

intensive. Lost Child needs a considerable amount of communications

which makes the Mobile Cloud Computing more suitable to support the

execution. The application aims to find lost child in crowded city areas.

In more details, a parent lost his child in Time Square, Lost Child searches

the child face in the recent pictures taken in the surrounding locations by

other users. The application reconstructs a real-time trajectory of the child

movements according to the positive matches. Naturally, in order to be

analysed a picture should belong to a user which wants to contribute to

the application tasks.

The face recognition software is based on heavy computation and the

cloud infrastructure could help to execute it faster without affecting the

users battery duration. Furthermore, the lost child parent needs to broad-

cast the research request in order to ask help. Without a back-end infras-

tructure the broadcasting will consume a lot of bandwidth and energy, the

Mobile Cloud Computing can take care of this task and make the request

on the device behalf. In this way the parent device could last more al-

lowing the user to make more request and eventually have a bigger time

window for the participants replies.

FaceDate is another application developed by the Avatar team. It is

based on the face recognition but the application scenario is totally dif-

ferent. Essentially, FaceDate helps the users to find a date based on their

aesthetic preferences. A user can specify some sample pictures of faces

which he likes. The Face Date application will search if there is some pos-

40

sible match for the user tastes. The match is done in both direction, for

instance the first user search for a date, Face Date finds a suitable match

in the second user profile picture. Before presenting the result to the first

match he analyse the second user preferences and the first user profile im-

age, if there is a match it will show a positive result to the first user.

In this case the computation is also heavy because the face recognition

algorithm requires many resources. The broadcasting required to start a

research would be bandwidth and energy consuming. For this reason also

in this case the Mobile Cloud Computing is a suitable support for the ap-

plication. The Face Date app would consume less energy, run faster and

save bandwidth. In this way the user experience would be severely im-

proved.

41

Chapter 2

Overview of Offloading in Mobile

Cloud Computing

This chapter aims to introduce the concept of offloading, main topic of the

thesis. First of all, a general idea and a definition of the offloading is given in the

first section. More in details, this section gives information about the offloading

decision evaluation and the main challenges to overcome in order to design a com-

plete and efficient software. The second section enlists and compares projects and

works on this topic.

2.1 Offloading

As mentioned in the Chapter 1, despite the fast and constant growth

of the mobile hardware specifications this kind of devices are still lim-

ited compare to standard computing machines. This restrictions are pro-

duced by various traits of these devices: they are powered by battery,

equipped with relatively slow processors and poor memories. In addition

they are dependent from wireless networks, their bandwidths are order-

of-magnitude lower than wired standard networks. The available mobile

applications are ceaselessly requiring more computing resources and net-

work bandwidths [19]. In the same time the energy required by current

apps is increasing and the current batteries are not capable to keep the

device operative for a long period.

42

Figure 2.1: Offloading base architecture, limited mobile devices offloads their
computation to a back-end cloud service.

Offloading is a feasible solution for the presented issues. Offloading

means to migrate computation from a device with limited resources to a

more resourceful computer, for instance a server as it shown in the Fig-

ure 2.1. It is essentially different from the standard client/server model,

where a simple and light client always migrate computation to the back-

end server. The offloading could be seen as a similar model of the pro-

cesses migration used to load balance multiprocessor complex systems.

However, they are strongly different. The offloading transfer computa-

tion outside the user resources to another external resource, the migration

of processes in multiprocessor is done in a single real or virtual machine.

Another adopted synonymous for the computation offloading is cyber for-

aging, they both express the same concept.

The offloading has been and it is still an important matter of research.

Initially it was studied and deepened by research teams and industries in

order to enlarge the capabilities of laptops and limited computers. How-

ever, in the last period the research has been developed to focus on mobile

systems. As stated previously, mobile devices are a perfect target for com-

putation offloading research. In addition virtual computation is currently

43

more efficient and effective than in the previous years. The progress on

this technology commits strongly to the offloading technique.

Therefore, the goals of the cyber foraging is to augment mobile de-

vices capabilities using powerful machine to offload intensive computa-

tion tasks. However, it is not always true that offload computation on a

back-end machine would improve the performances, it depends to a large

number of parameters and conditions. Further, in some environment the

bandwidth is more precious than performances or battery duration. In

this direction has been proposed many algorithms to analyse and take ef-

ficient offloading decision. As will be shown later, the offloading could be

designed in many different theoretical ways. Naturally, these choices are

led by the specific application of the software.

Since the offloading technology is a tool to obtained the already men-

tioned goals in terms of performances and battery optimisation, it is im-

portant to schedule the remote execution using smart and effective rules.

What is exactly an offloading decision? It is an answer to the question when

and what to run on the remote endpoint. This challenge has driven many

researches about algorithms and heuristics to establish a global or a more

specific rule to reply to this question. As a consequence of this academic

studies, it is possible to abstract two general rules capable to give a fi-

nal decision for the remote execution: performance gain and battery con-

sumption optimization

2.1.1 Performances Heuristic

As stated previously, the performances are a core goal for the offload-

ing mechanism. Mobile devices are certainly slower of a server machines,

for that reason may be simple to decide to always offload the code. Actu-

ally, this is not a wise answer for every situation. It is important to under-

stand which are the conditions to migrate computation to the back-end

server. The first step is to state that every program is divisible in two

macro parts: code which has to be executed locally and code that might be

offloaded. In the one hand, there are many reason because a code cannot

44

be remotely migrated:

• User Interfaces: The user interaction code is practically impossible to

migrate on another machine. The user device should provide and

manage the interfaces and the user related events. It is really an

overkill task and it is not reasonable to avoidable introduce overhead

and delay in order to migrate these tasks.

• I/O Logic: Like for the user interfaces, the I/O accesses should be

managed by the user device. In other words, sensors, file system or

external hardware should be managed locally.

• Not Repeatable Logics: It is very risky to offload code that manage an

unrepeatable interaction with external resources. A clear example

is a request to a bank web service, the result of a double invocation

would considerably damage users wallet. The offloading might fail

for many reason, loss of connection, failure of the beck-end architec-

ture or state inconsistencies.

• Privacy Policy: It is often forgotten that the user may have some pref-

erences in terms of privacy. In this case the offloading decision could

change based on privacy policies and trust on the beck-end architec-

ture.

In the other hand, any type of code which does not fit the previous cate-

gories could be included in the second category. Let define the local time

of execution of the offloadable code as

timelocal =
w

speedmobile

, (2.1)

where speedmobile is the mobile device speed and w is the amount of com-

putation for the second part of code [19]. At this point is necessary to com-

pute the time of execution for the same code for the beck-end architecture.

In this case it is necessary to also consider the time needed to transfer data

45

to the server in order to resume the execution state.

timecomm =
datainput

B
, (2.2)

where B is the available bandwidth and datainput is the amount of data

input to transfer. The time of the remote execution could be defined simi-

larly to the Equation 2.1.

timeremote =
w

speedserver
, (2.3)

where speedserver is the back-end server speed. Finally, the offloading tech-

nique improves the program performance if the following relationship is

true:

timelocal > timeremote + timecomm;

w

speedmobile

>
w

speedserver
+

datainput
B

.

After some simple algebra it is possible to rewrite the previous Inequality

in the following form:

w × (
1

speedmobile

− 1

speedserver
) >

datainput
B

. (2.4)

The Inequality 2.4 leads some considerations:

• If the ratio datainput

B
is considerably large the server speed not affect

the performances gain. In this case the decision should be to avoid

the migration of the code;

• The perfect task for the offloading gain in terms of performances has

heavy computation and limited data to exchange;

• The network bandwidth is an important parameter of the offloading

decision;

46

2.1.2 Battery Optimisation Heuristic

In the Section 2.1.1 it is given a general rules to evaluate the gain in

terms of performances of the offloading technique. The battery consump-

tion is often a big problem for mobile devices and despite the advanced

technologies, the battery capacity is still not enough for the user require-

ments. Many surveys shows that the battery duration of a device is the

most important features for users, look in the Figure 2.2 for further infor-

mation.

Figure 2.2: Handsets features voted important, neutral and not important by
British users in GMI’s survey, April 2014.

The cyber foraging is potentially a good solution to this problem, mi-

grating the intensive computation on more powerful machine might in-

deed improve the battery duration. As the performances evaluation, also

in this case is necessary to understand when the offloading saves really

energy. The two variables speedmobile and w are already define in the

Equation 2.1, let powermobile be the power available in the mobile device.

A modified version of the Equation 2.1 could be defined in order to obtain

the energy needed to execute the second part of the code, defined in the

Section 2.1.1.

energylocal = powermobile ×
w

speedmobile

. (2.5)

As mentioned earlier, the communication is the necessary price to run the

47

code on the back-end server. So, it is essential to compare the cost and the

gain before proceed with the migration of the task [19]. The energy needed

to transfer the code and poll the result is:

energycomm = powersending ×
datainput

B
+ powerpolling ×

w

speedserver
, (2.6)

where powersending is the power to transfer the information, powerpolling is

the power to wait the reply keeping to poll the network for a result and

the other variables are already defined in the Section 2.1.1. In order to

decide if the offloading will save energy or not the relationship between

the Equation 2.5 and Equation 2.6 is:

energylocal > energycomm;

powermobile ×
w

speedmobile

> powersending ×
datainput

B
+ powerpolling ×

w

speedserver
.

After some algebra the resulting equation is:

w × (
powermobile

speedmobile

− powerpolling
speedserver

) > powersending ×
datainput

B
. (2.7)

The Equation 2.7 is similar to the Equation 2.4 and it leads the same con-

siderations:

• If the datainput are large the speed of the server does not influence

the result and even with the most powerful machine available the

offloading does not save energy.

• The offloading save energy when the computation of the task is heavy

and the data to synchronise are not many.

• The bandwidth is an important parameter also in terms of energy

optimisation.

The final boolean decision, whether to run the code on the back-end or

not, depends strongly to the bandwidth available on the mobile device.

48

The WiFi networks are generally a good scenario for the offloading be-

cause they often provide high bandwidth. However, when the connection

is based on a cellular network the result may be different, this kind of net-

work not always are capable to supply fast communication and they could

be a financial cost for the user. The evaluation of the previous rules should

be made always before the migration to avoid waste of performances, en-

ergy and also money.

2.1.3 Offloading Challenges

In the Sections 2.1.1 and 2.1.2 a global model for offloading decisions

was given. However, a decision could be taken in a static or dynamic way.

On the one hand, a static decision is taken at development time, in few

words, the program is partitioned during the implementation. This kind

of decision is based on the strong hypothesis that the parameters are pre-

dictable accurately. In particular, the parameters speedmobile, powersending,

powerpolling and powermobile of the Equations 2.4 and 2.7 are generally es-

timable with decent accuracy. It is also possible to know the speedserver

if the server is own by the developer or the provider guarantees a precise

level of performance. The real variable of the previous equations are the

datainput, the w and the B. It is also possible to predict them using some

statistic algorithms for data prediction or history-based machine learning.

On the other hand, dynamic decisions are certainly more adaptable to dif-

ferent run-time and context configurations. As the static decision, also

this kind of evaluation could be based on prediction technique, such as

Bayesian scheme, neural networks and more advanced machine learning

mechanisms. Unlike the static decision the dynamic ones are generally

cause of higher overhead on the machine. The decision making model is

indeed based on parameters monitoring that is clearly an active job for the

device. It is common also for the dynamic decisions to partitioning the

application at development time deciding what are the portion of code to

be considered for the offloading. Moreover, it is generally not worth to

pay the cost of the monitoring and it is not always possible to justify the

49

usage of dynamic decisions over static ones. So, it is generally necessary

to evaluate the trade off endorsing performances or adaptability.

A first point of choice for an offloading software is to use dynamic or

static decisions. In addition, the various cyber foraging solutions can be

classified based different solutions that they are targeting:

• Inter-operability: the software should manage devices and servers

with different resources. For instance, the current devices are all

equipped with WiFi and cellular networks support. Despite their

higher performance and lighter power consumption the WiFi net-

works work only in limited areas. For this reason an offloading soft-

ware could manage the issue and it can switch from a network type

to the other. The decision could change because the cost of the cellu-

lar networks and also the available bandwidths are generally more

limited compare to WiFi. This behaviour should be transparent for

the developer.

• Mobility and Fault Tolerance: The offloading technique is directly

based on communication, that introduces some unwanted scenar-

ios. For example, the network could fail or the server could be not

available. For this reason the software could provide alternative so-

lutions, such as running the code locally after a time-out expiration.

• Privacy: as mentioned earlier, in some cases the user might not have

confidence in remote servers. The offloading software can provide

some forms of cryptography or security measure to hidden informa-

tion from potential abuses. The overhead of the information security

mechanisms is well-known and not always acceptable for the appli-

cation purpose. Thus, it is another important trade-off to analyse

before the implementation.

• Context Adaptability and Monitoring: the current devices are equipped

with many kinds of sensors, such as accelerometers, gyroscopes, mul-

tiple microphones and light sensors. In this direction, the offloading

behaviour could vary based on the user environment. For instance, a

50

different location could drive the software to run the code remotely

because the user is using his private WiFi network. On the contrary,

if the user is in a public WiFi network maybe the code must be exe-

cuted locally to avoid sniffing or other kind of hacking.

• Multi-Server support: in order to improve the performances the of-

floading software could use multiple back-end machines at the same

time or in different moments. So, different pieces of code could be

remotely run in different machines. The decision on which machine

the computation task should run can be based on load balancing or

parallel processing.

The design choices for the offloading software are often dependent on

the application purpose. Indeed, the cyber foraging is suitable for many

kind of mobile apps, such as image recognition and computer vision, gam-

ing and multimedia.

The parameters presented in the Section 2.1.1 and Section 2.1.2 have dif-

ferent relevance based on the goals of the app. For example in a computer

vision, multimedia or image recognition application, if the data are stored

on the device, the amount of data, datainput, to move is big and only if

the bandwidth, B, is high the offloading would give good results. In the

Figure 2.3 is shown an example of face detention output of a mobile ap-

plication.

2.2 Existing Work on Offloading

This section is dedicated to the related works in the mobile offloading

topic. The goal of the thesis is different from the previous projects. It

focus indeed on distributed policies for the offloading and in particular it

provides a simple programming model to partitioning the application and

to define custom policies. The design and the goals of this project will be

explained in the Section 3.4. However, the main differences between the

thesis project and the related works are shown in this section in order to

clarify our decisions and novelties.

51

Figure 2.3: In the figure it is shown an output example of an OpenCV recognizer
for an Android app. The face is an average face, not a real one, com-
puted with computer vision algorithms.

ThinkAir [20] is an important mobile offloading and resource allocation

project based on Android devices . The research group aimed to provide a

simple to use framework able to migrate application to the cloud. Unlike

the previous works, ThinkAir focuses on elasticity and scalability of the

cloud and it emphasises the capability to execute remotely parallel meth-

ods using multiple VM images. Like many offloading projects, ThinkAir

shows an improvement of the performances when the cloud is supporting

the mobile execution. ThinkAir provides a method-level computation of-

floading as the thesis project. So, they provide a programming language

to allow the developer to define which are the methods suitable for the

52

offloading mechanism. However, the most relevant innovation of this re-

search is the possibility to perform on-demand resource allocation, and

exploits the parallelism by dynamically creating, resuming, and destroy-

ing VMs in the cloud [19]. The idea to use parallelism has been driven by

the high demand of resources necessary to execute current apps. This ad-

vanced computing feature is strongly impactive in terms of performances

and also energy consumption.

Figure 2.4: An overview of the ThinkAir framework components.

In the Figure 2.4 is possible to notice the presence of many compo-

nents, in particular the main parts of the systems are: a custom compiler,

the Execution Controller and the Profilers. ThinkAir provides a simple to

use library, in particular, the annotation @Remote allows the developer to

specify the suitable offloading methods. As mentioned earlier, one funda-

mental component of the project is a custom compiler which performs the

task of taking the source files and generates automatically the remoteable

method wrappers and related utility functions. The method invocation is

53

managed through the Execution Controller, which can detect if a certain

method is suitable for the offloading and it handles all the tasks related to

the code migration. This includes software-level profiling, decision mak-

ing and communication with the server. All this operations are hidden

from the developer, which has control exclusively on the @Remote anno-

tation. The project thesis aims to provided more control on the offload-

ing operations giving the tools to the developer to influence the decisions.

ThinkAir uses four level of profiling in order to take offloading decisions:

• Hardware Profiler: it has the task to provide energy information to

the energy estimation model. It monitors CPU, screen brightness, 3G

and WiFi interfaces.

• Software Profiler: it takes care of analysing code execution. It use

a large number of parameters in order to profile the program. The

Software Profiler is based on the Android Debug API.

• Network Profiler: It takes track of the network state and it focuses

on parameter such as RTT, number of packets transmitted and re-

ceived per second, uplink channel rate and uplink data rate for WiFi

interfaces.

• Energy Estimation Model: this profiler is based on the PowerTutor

[21] model which accounts for power consumption of CPU, LCD

screen, GPS, WiFi, 3G, and audio interfaces.

The back-end cloud architecture is composed of virtual machines which

run a port of the Android x86. ThinkAir has six different kind of pre-

defined virtual machine images with a different amount of available re-

sources, such as CPU, hard drive space and RAM memory. The compo-

nent which manages the life cycle of virtual machines is the VM Manager.

It dynamically allocates new VMs based on the current request.

MAUI [22] is another milestone project for fine-grained offloading of

mobile code. Unlike the thesis project and ThinkAir, MAUI was devel-

oped for .NET environment. Its main goal is to optimise the battery con-

sumption of heavy computation software, such as face recognition, arcade

54

games or voice-based language translation. In order to not impact to much

on the original application code, MAUI uses the .NET Common Language

Runtime (CLR) features [23]. This tool allows the framework to manage

the code environment during the execution and eventually to modify the

behaviour of it. In particular, MAUI uses programming reflection and type

safety to identify the remoteable methods and to extract the related objects

states. MAUI generates two version of the target application, one for mo-

bile devices and one for the remote execution.

MAUI is capable to offload the code not only in a cloud-based architecture

Figure 2.5: An overview of the MAUI architecture.

but also in machines such as desktop or laptop computer. As mentioned

earlier, the MAUI profiling focuses on the battery usage, it monitors the

energy consumption of local and remote execution. It also uses an history-

based model to estimate the time of the execution, local or remote. So, the

MAUI framework decides to offload the code if the migration saves bat-

tery.

On the mobile device side, MAUI provides three main components: a

solver interface, a profiler and a client proxy. The solver interface helps the

client to interact with the solver, the latter is the component which takes

the offloading decisions. As stated previously, the profiler collects data

55

about energy consumption and network usage. Finally, the client proxy is

the component which practically migrate the code and takes care of trans-

ferring the needed information. The MAUI server also contains the client

proxy and the profilers. They have perform similar task to their related

components on the client side. In addition, the server architecture contains

the solver and the controller. The first component is the decision engine of

the MAUI system, it has access to a call graph of applications and it sched-

ules the method invocations and execution. The controller performs the

authentication and resource allocation tasks.

Cuckoo [24] aims to provide a simple to use programming model using

development tools already known by the mobile application developer.

Cuckoo migrate partially mobile applications on cloud or nearby comput-

ing infrastructure as MAUI and ThinkAir. Cuckoo was developed for the

Android platform. The Cuckoo’s programming model is different from

the previous two works. Cuckoo indeed uses already defined Android

construct: activities and services. An overview on the Android platform

is given in the Section 4.1.

The developer should use activities to define the interactive parts of

the code, and, on the other hand, he should use services to define com-

putation intensive functions. In addition to the mentioned constructs,

Cuckoo can the separation of the code using the Android Interface Def-

inition Language (AIDL) [25]. Using the interface the build system cre-

ates a remote service which contains a simple code done by Cuckoo Re-

mote Service Deriver (CRSD). Like the RPC model, the Cuckoo Service

Rewriter (CSR) framework generates stubs per each defined AIDL inter-

face. The stubs allows transparently local and remote invocation based on

the information provided by the Cuckoo Resource Manager (CRM). The

final step generates the Android APK which makes the application instal-

lable on Android devices. In the Figure 2.6 it is shown the building flow

and Cuckoo can migrate code execution on every JVM machines, cloud

or nearby infrastructures. The smartphone is the responsible to install the

services on the server machine, after that the address of the server is stored

by the CRM.

56

Figure 2.6: In the left part of the picture is possible to see the development flow
of a Cuckoo app. In the the right side it is shown an overview of the
Cuckoo architecture.

As mentioned earlier, Cuckoo can partially offload applications and to

make it possible the framework uses exclusively Android language con-

structs. The framework does not support asynchronous interactions or

state synchronisation with the remote endpoint. In addition, Cuckoo does

not consider privacy policy or security issues.

2.2.1 Comparison

The Section 2.2 presents three of the most related works of the project

thesis. The projects are different in terms of implementation, generality,

target mobile architecture and offloading decisions. This sections focuses

on resuming and comparing the different approaches provided by the re-

lated works.

ThinkAir [20] and Cuckoo [24] are both developed for the Android

platform, in addition, ThinkAir claims to provide support for Android

native code (Android NDK).

57

Project Platform Privacy Decisions Back-end Infrastracture Scalability Level App. Partitioning

ThinkAir [20] Android No Dynamic Cloud Medium Annotation +
Custom Compiler

MAUI [22] Microsoft .NET Authentication Dynamic Cloud/Nearby Infr. Low Annotation +
Reflection

Cuckoo [24] Android No Static Cloud/Nearby Infr. High Android IDL +
automatic. stubs generation

Table 2.1: The table shows the different approaches taken by the related works of
the Section 2.2.

A really important point of comparison between the projects is the

kind of offloading decision made, ThinkAir uses multiple level of profilers

and an energy estimation model which makes the decision dynamic and

more adaptive. MAUI [22] uses history-based decision, so it collects in-

formation of previous execution and thanks to them it tries to predict the

battery consumption and the time of execution. The ThinkAir approach

is more accurate but at the same time it is not generally reusable. The

battery estimation function and the CPU monitoring are strongly based

on specific models. Sokol Kosta et al. [20] monitored CPU, LCD screen,

GPS, WiFi, 3G, and audio interfaces on two specific handsets: HTC Dream

and HTC Magic. For the battery estimation they used the PowerTutor [21]

model which is very accurate exclusively for this two device models. The

MAUI model of profiling is more general because is based on previous

execution, however if the model fails even the migration decision would

be wrong. Another disadvantage of the MAUI profiling is the direct ne-

cessity to run the code in development environment, in order to provide

to the MAUI solver an initial history. Cuckoo project does not focus on

profiling they provide a static model of decisions, that is based on simple

information. From an overhead point of view, Cuckoo is lighter-weight

compare to ThinkAir and MAUI that need to execute profiler logic in or-

der to make their decisions model dynamic.

Another fundamental feature of the offloading software is the applica-

tion partitioning. The ThinkAir and MAUI approaches are similar in this

specific matter. The partitioning is made from the developer who could

define and divide interactive logic from intensive computation one. A

difference between these two projects is that while ThinkAir uses a cus-

tom compiler to modify the marked classes and methods, MAUI prefers

58

a more dynamic approach using the .NET reflection tool. The disadvan-

tage of the reflection is the related overhead. Cuckoo performs the parti-

tioning task using Android constructs and AIDL. The stubs necessary to

mask the remote invocation are automatically generated by the CRSD. The

Cuckoo’s approach is more scalable compared to the others but it does not

provide support to asynchronous call and state synchronisation. If the de-

veloper would need to transfer the state he should use a Representation

State Transfer-like (REST) mechanism.

When cloud storage and computing is involved is often needed to

wonder if the provided privacy security is enough. ThinkAir and Cuckoo

do not provide any kind of security level. This decision could be dan-

gerous because it does not avoid to malicious user to install software to

illegally access resources. Unlike the other project, MAUI provides an au-

thentication procedure. However, even in this case the privacy level is not

considered high because there is not control on the resource access.

Finally, MAUI and Cuckoo are able to offload code in every kind of in-

frastructure, cloud-based or simple computers. ThinkAir is designed to al-

ways use the cloud infrastructure in order to avoid the parallel computing

on different virtual machines. This feature is really novel because it pro-

vides more flexibility to the beck-end infrastructure allowing on-demand

resources allocation and parallel execution of the migrated code. How-

ever, the Cuckoo solution is the more scalable because it is possible to in-

voke different services from different sources. As mentioned previously,

Cuckoo exploits a dynamic services instantiations made by the mobile de-

vice, this concept improves substantially the scalability of the entire sys-

tems allowing parallel execution and dynamic allocation totally managed

by the user device. Clearly, the same service could be provided by multi-

ple servers in order to maintain a good level of fault-tolerance.

59

Chapter 3

Project Analysis

This chapter focuses on the thesis project analysis and design. The project

will be integrated with the Avatar Project developed by the New Jersey Institute

of Technology. In the first part of the chapter it is presented the Avatar archi-

tecture and its programming model. In the second part the writing deepens on

the offloading framework design and programming model. Finally, the chapter fo-

cuses on the achievements that the thesis project should obtain in order to supply

a stable and lightweight software. This goal should be achieved without affecting

negatively the application performances.

3.1 Avatar Project

The thesis project will be integrated with the Avatar project [5] of the

New Jersey Institute of Technology. Avatar is a system which supplies

cloud resources to support fast, scalable, reliable, and energy efficient dis-

tributed computing over mobile devices [5]. So, every user is associated

to a set of dedicated cloud resources. An avatar is an entity which can sup-

port the execution and the communication of the user mobile applications

in the cloud. In few words, it is possible to say that an avatar is a single

instance of a surrogate in the cloud for a mobile device [26]. The per-user

dedicated resources are implemented as a virtual machine in the cloud

that runs the same operating system of the device. Therefore, the decision

to use the same operating system on the VMs was made in order to main-

60

tain the application code unmodified, to provide isolation of the resources

and to make the adoption of this new technology simpler for developers.

The Avatar project aims to provide: high availability to user applica-

tions and devices; a high level programming model, which must be sim-

ple and flexible; isolation and effective resources management for mobile

user apps in the cloud; high efficiency for mobile devices; and mobile data

privacy management. Avatar is designed not only to support single-user

application but especially it aims to provide an effective and efficient sup-

port platform for distributed applications. Avatar is able to create and to

manage group of users involved in a common distributed application.

3.1.1 Architecture

In order to understand how Avatar could achieve its goals, the archi-

tecture design of the system is introduced in the following section. In the

Figure 3.1 is shown a complete scheme of the Avatar architecture. The

most atomic parts of the architecture are: the user abstraction which is

composed by the mobile device plus the related avatar, the Storage Ser-

vice, the Discovery Service and the Group Management Service.

Figure 3.1: The Avatar Architecture.

A user is represent in the Avatar group as a combination of two parts:

one running on the mobile device and the other one on the Avatar vir-

tual machine(AVM). As shown in the top part of Figure 3.1, both the parts

61

run the same application code, an APIs library layer and a set of mid-

dleware components. Since the APIs level will be deeply explained later,

this section mainly focuses on the Avatar middleware, Moitree. Moitree is

composed by a set of middleware services:

• System Consistency Support: each avatar needs to be synchronised

in order to correctly and efficiently schedule computation tasks and

to maintain the data consistency with the mobile device. This task is

managed by the System Consistency Support (SCS) component. To

manage this mechanism the SCS is implemented as a daemon process

which runs on the mobile device and on the Avatar virtual machine.

Every application supported by Avatar could specify data to be syn-

chronise and how frequently execute this function;

• Event and Message Services: the Avatar communication part is strongly

based on events and messages. This component takes care to send

and to receive events and messages from and to other users. The

Event and Message Service (EMS) has the task to forward events and

messages to the destination app. More in details, in order to handle

events and messages, the EMS implements two different queues: an

event queue (EQ) and a message queue (MQ). The first of those is

used to post events generated by the application, such as a group

creation event. The second one, MQ, is used to distributed data and

eventually to get results among the group members. It is important

to emphasise that events and messages are not dependent on net-

work low-level addresses or names. They are associated to channels

established within each group. Each message or event generated by

a mobile device is forwarded to the relative AVM and then it is deliv-

ered to each recipient of a group. This decision was made to limit the

mobile device data traffic, the Avatar virtual machine indeed takes

care of the communication on the behalf of the handset. When the

event/message arrives at the avatar, the EMS forwards it to a GMS

server, where the recipient list can be determined. Then, the even-

t/message is dispatched by the GMS server to the recipient avatars,

62

and these avatars finally forward it to the corresponding apps.

• Network Manager: The Network Manager shields the developer

from the complexity of the communication between the mobile de-

vice and the Avatar, in addition it takes care of system events fired

by the group management.

• Storage Service: The middleware services need to take track of Avatar

applications installed on the device. So, the Storage Service main-

tains a registry of the available apps on a device and on the asso-

ciated avatar. A registry entry is composed of a unique ID and an

application name. The Storage Service could also maintain informa-

tion about the user location and time. The virtual disk owned by a

VM is not part of the Storage Service but it is a primary private disk

for the avatars and its apps local storage.

As mentioned, a distributed application is composed of a group of

users who cooperate in order to achieve a common goal. So, the Avatar ar-

chitecture is designed to support intergroup communication. As it shown

in the Figure 3.2 a central entity for the Avatar group is the Group Man-

agement System (GMS).

The GMS is the fundamental entity which creates, modifies and deletes

groups. As a group manager it also takes care of the intergroup interac-

tions and those are generally defined by four channels:

• Broadcast: this channel allows to send messages to all members of the

group. It is the only unidirectional channel available, no response is

included in this model;

• Anycast: this channel allows to send messages to a random member

of the group;

• Point2Point: this channel allows to directly send messages to a spe-

cific member of the group;

• Scatter-gather: this channel allows to send messages to all members

of a group and then to collect results from some of them.

63

Figure 3.2: A detailed representation of the Group Management Service.

The EMS is always connect to the GMS. As mentioned previously, the

developer does not need to know the location of other users but he just

needs to select one of the available channels to obtain his goal. The Event

and Message Service located in the device and in the avatar sends the mes-

sage to the GMS Message Queue and then the GMS will take care of the de-

livery. The group manager does not know directly the location of all group

members but it relies on a specific entity for this task, the Avatar Discovery

Service. This component stores all location information of members and it

can be queried in order to retrieve them.

In addition the GMS has an internal subcomponent that acts as a bro-

ker for global events. This kind of events are sent by user applications to

notify the group. From Figure 3.2 it is possible to notice the presence of

two queues types for the event management:

• The global queue stores all events from the groups. It is the Global

Event Broker that takes care of forwarding messages to the right des-

tination group.

• The local queue is local to a single group. The Event Broker is an-

other local component which manages specific events for the group.

64

3.1.2 Moitree’s Programming model

The Moitree middleware [26] is the tool through which the user ap-

plications are able to communicate and to use the Avatar system model.

Between the applications and middleware services there is an interface

intermediate level, the Application Framework Support library (Moitree

APIs). This level provides to the application level a set of interfaces in

Java programming language in order to interact with the middleware and

to use its services. The APIs provided are divided in three main classes:

• Group Management APIs: They are methods to create, modify and

delete groups. For instance, to establish a new group, the developer

should use the newGroup method. Avatar supports a groups hierar-

chy model, in the creation phase of a group it is possible to define its

parents. Another important parameter is the lifetime of the group, it

defines the time before the group will be deleted in case of absence

of any intergroup communication. Finally, if the developer wants to

assign a leader to the new group he can use the enableLeader flag and

the GMS will automatically elect the initiator as the leader. A user

could join a group simply calling the joinGroup method or remove-

FromGroup to it;

• Group Hierarchy APIs: Every user belonging to a certain groups

could obtain informations about the group hierarchy, for example

there are two methods: getParent and getRoot to obtain the references

to a parent or to the root group respectively. In other words every

user included in a group are automatically member of its parent. In

addition, it is possible to obtain the list of children of a group with

the getChildsGroup API;

• Group Communication APIs: As mentioned in the section 3.1.1,

there are four different type of channels available and they are all

asynchronous. There is a dedicated scatter-gather channel per each

application and it is generated at the first invocation. A channel

can be always referred using its ChannelID, a unique identifier. The

65

setReadCallBack method allows the developer to specify a callback

function per each type of channel available.

In the previous list are shown only some fundamental API available in

the Moitree set. However, in the Figure 3.3 it is available a more detailed

summary of the Avatar middleware API.

Figure 3.3: A summary table with the main Avatar APIs.

3.2 Problem Statement

The thesis project aims to provide an offloading software capable to

migrate the execution of mobile distributed application to the cloud in-

frastructure.

As stated in the Chapter 2, to design an offloading software is neces-

sary to manage:

• Application Partitioning: It is essential to partition the application di-

viding code which could be not migrate from the heavy computation

66

code. As mentioned previously, some I/O or user interface interac-

tion cannot be offloaded to the beck-end server.

• Offloading Decisions Management: to offload code is not always a wise

decision in terms of resources utilisation. For that reason, the thesis

should use a solution which should decide when the code needs to

be migrate on the other side and when it is better to avoid it.

• Distributed Decisions Approach: the thesis does not aim exclusively

to design a end-to-end offloading mechanism. It should provide a

simple to use and powerful tool to define new policies capable to

describe distributed conditions.

Firstly, it is essential that the programming model provided to the

developer is as simplest as possible. Some previous offloading works is

based on automatic partitioning of the application. This approach some-

times is not enough flexible for the application scenario. Only the appli-

cation developer knows exactly what should be considerable for the mi-

gration of the execution and what should be executed locally. The project

should also consider privacy issues which is not possible to automatically

decide without the developer intervention.

The offloading decisions could be based on many information and con-

ditions. The goal of the project is to provide a programming tool to de-

fine new policies as simple language constructs. In addition, the policies

should be fine-grained. In simpler words, a policy could influence offload-

ing decisions on single method of classes. The project could also provide

some default decisions based on the heuristics of Section 2.1.1 and Section

2.1.2. These expressions are general and valid for almost every kind of

application scenario. It is important to reiterate that the thesis project goal

is not to design new offloading heuristics or rules but to provide a tool to

define rules suitable for the specific case.

The distributed offloading decisions are a subgroup of offloading gen-

eral decisions. However, they should take in account information further

than device status. An example, could be the QoS or the privacy policies

67

required by an user member of the distributed system. In the Section 3.3

some example applications for distributed offloading decision is given in

order to clarify the concept with practical application.

The offloading framework will be an Avatar middleware service, for

that reason it should be designed considering the system peculiarities and

characteristics. As mentioned earlier, unlike CloneCloud, Avatar is based

on the hypothesis that the mobile devices and the cloud infrastructure can

run the same mobile platform. It is important to keep in mind that an

Avatar application runs in both the endpoints, so the programming lan-

guage classes and libraries are loaded at run-time. This aspect is funda-

mental for the offloading software design because it saves time and net-

work bandwidth avoiding the transferring of the mobile platform and of

the application.

3.3 Scenario

In order to support the statements of the Section 3.2 this section pro-

vides some application scenarios.

An example could be a disaster rescue application. A rescue squad

could be made up of officers and drones. Some of the disaster areas are not

easily accessible to rescuers but , for instance, they could be reachable to

flying drones. The drones can examine the region trying to identify some

life signs or dangers. If something is found they can send a notification

to the squad in order to allow them to help or to mange the problem. An

effective way to scan a area could be to reconstruct a 3D model of the

disaster zone taking pictures or videos from different angles. The nature

of this process is strongly distributed, since every single drone in a specific

area should contribute to the 3D model. The disaster rescue operations

are strongly characterised by fast reaction times and team cooperation. In

this scenario it could be really relevant to react to dangerous or urgent

circumstances.

The human rescuers could be equipped with mobile devices, in addi-

tion the drones could be driven by a Artificial Intelligence (AI) software.

68

The cooperation between human members and robots could be made pos-

sible though a distributed application. So, the overall disaster zone could

be divided in subregions monitored by different members of the rescue

squad. For instance, there could be an human rescuer and multiple drones

in a region. If the officer notice some suspicious objects or shapes it could

take a picture of the object and broadcast it to the drones. The AI software

could evaluate the direction of the picture related to the position of the

human rescuer or other information in order to infer the real position of

the target. After that they could start to scour the surrounding in order to

build a 3D model of the area allowing the rescuer to identify the nature of

the target object.

As mentioned earlier, the nature of this application is distributed, multiple

devices cooperate in order to obtain a common goal. A drone is consider-

able as a mobile device with movement capabilities. The offloading tech-

nology could seriously improves the application execution, the drones and

the mobile devices are indeed equipped with limited resources. The bat-

tery duration in this scenario is really essential, since the drones durability

is related to it. The same consideration is even valid for the mobile devices

of the rescuers. The computer vision functions could be offloaded to the

cloud infrastructure to decrease the execution time and save resources.

Figure 3.4: Rescue app sample scenario. The rescuer needs a low-latency re-
sponse from the drones, since the suspicious object is moving.

In this scenario it is possible to apply multiple offloading policies based

69

on the current situation. The sample code is composed of two main pieces:

a data collecting task and preprocessing operations. The offloading deci-

sions could be applied on the second part of the code according to the QoS

specified by the requester user. For instance, the human rescuers could

specify different condition in order to receive a different result in terms of

latency or quality of the 3D images. In certain situation, as the scenario

shown in the Figure 3.4, the officer could need low latency responses in

order to promptly react to a specific situation. In this case the drones have

to endorse the time of execution instead of the other parameters, such as

battery consumption, bandwidth and quality of the 3D model. So, the

offloading decisions on the single mobile devices of the team will be in-

fluenced by another group member in order to grant a desired QoS. In the

example the preprocessing will be executed on the avatars in order to ac-

celerate the delivery to the requester.

Figure 3.5: Rescue app sample scenario. The rescuer needs high-definition data.

In a different scenario the human rescuers could need high quality 3D

reconstruction in order to check further information on the specified area,

for instance because there are too many obstacles to understand well what

it is happening. A schematic representation of the described conditions

is given in the Figure 3.5. In this case the offloading decision could be

based on the new policy. For instance the preprocessing of the images

could be done in the device in order to acquire more detailed data and

70

not excessively consume the network bandwidth. An alternative could be

to endorse the battery consumption in order to make the drones working

for a longer time. The bandwidth could also be a main factor for other

scenarios with low connectivity.

Summing up, the goal of the thesis project is to design a programming

model and a software implementation to enable to modify offloading deci-

sion of the single devices based on the other member demand. The exam-

ples given earlier are mostly related to QoS of the distributed application,

however as stated previously the privacy could another essential parame-

ter of the migration decisions.

3.4 Offloading Middleware Service

The problem statement of this thesis work is given in the Section 3.2.

This section focuses on how to design the project in order to solve the

requirements of the problem.

The offloading framework should take fully charge of the application

execution flow. It means that the developer could write the application

as a plain as a plain Avatar distributed application. Another fundamen-

tal functionality that the thesis project should provide is the support for

Android native code offloading. More details about the Android platform

are shown in the Section 4.1. Some of the offloading related works pro-

vided classes and methods for the offloading tasks, instead of that the the-

sis project should automatically intercept the code and then automatically

decides where to run it However, the programmer will not lose the control

over the offloading decision and, so it is fundamental to provide a sim-

ple way to define custom offloading policies. Since Avatar project aims

to help the distributed application development the thesis project should

take care not only of the local status of the mobile devices as the related

works, but the offloading decisions should be also influenced by the other

users involved in the entire distributed application. Unlike the common

computation offloading software, the project should not only focus on bat-

tery consumption, network bandwidth and latency for a single device but

71

it aims to improve the average of these for the entire group. It means that

some users could be penalise by a single decision but the average usage of

the resources would be improved by the next decisions.

The computation offloading in certain scenarios is really a significant

improvement for the time of execution and the battery consumption. For

that reason, the decision could be generally to execute the code on the

AVM according to the heuristics shown in the Section 2.1.1 and in the

Section 2.1.2. That is always a wise decision if the focus of our research

would be only on the resources and communication optimization. How-

ever, it is important to consider further concepts. For instance, Avatar has

been designed to provide privacy policy. The privacy could be a blocking

parameter for the offloading decision, so it is important to take this matter

in account. The Avatar model is designed to entirely offload the commu-

nication on the AVM. Therefore, a device cannot straightly reach another

handset without passing through the virtual machines. The GMS indeed

only knows the network location of the virtual machines. So, the thesis

project cannot really influence the intergroup communication. However,

the offloading decisions influence the network bandwidth anyway. The

data necessary to run the code remotely could be too big to be transferred,

in this scenario it is probably better to run the code locally saving band-

width and in some cases even battery. Another similar case is a distributed

application which needs to collect data from devices sensors and use them

for some kind of computation. In some case it could be better to not offload

the sensor streaming in order to keep low the delay and the bandwidth us-

age. For instance, it could be better to use some preprocessing operations

on the data and then execute the main functions on the avatar. Summing

up, the good approach to offloading decision is to find a trade off based

on data location and size, privacy policies and estimated performances.

Further, it is the thesis goal to take the global resources of the group in

account and not only the local state of the device.

72

3.4.1 Design

This section focus on the offloading service design and on its compo-

nents. Some of the offloading related works partition the application in

threads, they are able to run an whole thread locally or remotely based on

different level of decisions. The nature of the Avatar system suggest to use

method offloading. We want to use a mechanism similar to the Java RMI

model. The application partitioning is based on the developer preferences,

so we will provide a set of Java annotations to classify and mark classes.

We will deepen on the programming model provided in the Section 3.4.2.

In order to achieve the goal presented earlier we identified the follow-

ing macro components:

• Code interceptors: The offloading framework needs some tools ca-

pable to intercept the invocation of certain methods or classes in

order to insert the offloading logic around them. The developer

can mark classes or methods and the interceptors should catch their

execution and notify the framework. This behaviour is realisable

through the Aspect Oriented Programming model. As mentioned

in the Section 4.2.1, there are many ways to obtain this behaviour

but the project should provide a lightweight interception avoiding

to slow down the application execution.

• A Decision Maker: This is an intermediate component, after the

interceptors catch the code execution, the framework should evalu-

ate some information, for example profilers data and/or distributed

policies. The decision maker component is practically the brain of

the thesis project and it is the part which influences the offloading

task and its output is a boolean response: migrate the code or not on

the avatar.

• An Offloading Execution Manager: The interceptors are just the be-

ginning of the offloading flow. After a join point is picked up by

a pointcut the decision maker component commands the offloading

execution manager to run the code locally or remotely. If the decision

73

is to run locally the execution manager let the code flow proceed reg-

ularly, otherwise it should take care of migrating the code and keep-

ing the application blocked. Further, it should collect the result from

the avatar and resume the natural execution of the code locally. This

component is also available in the avatar and it takes care to execute

the migrated code and push back the result to the mobile device. It

is really important to maintain transparency during this operations,

the user experience should be not affected by the execution manager

functions and the developer should not manually invoke them.

• Profilers: The decision maker component needs information in order

to take a smart decision. This data are collected partially by profilers,

which observe the state of the device. They can be split in multiple

level with different monitoring target.

• Avatar Communication Interface: As stated previously, the offload-

ing service needs to be integrated with the Avatar system in order

to transfer and synchronised the code execution. Therefore, it is

needed a specific interface in the Avatar middleware services to plug

in the offloading framework. The thesis project needs a point-to-

point communication between the user device and its avatar.

The components introduced above and shown in the Figure 3.6 are

macro parts of the offloading project. In the implementation process, it

will be necessary to split these components in finer grained parts in order

to modularise and to maintain the code.

It is now necessary to deepen some of the macro components pre-

sented above in order to give more detailed information and to identify

better their functionalities

The Decision Maker engine is a fundamental component of our archi-

tecture and it uses different level of information in order to select where

to execute the code. As mentioned earlier, it should bases its decisions on

the profiler information and distributed policies but it should especially

provide a customisation tool for the developer. So, the developer defined

74

Figure 3.6: A representation of the offloading framework components.

policies are really a core instrument of the thesis project, because the de-

cisions could be based on specific parameters impossible to predict with

generic heuristics. For example, a certain applications require to maintain

a high level of privacy, for others could be better to optimise the network

usage and/or the battery energy consumption. Therefore, the developer

could control the decision engine in order to adapt the behaviour on the

specific application case and in addition to assign offloading policies to

single part of the code.

The communication wrapper is a simple component which connects

the offloading functions with the Avatar event-based interaction. The of-

floading framework needs a different kind of communication compared

to the common intergroup communication of the Avatar project. It needs

an end-to-end synchronous interaction in order to send bundle with exe-

cutable code and to wait until Avatar VM response. Naturally, it is possible

to use the common Avatar Network Manager but it is important to define

a certain format of the bundle in order to synchronise the two different

machines: mobile device and virtual machine. In particular, in the Section

3.1.2 it is stated that the communication is always asynchronous, the of-

75

floading needs a synchronous interaction between the two endpoints. The

device which offloaded the code should wait the result before executing

the next operation to not break the sequential nature of the application

code. In order to implement asynchronous call the developer might use

different threads.

Finally, the most important component is the execution manager, it

practically implements all the logic to offload the code. If the framework

decides to offload the code it has to collect information from the Android

Virtual Machine (ART or Dalvik). The needed information are all related

to the run-time state of the Java code, such as parameters of the methods,

state of the objects and type of the results. Thus, the implementation has to

carefully manage this situation in order to make it possible to resume the

execution from one endpoint to the other. Further, unlike a client-server

scenario in the Avatar environment both the mobile device and the AVM

have the same code installed. This would simplify the implementation of

the computation offloading and its performances.

3.4.2 Programming Model

The offloading framework aims is to provides a programming model

to the developer in order to use its functionalities in a simple and high

level manner. As mentioned earlier, the target programming language is

based on the Plain Old Java Object (POJO). The POJO is a software engi-

neering term to describe a Java object not bound by any special restriction

or external class path. In few words, a POJO described in a simple Java

class that not dependent to other classes. Any kind of target logic speci-

fied in the POJO is exclusively related to the final goal, it should not in-

clude utilities or library invocations. A common way to design a POJO

paradigm is to use the Java annotations tools. The developer could indeed

define simple Java classes and he can marks them with some kind of anno-

tation. The framework should locate only the marked class and it should

react with a specified behaviour. In the Section 4.3.1 is shown how to use

Java annotations and how they are designed and their main features.

76

This section focuses on the programming model and how it is de-

signed. The programming model is the access point for programmers, so

it is really important to organise it in a clear and simple way. The imple-

mentation will start from this language definition and it should provide

specific behaviours. Firstly, the developer should specified what part of

the code is subject to the offloading decisions. This annotation is @Remote-

able. A class with the Remoteable annotation specified that all the defined

methods of the class could be offloaded.

@Remoteable

public class MyClass {

public static int zero() {

return 0;

}

public int one() {

return 1;

}

public int two() {

return 2;

}

}

Listing 3.1: The sample code shows a class annotated with @Remoteable.

In the code above the class is marked with the Remoteable annotation, so its

static and virtual methods could be offloaded. The Remoteable annotation

could be applied also to methods. It is indeed possible to not mark the

class and mark just a single method, for example if the developer wants to

offload only this method. In this case the Offloading Execution Manager

will not transfer the state of the object but it will consider exclusively the

77

method scope.

public class MyClass {

public int one() {

return one;

}

@Remoteable

public int two() {

return 2;

}

}

Listing 3.2: The sample code shows a method marked with the Remoteable

annotation.

In order to allow the programmer to specify certain behaviour for spe-

cific methods, there are other two annotations: @onMobileDevice and @on-

Avatar. The first one states that the code should be executed always on the

device and the second one on the Avatar VM.

@Remoteable

public class MyClass {

@onMobileDevice

public static int zero() {

return 0;

}

@onAvatar

public static int one() {

78

return 1;

}

public int two() {

return 2;

}

}

Listing 3.3: The sample code shows a class marked with Remoteable, in addition

two of the defined method are marked with onMobileDevice and

onAvatar, relatively.

In the previous example only the second method is subject to the offload-

ing decision, the methods zero and one are marked with onMobileDevice

and onAvatar annotations respectively.

As mentioned before, the Execution Manager should be capable to

synchronise the state of the offloading object between both the user end-

points. However, the state transferring operations could cause a large

number of different inconsistencies. As explained previously, the offload-

ing scope could be a class or a method, the latter does not need the entire

object state synchronised but only the specified parameters during its in-

vocation. It is essential to specify that if the target of the annotation is a

class, by default the Execution Manager does not send the instance sta-

tus but it will only recreate a new instance of the same class. Naturally,

the programming language so defined could be limited, for that reason it

is possible to mark with a specific annotation the field of the class to be

synchronised. This annotation is SynchronizedField.

@Remoteable

public class MyClass {

@SynchronizedField

79

private int value;

}

Listing 3.4: The sample code applies the SynchronizedField annotation to a

defined field.

In the code shown above, the value will be synchronised when the offload-

ing will take place. The developer would like to select also different syn-

chronisation policies, such as lazy and eager. The lazy policy simply sends

the specified fields when the offloading mechanism starts. The eager pol-

icy transfers the state to the other endpoint every times it changes. For

this kind of synch probably it will be needed a memory cache in both end-

points to keep the information until the real execution.

@Remoteable(SynchType.EAGER) // or SynchType.LAZY

public class MyClass {

@SynchronizedField(SynchType.LAZY)

private int value;

}

Listing 3.5: Lazy and Eager synch policies applied to a Remoteable class.

The synchronisation policy type could be specified as a Remoteable or Syn-

chronizedField annotation argument as shown in the previous example.

As discussed earlier, the developer should be provided of a tool to de-

fine new policy for the offloading decision. The AvatarPolicy interface is

defined for that goal. Every new custom policy defined by the program-

mer should implement this interface and with it its methods. The method

testPrecondition is the function evaluated by the Decision Maker compo-

nent, it returns a boolean value: true to execute remotely and false for lo-

cally. In order to be automatically resolved by the offloading framework,

the new policy should be marked with the DefPolicy annotation in addi-

tion to the AvatarPolicy implementation. In the following example it is

80

defined a simple policy to show how to define a new policy.

@DefPolicy

public class MyPolicy implements AvatarPolicy {

private int batteryLevel;

public MyPolicy(int batteryLevel) {

this.batteryLevel = batteryLevel;

}

@Override

public boolean testPrecondition() {

if(this.batteryLevel <= 20) {

return true;

} else {

return false;

}

}

}

Listing 3.6: The code defines a new policy though the DefPolicy annotation.

The example always denied the offloading except if the percentage level

of the mobile device battery is lesser than a fixed threshold. The developer

defined policies could be applied to methods and classes. For that purpose

it is needed to use another annotation, CustomPolicy.

@CustomPolicy(policyClass = MyPolicy.class)

public int finacci(int number) {

...

}

Listing 3.7: This code applies the custom policy to the specific method.

81

The argument of the CustomPolicy annotation is the Java class object of the

defined policy. It is important to keep in mind that the method annotation

are more priority than the class ones.

3.4.3 Offloading Distributed Decisions

The concept of one to one offloading is implemented in many solu-

tions, the offloading framework of Avatar has different goals. On the

one hand, it is designed to be simple and not intrusive for the applica-

tions development process. On the other hand, the framework introduces

a novel idea more feasible for the distributed applications environment.

As mentioned previously, the Avatar targets software are distributed mo-

bile applications, so we decided to extend the concept of offloading to a

distributed scenario. In a more practical way, the offloading framework

should decide where to execute the code base on global resources. It

means that the evaluation should be done not just on the local status of

the device but considering also the other members status. Each user node

of the distributed application could be exposed to the local offloading de-

cision but also to the distributed decision based on the whole application

state. Giving a simple example: The device of the first user has to run an

offloadable code. The local offloading decision could be to run the code lo-

cally, for instance to save bandwidth. However, a second user desires the

result in the fastest way as possible, so the first user could change its local

behaviour to be quicker in terms of execution time. This decision naturally

will override the first decision but it will be coherent with the first user re-

quest. As mentioned earlier, the developer could specify per each class or

method an offloading behaviour. When the execution reaches the method

marked with Remoteable the Decision Maker component decides where to

run the code. Thus, a first layer of the decision is the local state evalua-

tion, in addition in the second layer the Decision Maker analyses the QoS

required by the other group users and it takes a definitive decision. Sum-

marising, the local decision should be influenced by the other user QoS

demands. For that reason we provide the tools to define new custom poli-

82

cies to the developer. Further, it is possible to define some global policies

to give the programmer a entry level set of policies.

The offloading concept is generally correlated to battery consumption

of the mobile device, network bandwidth usage and time of execution.

This parameters could be also applied to the distributed offloading idea.

In fact, the offloading framework should optimise the average battery con-

sumption of the group, the network bandwidth to communicate and the

total delay caused by the time needed to execute the code. The optimi-

sation should be driven by the QoS demand of the users or other kind of

specification, like privacy or social policies. For example in some cases the

offloading decision could be always to save bandwidth in order to make

the application execution quicker or vice versa.

As mentioned before, it is possible to provide standard offloading poli-

cies based on the Quality of Service demand of the user. In particular a

standard model which focuses on embrace most of the possible scenarios.

This model could be modified and adjusted to the specific application.

Further, it is possible to extend the model including new parameters and

new rules to make it considering more information and alternative cases.

The hypothesis of this model is to have some information from external

profilers or previous executions of the full application. It is indeed not

the goal of this thesis project to implement profilers or algorithms to es-

timate execution time or battery consumption. Some previous research

work as ThinkAir [20] proposes an accurate estimation model for execu-

tion time, battery consumption and network bandwidth. The limitation

of the ThinkAir profiler model is the not re-usability, it is indeed based on

electrical measurements on the device battery and it is currently available

for only two hardware configurations. For that reason, this thesis project

should not focus on the profiler research but it should provide a tool to

define new distributed policies allowing the developer to define his own

rules. Returning to the general model, another necessary hypothesis is to

have the following inputs for the evaluation:

• The battery level of the mobile device;

83

• The battery average percentage needed to run the computation;

• The battery average communication percentage needs to transfer the

information;

• The execution time needed to run locally the code;

• The execution time needed to run remotely the same code;

• The average amount of local data to transfer on the Avatar in order

to run the code and eventually the size of the result;

With this set of inputs is possible to design a simple algorithm which

could applied different decisions based on the QoS specified by the group.

The decision could be based on the simple rules shown in the following

pseudo-code.

Time Execution Decision:

if(TimeCommunication > TimeExecution(Remote)-

TimeExecution(Local)

return Local;

else

return Remote;

Network Decision:

if(LocalData(Input) + LocalData(Output) >

RemoteData)

return Local;

else

return Remote;

Battery Decision:

if(Battery%(LocalExecution)> Battery%(Communication

))

return Remote;

84

else

return Local;

Listing 3.8: Pseudo-code of a policy for offloading decisions.

This three rules should be combined to reflect the specified dynamic QoS

required by the distributed application. For example, a user wants to ob-

tain a result quickly. The weight assigned to the execution time decision

of the other group member should be higher than the battery and network

ones. So, it is possible to compose a complex rule to model a large number

of feasible scenarios in order to achieve better result in terms of perfor-

mance and user experience.

Another possible decision could be related to user privacy policy. For

example a user of a distributed application does not want to transfer some

data on the cloud. For that reason the offloading decision should be influ-

enced by this will and eventually denies the remote execution. In addition

the offloading of a specific user could be influenced by the privacy policy

of one or more other users.

85

Chapter 4

Enabling Technologies

This chapter focus on describing the technical tools and frameworks used

to achieve the goals previously described. Google’s Android has been selected as

mobile platform and in the following chapter it is explained what are its main

features and provided tools for the mobile development. In order to minimise

the impact on the application development and to manage code interception and

injection it is needed to introduce the Aspect Oriented Programming paradigm

and, in particular, the AspectJ framework. In the final part of the chapter there

is an overview on two essential Java tools used to provide a simple programming

model to the final developer.

4.1 Android

Android [27] is a complete and open source platform for mobile de-

vices, supported by Google and owned by Open Handset Alliance. An-

droid was borned to revolutionise the mobile systems, the main goal is

to isolate the hardware layer from the software one. This design has the

positive edge to facilitate the distribution of mobile applications on a mas-

sive scale and it helps to create a big user and developer community. The

approach undertaken by the Android platform has been successful, it is

indeed the most spread worldwide spread platform. In the Figure 4.1 it is

shown that the market has been led by Android in the last three years, in

addition the gap between it and its strongest competitor, Apple’s iOS [28],

86

is incredibly large.

Figure 4.1: In the graph is shown the percentage of adoption for the most relevant
mobile operating systems in the last three years.

Android could be considered a complete platform because it provides

a great variety of tools, software and drivers for a large number of smart-

phones, tablets and many kind of mobile systems. It supplies a set of tools

and a stable framework to develop quickly and simply mobile applica-

tions. The Android SDK is the only mandatory software to develop apps

for smartphones, in addition the Android Platform Tools contains an em-

ulator, so, it is possible to debug and to test applications without a real

handset. By the way, for our research project it will be necessary to test

on a actual device in order to measure and test the power consumption

and cellular network usage in a real environment. For what concerns the

user support, Android supplies simple interfaces without forcing the cos-

tumer to know specific configurations and to set up complex parameters.

The platform also is an excellent solution to manage the hardware and to

implement drivers for the manufacturers of this industry.

As mentioned earlier, Android comes with an open source license, in

few words the available tools are totally free from ownership, from the

hardware management to the application level. So, it is possible to look

into and to eventually modify the implementation of every level of the An-

droid stack, such as native libraries, application framework and user level

applications. More in details, the Android’s license belongs to business-

87

friendly (Apache/MIT) family, so everyone could freely extend, modify

or use the platform for every kind of goal. A lot of third part libraries

has been inserted in the Android’s stack under new terms of license. This

phenomenon has been pushed by the will to integrate and constantly up-

date the Android platform features. The developer has free access to every

level of the open-source platform, he could exploit this Android peculiar-

ity to deeply understand and eventually to modify the behaviour of the

system. The produced modifications and extensions are not strictly forced

to be published or presented to the community. Moreover, as mentioned

previously, for a producer is simple to import the Android stack on his

handset.

Android is exclusively a mobile platform, this decision was made be-

cause a mobile device has totally different limits compared to desktop and

enterprise systems. The mobile handsets are in fact smaller in terms of

size, this peculiarity causes lower memory capability and computation

performances. In addition, they have to deal with battery consumption

which represent a further constraint on applications development. Since

the platform has been designed for every kind of mobile device, Android

does not establish or specify any preconditions on the screen size or reso-

lution, the chipset or any other technical specification.

Google decided to invest resources on the Android project, that be-

cause Google is a media company and its revenue are mostly due to the

advertisement market. The big company aims to be the primary service

provider and to fairly play against other competitors. This philosophy is

totally against the tide of some other industries which mostly base their

business on the license revenues. The Open Handset Alliance is a non-

profit cooperative composed of big hardware manufacturers in the mobile

systems market, such as HTC, Asus, Intel, Motorola, NVIDIA, and some

network provider as T-Mobile. The main goal of this cooperative is to in-

novate and to provide a good experience to the final costumer.

88

4.1.1 Architecture

The Android architecture, as a common desktop systems, is composed

of multiple layers. It is possible to see in the Figure 4.2 a concise and

simplified representation of the Android structure.

Figure 4.2: Android Architecture.

The core of the system is based on the Linux Kernel (3.10) and it helps

to manage the abstraction gap between the device hardware and the ap-

plication framework. The handsets manufacturers could directly work on

this level in order to set up and to install drivers for hardware communica-

tion. The abstraction layer allows to isolate the upper levels from the hard-

ware specifications and details. Thus, it is possible to develop high level

applications and to grant a user experience without being worried about

the hardware. The Android team has selected the Linux kernel in order to

ensure a good reliability of the system lightly penalising performances. It

is indeed a fact that users generally prefer better stability for the telephone

dealer application even if the device would be partially slower. In addi-

tion to basic apps, the team wants to provide more refined and evolved

services, in this direction Linux proved to be worth supporting all require-

ments. Linux is also know to be the best operating system under a open

source license.

In the upper level, Libraries, a set of fundamental libraries and soft-

89

ware tools. For instance, there are specific libraries to manage the 2D and

3D rendering, the browser engine WebKit and to support database access,

SQLite.

The run-time environment is composed of a core library and a virtual

machine. The Android virtual machine is a modified version of a common

Java machine, in the past it was a Dalvik VM but in the latest version it

is an Android Runtime virtual machine, ART. Dalvik VM, and then ART,

is designed to work and to manage low performances hardware, such as

current mobile handsets. Mobile specifications and performances are im-

proving quickly, they are equipped with multi-cores processors and up to

4 Gb of RAM. Linux is a multi-user operating system, so every application

corresponds to one single user. In fact, it is assigned a unique user ID per

each application, in few words there is only one user allowed to access the

application files. There is also the possibility to assign the same user ID to

multiple applications but the Android developers strongly discourage this

strategy except if there is a specific need as an heavy low level communi-

cation between two applications. In order to guarantee a stable system,

every single application is executed in a unique Linux process. This ar-

chitecture is known as sandbox and it protects the system from potential

dangerous third party applications. In the upper level there are managers

and base system apps, they allow to manage user applications installation,

file system support and telephone dealer services. This level is also called

Application Framework.

In the top level, Application in Figure 4.2, there are user applications.

They are all written in Java programming language and executed in a vir-

tual machine. A simple example could be the dealer application, another

one could be the calendar app. It is important to specify that the Android

application source code is different from the Java ME one. In fact, it is pre-

viously compiled and translated to byte code and then optimized for the

Android virtual machine using a dex format.

90

4.1.2 Application Framework

In order to deeply understand the behaviour of the Android platform

it is needed to deepen the Application Framework. In particular, it pro-

vides useful tools for the thesis project implementation. It indeed supplies

a rich environment composed of a large number of services, they are sig-

nificant for the software development. Inside this level it is possible to find

a great variety of Java libraries, many services which are called managers

and which allow the communication between applications and system re-

sources, such as sensors, WiFi and cellular network hardware.

It is also important to briefly introduce the main resources provided

by the Application Framework in order to help the explanation of the of-

floading framework later. These entities are: activities, intents, services,

broadcast receivers and AsyncTasks:

• Activities: The activity is a fundamental component of every An-

droid application, it takes care of the user interactions. Every activ-

ity represent a single interface shown to the user, it is similar to a

web page. Generally a common application has multiple activities.

The main activity is always present in every Android application as

a homepage for a website and it could show contents or also launch

new activities. When a new activity is launched, the Android Frame-

work pauses the previous activity, it imports the UI objects from the

XML layout file and it allocates a certain amount of RAM memory.

By default every activity of the same application is executed in the

same Linux process but it is even possible to specify a different be-

haviour modifying the Android Manifest file. The activities manage-

ment is an expensive job, so the Application Framework provides a

specialized service: the Activity Manager. This component has the

task to create, to destroy and to manage every single application of

the system. At this point it is important to describe a bit the life cycle

of an Android activity:

– Starting State: the manager starts the initialization functions

after checking the application is not runnig. In few words, it

91

provides memory and resources to the new activity.

– Running State: the activity is currently visible on the device

screen and it owns the focus, it is managing the user interaction.

During this state the running activity has the maximum priority

and it can count on a proper amount of resources in order to

provide the best user interaction. Only one activity per each

application could be in the running state.

– Paused State: the activity has not the focus any more but he

has still the maximum priority because it is visible to the user.

A simple example could be a dialog box that pauses the activity

taking the focus for a short time.

– Stopped State: the activity is now not visible. There is no user

interaction, so the framework deallocates the memory assigned

to it. This state could be followed by a new running state or by

the destroyed state. In few words, it is possible to destroy or to

restart a stopped activity.

– Destroyed State: the manager automatically decides that an ac-

tivity is not necessary any more and it deletes it from the mem-

ory. The activity before being totally destroyed could run func-

tions to save data or its state;

A more detailed representation of the life-cycle flow is shown in Fig-

ure 4.3.

92

Figure 4.3: Detailed flow diagram of an Android activity life-cycle.

• Intents: An intent is simply a message which is sent to Android

components. It could specify to launch a new activity, to start or

to destroy a service or it could be used as a broadcast message for

the Broadcast Receivers. The Intent is an asynchronous event, so the

sending code could keep on executing without waiting for a reply.

There are two different categories of intents: explicit or implicit; for

the first kind it is needed to specify the addressee of the message,

instead for the second kind it is possible to specify only the type of

the recipient.

• Services: the services are designed to execute the same functions of

an activity but without the user interaction. They run in background

and they were introduced to be independent from the UI. In the one

hand, a Service has a simpler life cycle than an activity, it can only

be launched or destroyed. In the other hand, it is true there is less

control on them for the developer and for the system in itself. Thus,

it is really important to manage well the concurrent access of services

to shared resources, such as RAM and CPUs.

• Broadcast Receivers: The Broadcast Receiver is an Android imple-

mentation of the common Observer pattern. The receiver could be

registered on the Application Framework for a certain kind of in-

93

tents. It will be awaken by the system only after receiving the desired

type of intent, it means that it will be mostly in the standby state.

Since the Broadcast Receiver does not have a UI or a reserved mem-

ory space it is only able to execute the specified code for a proper

event. For this reason it is possible to compare it as a callback object.

4.2 AspectJ

In the Section 4.1 Android was introduced as a mobile platform for

application development. This section focus on AspectJ [29], a Java im-

plementation of the Aspect Oriented Programming paradigm. A funda-

mental tool to manage interception and injection of code maintaining un-

changed the original application. In order to understand how AspectJ

works and how it is designed, it is necessary to introduce the software

engineering Aspect Oriented Programming pattern. Finally, this section

will focus on two important tools of the Java language: Annotations and

Reflection. These two Java features help to provide a easy way to develop

applications without mixing the offloading framework code with the busi-

ness logic.

The AspectJ project is a seamless aspect oriented extension to Java [29].

The previous sentence states that the AspectJ’s goal is to support the As-

pect Oriented Programming, in addition that it is developed in Java. The

company which released AspectJ is Xerox PARC (Palo Alto Research Cen-

ter Incorporated). PARC is also well-known for other various contribution

to information technology and hardware systems. The AspectJ software is

totally open-source, it is indeed available in Eclipse Foundation projects.

It is fully supported by Eclipse IDE and thanks to that, AspectJ is de facto

a standard for AOP in the Java environment. Its success is mainly related

to his simplicity and usability for the developers. Moreover, AspectJ is not

only a Java framework but it is a programming language extension to Java.

It uses a similar syntax to Java but it has different goals and naturally it is

more focused on the AOP paradigm.

AspectJ is widely used from several well-known frameworks, such as

94

JBoss AOP [30], Nanning, Spring AOP [31] and AspectWerkz [32], the lat-

ter has been included in AspectJ 5. From a technical point of view As-

pectWerkz is significant for the thesis work because it is quite different

from the AspectJ idea. In fact, while AspectJ defined a new language to

specify constructs and models, AspectWerkz uses exclusively Java Anno-

tations to achieve that goal. This feature of AspectWerks, also available in

AspectJ 5, is really useful for the offloading framework implementation,

in particular because it is strongly compatible with the Android develop-

ment, this aspect will be presented later.

Before proceeding to explain in details the AspectJ custom language

and its features, we need to briefly introduce some notion about the theory

behind Aspect Oriented Programming.

4.2.1 The Aspect Oriented Programming

The Aspect oriented programming (AOP) has been proposed as a tech-

nique for improving separation of concerns in software development. AOP

is the result of a combination of procedural programming and object ori-

ented programming (OOP) and it is considered a significant improvement

in software modularity [33].

The Aspect oriented programming core idea is that while the inheri-

tance mechanism of the object-oriented programming is extremely impor-

tant, it is often unable to modularise all aspects of a complex system. For

that reason, AOP focuses more on system modularity in order to naturally

spread out business logic of the software from support or utilities mod-

ules.

In order to achieve the goal previously discussed, AOP provides lan-

guage mechanisms and tools which are able to represent the crosscutting

nature of a complex system, such as file system access, database opera-

tions, remote communication support and etc. Thanks to AOP it is finally

possible to program crosscutting concerns in a modular way obtaining

simpler code, easier to develop and maintain, and potential reuse of the

modules.

95

Before delving deeply into AOP, some standard terminology should

be introduced to help understanding the concepts [34]:

• Cross-cutting concerns: In the OOP model, objects are designed to

solve a single specific task or function but it is also true that they

often share common secondary requirements. As mentioned earlier,

a simple example could be the data-access layer or the interactions

with the user interface. Thus, shared utilities and standard function-

alities tasks are properly called Cross-cutting concerns;

• Advice: An Advice is an additional portion of code that the devel-

oper would like to add to the existing code. For instance, a classical

timer behaviour, so it should be started before a certain piece of the

software and then it should be stopped at the right moment. In par-

ticular there are three kind of advices: before the code, after the code

or around the code (before and after);

• Join point: This term refers to the specific point of code execution in

which the developer would like to apply the cross-cutting concern.

Referring to the previous example, a point-cut is reached when the

timer should start, and another point-cut is reached when the timer

should stop, and for example it prints a log message.

• Pointcut: A Pointcut is a predicate that matches join points. More

specifically, every advice is related to a certain expression, the point-

cut, so every time join point is reached, the related rules are evalu-

ated and only if the result is positive the advice is executed.

• Aspect: The combination of the point-cut and the advice defines an

aspect. For instance the timer functionality added to the initial code.

• Target object: A target object is an object advised by one or more

aspects. In literature it is also termed advised object.

• Weaving: Weaving is the fundamental operation of the AOP, it is

defined as the action to assemble modules in their final form. The

96

weaving operation is regulated by the rules defined in the aspects.

An important distinction between weaving types is when this oper-

ation is executed: compile time or run-time.

The aspect oriented programming has a great potential for development

uses and it is indeed possible to add fields, methods or interfaces to exist-

ing classes at compile time or even at run-time [35].

The AOP could be implemented following several different strategies

and the result would be fundamentally various in terms of performances

and overhead. I am going to list different solutions in order to highlight

the differences between them:

• Dynamic Proxies: This solution is widely used, for example the fa-

mous lightweight middle-ware Spring has adopted it. It is based on

the software engineering Proxy pattern and it exploits the Reflection

mechanism of OOP languages, such as Java and C# to implement

the AOP paradigm. More in details, the proxy is a surrogate or del-

egate object for an underlying object. A proxy has the capability to

force method calls to execute in a certain execution moment without

modifying the target object. So, it is possible to dynamically define

proxies and to encapsulate target objects in them. As it is shown in

Figure 4.4, to properly exploit this pattern is needed to define in-

terfaces for target objects and to implement the proxy classes. In

particular, the proxy class should implement the same interface of

the target object in order to keep unchanged the way external ob-

jects collaborate with him. The last point is actually the key to al-

low interaction with other objects without affecting the original code.

97

Figure 4.4: Proxy pattern representation.

• Dynamic Byte Code Generation: It is a low level implementation

of the AOP. It generates dynamic subclasses and the target methods

have hooks to invoke advices. This solution is also used by Spring

framework. In other words, the AOP compiler inserts inside target

classes references to advice objects, so when the code is called it au-

tomatically calls the right advice [36].

• Java Source Code Generation: It is a Java implementation of AOP.

It is also a low level strategy, it practically creates new code sources

including the crosscutting code. It is used in some EJB implementa-

tions and it is an extended implementation of Dynamic Byte Code

Generation.

• Custom Class Loader: It is provided a custom class loader able to

inject advices at loading time, in other words when the target classes

are loaded. Adopting this solution it is important to keep in mind

that he might cause issues with class hierarchy management. It is

used by AspectWerkz.

• Language Extension: The most famous example of this strategy is

indeed AspectJ project. It defines a new language or an extension of

a programming language in which pointcuts and aspects are define

98

as language classes or constructs. In this way this solution is able to

provide an important feature: the inheritance between aspects.

4.2.2 Custom Language

After introducing the theory and the basic concept about Aspect-oriented

programming in the Section 4.2.1, it is possible to proceed explaining more

in details how AspectJ project is designed and what are its major features.

AspectJ adds to Java just one new concept, a join point [37]. A generic

AOP framework behaviour is shown in Figure 4.5, it is also suitable to

describe AspectJ architecture. In the Figure 4.5 there are two source files:

the Java source and the aspect definition file. The AOP compiler inject new

AOP advices , with the cross-cutting concern code, inside the Java source

files. It also resolves pointcuts in order to manage the weaving function.

So, every time the execution reaches a join point which verify the pointcut

expression the compiler inject the advices code in the Java class. The result

of this process is a new modified binary file which include business logic

of the application and crosscutting concerns.

Figure 4.5: A general Aspect-oriented programming framework architecture.

The AspectJ project add new constructs to the standard Java language

in order to represent the basic concepts of the AOP. Thus, it defines point-

99

cuts, advice, inter-type declarations and aspects. An important point is that

pointcuts and advices are resolved at run-time, inter-type declarations are

statically injected in the program class-hierarchy and aspects are the struc-

ture to define these new constructs. In order to deeply exploit the poten-

tiality of AspectJ, we are going to show all the principal AspectJ language

constructs and some related example to support the explanation.

As in AOP also in AspectJ a Pointcut picks up certain join points in the

program execution flow.

call(void Point.setX(int))

Listing 4.1: Call API of AspectJ.

The previous code defines a new pointcut which picks up every join point

with a signature corresponding to void Point.setX(int). It is possible to

combine more pointcuts and to obtain complex and specific behaviours.

AspectJ also allows developers to define their own named pointcut, for

example:

poitcut move(): call(void Point.setX(int)) ||

call(void Point.setY(int));

Listing 4.2: Definition of a new AspectJ pointcut.

In few words, the code defines a pointcut which picks every join point

with one of the specified signatures. The pointcuts shown earlier are gen-

erally explicit because the developer has to fully specify the signature

of the method. It is also possible to define a poincut without specifying

the whole method name but just using wildcards, properties of the related

method. The AspectJ’s team named this feature property-based crosscutting.

A simple example is to pick up join points referred to every method which

starts with get and which is defined by the class Point regardless the pa-

rameters signature.

100

call(void Point.get*(..))

Listing 4.3: Definition of a generic pointcut.

In some case the developer would like to pick up only methods owned, or

better defined, by a certain class. Hereunder, there is a simple example to

achieve this goal.

call(* Figure.*(..))

Listing 4.4: Pointcut which picks up every method of the Figure class.

In this case we are also using the property-based crosscutting avoiding in-

deed to specify the whole signature. Finally, for what concerns pointcuts

definition, it is really important to introduce another AspectJ core func-

tionality: cflow. It is not another wildcard as the previous examples, but it

is a different tool able to identify join points contained in other join points

context. Trying to clarify the concept, pointcuts defined by the cflow con-

struct are able to pick up join point on whether they occur in the dynamic

context of other join points. So, we are establishing a new pointcut which

depends on a join point context, that could be defined as a more dynamic

approach for pointcuts definitions.

cflow(start())

Listing 4.5: Sample of the AspectJ cflow API.

This pointcut picks up each join points which occurs after that the method

start is called and before it returns a result.

Another fundamental construct is the advice. As mentioned earlier,

pointcuts are able to pick up join points but they do not execute any type of

code. So, in order to define the actual behaviour of a crosscutting concern

it is needed to exploit the AspectJ advice construct. An advice is the clue

101

that can bring together a pointcut and a certain defined code. This code is

executed at each join points discerned by a pointcut. AspectJ provides a

large number of advice types. So, it is relevant to define when the advice

should be executed. In a simpler way, the advice execution depends on

how it is defined by the developer: before, after or around the join point.

For instance:

before(): start() {

System.out.println("Starting...");

}

Listing 4.6: Definition of a advice: before.

From the code above, it is clear that the standard Java code included in

the body of the construct represents the crosscutting concern function. In

the example it is specified that before the execution of the method start

the developer wants to print a message on the console. It is also possi-

ble to define the advice with after or around and to obtain an equivalent

behaviour.

The Inter-type declarations are a powerful tool, they are able to mod-

ifying classes and their hierarchy acting outside the standard code. It is

indeed possible to merge multiple classes or also to modify the inheri-

tance relationship between them. The inter-type declarations are statically

managed, it means that they are resolved at compile time and not at run-

time. They could help to define a crosscutting concern at once and then

the developer could insert methods and fields necessary to implement a

new capability inside the target classes using inheritances or interfaces.

An example could help to clarify this powerful feature.

aspect PointObserving {

private Vector Point.observers = new Vector();

public void notifyObservers(Point p, Screen s) {

102

s.display(p);

}

public static void addObserver(Point p, Screen s

) {

p.observers.add(s);

}

}

Listing 4.7: Sample of the Inter-type declaration provided by AspectJ.

The example shows how to realise an observer object through an aspect

and inter-type declarations. In practical inside the class Point it is created

a new private field observers, visible to the encapsulating aspect PointO-

bserving. In order to fully implement the observer pattern it should be

defined a specific advice that notifies the observers registered at a certain

join point.

after(Point p): changes(p) {

for(Screen screenObserver : p.observers) {

notifyObserver(p,screenObserver);

}

}

Listing 4.8: Observer pattern implemented using the Inter-type declarations.

In this case, the advise notify the observer Screen after the creation of a

new object Point.

The Aspect construct is implicitly shown in the previous example. It

wraps advices, pointcuts and inter-type declarations inside a language

module. This module is the complete representation of a cross-cutting

concern in the AspectJ custom language. It is similar to a Java class and it

could define methods, fields and eventually initialisers. By default AspectJ

103

instantiates aspects as a singleton object and its internal advices could ac-

cess to a non-static state as in Java classes. In addition it is possible to

change the standard behaviour of aspects initialisation to achieve more

complicated and specialised instantiations.

4.2.3 Annotation-based Development

The Section 4.2.2 is focused on an overview of the basic constructs of

the AspectJ custom language [38]. For the thesis project is particularly rel-

evant to apply the AspectJ framework to a mobile environment, more pre-

cisely on the Android platform. As already mentioned, AspectJ 5 includes

the AspectWerkz project. Therefore, AspectJ inherited the annotation-

based definition for aspects implemented by the AspectWerkz develop-

ers. The adoption of annotations helps to achieve the thesis goal because

it is possible to compile the final application using a regular Java 5 com-

piler, or a newer version. The weaver function is executed only after the

standard Java compilation, for instance introducing an additional build

state or a custom class loader. For the thesis project it is not needed to

deepen the whole AspectJ annotation-based language and all its features

but it is better to focus on aspect definition. For this goal, the AspectWerks

annotation-based definition is the best solution.

As it is done in the Section 4.2.3, I am going to explain some feature

of the annotation-based language in order to show the tools that are going

to be used in the thesis project implementation. A new aspect could be

defined using the org.aspectj.lang.annotation.Aspect annotation.

An example:

@Aspect

public class MyAspect {}

Listing 4.9: Sample usage of the Aspect annotation.

Therefore, to be consistent with the Section 4.2.2 it is shown its equivalent

for the AspectJ custom language:

104

public aspect MyAspect {}

Listing 4.10: Definition of an aspect using the AspectJ common language.

For the sake of simplicity, in the following examples it will be only shown

the annotation-based definition. In order to define a new pointcut it is

needed the org.aspectj.lang.annotation.Pointcut annotation.

@Pointcut("call(* *.*(..))")

void anyMethodCalled() {}

Listing 4.11: Definition of a sample pointcut using the Pointcut annotation.

In the code above is defined a pointcut using the related annotation. The

argument of the annotation is the body of the specific poincut. This point-

cut simply picks up every method of the application. Generally, in a real

environment the developer will defined meaningful rules. For what con-

cerns the advice definition, AspectJ provides three different annotation

based on the execution time:

• org.aspectj.lang.annotation.Before;

• org.aspectj.lang.annotation.After;

• org.aspectj.lang.annotation.Around;

An example for the advice before is:

@Before("anyMethodCalled()")

public void () {

System.out.println("Method called!");

}

Listing 4.12: Advice definition using the Before annotation.

105

This advice is really simple but it highlights that the annotation argu-

ment is a pointcut defined previously. In other words, if AspectJ asso-

ciates this advice to every methods of the application, and the final re-

sult is a console message every time a method is called. It is also possi-

ble to define inter-type declarations with the annotation-based language.

The AspectJ documentation clearly states that inter-type declarations in

the annotation-based language are limited. This decision has been made

because the developer team wants to support compilation of AspectJ ap-

plications through a common Java 5 compiler. Thus, it is possible to de-

fine only inter-type declaration backed by interfaces, which means it is

not possible to introduce new constructors or fields. In addition is not

possible to call modified classes if they are not already woven and avail-

able in a binary form. By the way, this limitation does not affect the thesis

project because it is possible to entirely manage the implementation using

the limited inter-type declarations. It could be sufficient to show a com-

plete example of the inter-type declaration construct.

@Aspect

public class MoodIndicator {

// this interface can be outside of the aspect

public interface Moody {

Mood getMood();

};

// this implementation can be outside of the

aspect

public static class MoodyImpl implements Moody {

private Mood mood = Mood.HAPPY;

public Mood getMood() {

return mood;

}

106

}

// the field type must be the introduced

interface. It can’t be a class.

@DeclareParents(value="org.xzy..*",defaultImpl=

MoodyImpl.class)

private Moody implementedInterface;

@Before("execution(* *.*(..)) && this(m)")

void feelingMoody(Moody m) {

System.out.println("I’m feeling " + m.getMood

());

}

}

Listing 4.13: A sample of code which shows the usage of Inter-type declaration

in the AspectJ annotation-based language.

First of all it is needed to define an interface and a specific class which

implements it. The org.aspectj.lang.annotation.DeclareParents is a inter-

type declaration, the value argument specifies the target of the annotation,

in our case every class member of the org.xzy package. The second argu-

ment defaultImpl represents the real class implementation of the interface.

The target of the annotation is the field of the Moody interface. In the last

part of the code we are defining a new advice. This advice called feeling-

Moody is picked up by the pointcut defined above it. The specified point-

cut picks up every methods of the application, when it is executed and not

called as the previous examples. In addition, we have the this operator

which imports inside the advice the aspect object in itself. So as sown, it

is possible to use the field implementedInterface as a standard Java field in

the advice scope. Therefore, with this mechanism it is possible to define

several scenarios and it helps to maintain unchanged the standard Java

classes and methods.

107

4.3 Java Language Tools

AspectJ and some of its features are presented in the Section 4.2. In

addition to AspectJ it is also needed some support from the Java language

in order to provide a simple programming model for the offloading frame-

work. So, the developer should not manually call the framework classes in

order to execute the offloading functions and utilities but he could define

plain Java Objects and leave all the complexity to the framework.

On one hand, the offloading software need a tool able to mark classes

or methods and then to catch join points through AspectJ. Finally, the

framework could invoke some advice to implement the crosscutting con-

cerns, that is the offloading tasks.

On the other hand, the thesis project also needs a run-time tool to mod-

ify and to obtain information about living objects and their states. The first

requirement could be fulfilled by the Java Annotations, whereas the sec-

ond could be feasible using the Java Reflection.

4.3.1 Java Annotations

The Java annotations are a form of meta-data which provide additional

information about the program. The annotations are used similarly to

standard comments, in few words they are not a part of the source code.

For this reason they cannot directly influence the behaviour of the code.

The annotations could be affixed to the following Java constructs: classes,

methods, variables, parameters and even packages. They could be con-

sidered as an alternative way to define instructions for the Java Virtual

Machine(JVM) and compiler [39]. Thus, there are three main categories to

distinguish annotations:

• Compiler instructions: they are able to influence the Java compiler

behaviour, for this specific category of annotations the standard Java

Development Kit provides three built-in instances: @Deprecated, @Over-

ride and @SuppressWarnings;

• Build-time instructions: A build-time annotation could ask a build

108

software, such as Ant, to generate and/or to compile a specific source

code, to make a new formatted file or to manage packaging into JAR

files. This kind of annotation is used by middlewares, such as JBoss,

to generate deployment files.

• Run-time instructions: The annotation types introduced earlier are

not able to provide information at run-time. In order to supply this

functionality, Java allows to define new custom annotation and to

keep them available during the program execution. The only way to

access to these annotations is the Reflection;

As mentioned earlier, is not possible to affect directly the behaviour of a

Java program using the annotation at run-time. This assertion is not totally

correct, it is indeed possible to use run-time annotations to mark language

construct and then decide to change the program execution flow. This

functionality is possible through the Java Reflection which is deepened in

the Section 4.3.2.

At this juncture, it is possible to introduce some annotation using some

examples.

@Override

public void run() {}

Listing 4.14: Override annotation sample code.

This certainly is the commonest built-in annotation and as mentioned pre-

viously, this annotation is a compiler instruction. In few words, it specifies

that the marked method has to replace the respective superclass one.

There are many built-in annotations and it is not fundamental for the

thesis project to present them all. So, I will present only part of them

needed for my thesis project. It is possible to define custom annotation. In

fact, Java provides custom annotation definition in order to mark classes,

fields and methods. In order to define a new annotation it is provided a

built-in annotation @interface.

109

@interface Author {

String name();

String date();

String team();

int group();

int version();

String[] collaborators;

}

Listing 4.15: Definition of a new annotation.

In this way we are defining an annotation, Author which contains several

information about the marked code.

@Author(

name = "John Paul",

date = "11/7/2015",

team = "UI",

group = 3,

version = 2,

collaborators = {"Jack Doe", "Frank James"}

)

public class Clazz implements SuperClazz {}

Listing 4.16: The sample code applies the Author annotation to the target class.

The previous code applies the defined annotation to a class, all the proper-

ties are filled with related data. As annotation properties is possible to use

Java primitive types and strings. There is no support for inheritance be-

tween annotations. On the other hand, an annotation could be a property

of another one. In addition is possible to mark an annotation with another

one, this feature allows to add information and/or rules to a custom an-

notation definition. For example, it is relevant to present the @Retention

110

annotation. It is fundamental to specify what category of annotation the

developer is going to define.

@Rentention(RetentionPolicy.SOURCE)

@interface Author {

String name();

String date();

String team();

int group();

int version();

String[] collaborators;

}

Listing 4.17: Retention annotation sample code.

The example annotation is marked with the enumeration RetentionPol-

icy.SOURCE, it means that the related information is only visible in the

source level, so generally they meant to be used only by IDEs. The Renten-

tionPolicy has three different value:

• RetentionPolicy.SOURCE: as I said, this part is available only in the

source level;

• RetentionPolicy.CLASS: The marked annotation is maintained at compile-

time but not at run-time;

• RetentionPolicy.RUNTIME: The information is kept at run-time and

also at compile-time;

With the @Target annotation it is possible to specify what are the constructs

on which the developer wants to apply the defined annotation.

@Target({ElementType.TYPE})

@Rentention(RetentionPolicy.SOURCE)

@interface Author {

111

String name();

String date();

String team();

int group();

int version();

String[] collaborators;

}

Listing 4.18: Target annotation sample code.

The above example shows the @Target annotation and its argument is an

array of enumeration ElementType which represent the targets type of the

custom annotation. In particular ElementType values are:

• ElementType.ANNOTATION TYPE: can be applied to an annotation

type;

• ElementType.CONSTRUCTOR: can be applied to a constructor;

• ElementType.FIELD: can be applied to a field or property;

• ElementType.LOCAL VARIABLE: can be applied to a local variable;

• ElementType.METHOD: can be applied to a method-level annotation;

• ElementType.PACKAGE: can be applied to a package declaration;

• ElementType.PARAMETER: can be applied to the parameters of a method;

• ElementType.TYPE: can be applied to any element of a class;

There are more features available to extend the annotation mechanism, for

the sake of my project it is not needed to deepen further Java annotations.

4.3.2 Java Reflection

An overview about the Java annotations was given in the Section 4.3.1.

As mentioned earlier, the run-time annotation type needs to use the Java

112

Reflection ability. Therefore, the reflection core features will be presented

in this section.

The Reflection is a special ability of a software to examine itself during

its execution and to modify eventually its structure or behaviour. Several

languages are equipped with the reflection, such as Java, C#, PHP, Perl

and Python. For the thesis project the reference environment is the object

oriented programming, in particular Java. In this scenario the reflection

is able to inspect classes, methods and fields at run-time without any pre-

vious information, such as their names and types [39]. In addition it also

allows to instantiate new objects during the execution. It is important to

keep in mind that the reflection partially modifies the common approach

to OOP, a program supported by this type of mechanism is indeed more

dynamic than a common one. Using the reflection the developer could set

up the program ignoring names and details about classes, methods and

field. In fact, the goal is to discover this information at run-time gaining in

terms of adaptability. For that reason, the reflection is really a useful tool

for software testing and meta-programming.

Object myObj = MyClass.class.newInstance();

Method myMethod = myObj.getClass().

getDeclaredMethod("myMethod", args);

myMethod.invoke(myObj);

Listing 4.19: Java Reflection APIs sample code. It defines a new instance of

MyClass and then extract a defined method in order to invoke it

later.

In this example there are shown two important features of the Java re-

flection: a new run-time instantiation and a run-time access to a declared

method of the related class.

Another important ability of the Java language is the introspection, it

is similar to reflection at first glance, however they cannot be considered

equivalent. The introspection is the ability to examine types and proper-

113

ties of living objects at run-time. Therefore, the introspection is an addi-

tional feature which combined with the reflection one is a powerful tool-

box to improve the software adaptability.

...

if(myObj instanceof MyClass) {

MyClass myClassInstance = (MyClass) myObj;

myClassInstance.myMethod();

}

Listing 4.20: The code checks the implemented class of a run-time object.

In the example above the program checks if the object is an instance of the

class MyClass and, in the positive scenario, it invokes the desired method.

Finally, it is useful to give an example about how to modify the value of a

field at run-time.

Field field = MyClass.class.getDeclaredField("name"

);

\\ if the field is private it is possible to

\\ force it to public.

field.setAccessible(true);

Object value = field.get(myObj);

System.out.println(value);

field.setAccessible(false);

Listing 4.21: The sample code modifies a field of a run-time object changing the

its accessibility.

The Java language allows the developer to modify the accessibility of a

certain field in order to manipulate its value using the reflection at run-

time.

In conclusion, the reflection and the introspection are two interesting

abilities of Java and some other OOP language. In particular,these two

114

programming language abilities will seriously help the implementation of

the offloading framework proving tools to add or to adapt dynamically

the behaviour of the Android application.

115

Chapter 5

Project Architecture

The Chapter 3 focuses on the design of the thesis project. This chapter de-

scribes the implementation choices and details of the project. In the first section of

the chapter it is introduced the architecture implementations and its related com-

ponents. The second section starts with a presentation of test applications used

to verified the designed software of the thesis and its performances. The adopted

metrics and results are included in the second section of this chapter.

5.1 Architecture

In the Chapter 3 the thesis software is described from a high-level

point of view. The macro components of its architecture are listed and

their features are described. It is now possible to deepen the components

and to explore some development choice to achieve the desired goals. The

first part of the section focuses on the Interceptors, as mentioned previously,

they are necessary to pick up a specific method execution and pre-execute

or post-execute the offloading logic.

Following the application flow the intercepted code is forwarded to the

Decision Engine component, which performs the task of taking the of-

floading decisions.

The Decision Engine forwards decisions to the Execution Manager. While

the Decision Engine could be seen as the brain of the offloading service,

the Execution Manager could be compare with the system hearth.

116

5.1.1 Interceptors Implementation

In the Section 4.2 the Aspect-oriented programming, and in particu-

lar, the AspectJ framework are presented. As stated earlier, the AOP is

a software engineering pattern designed to decouple in an effective way

the business logic of the application from the corss-cutting concerns. The

Section 4.2.1 presented the Dynamic Proxy pattern, it makes possible the

interception logic and it is natively support by the Java programming lan-

guage. Since the target of the project are Android apps, the referenced

native language is Java. So, the suitable solutions for the interception are

two, and are both valid: Java Dynamic Proxies or AspectJ framework.

The Java Dynamic Proxies are extremely simple to configure and test.

In the Figure 4.4 is shown the model of the software engineering Proxy

pattern. The target object and its related proxy should implement a com-

mon interface, this is necessary to keep transparent the proxy invocation

on the behalf of the target. The proxy concept is implemented by the

java.lang.reflect.Proxy class. In order to intercept the code it is also needed

to implement the interface java.lang.reflect.InvocationHandler. This interface

contains a single method, invoke, which has three defined arguments: the

proxy object instance, the related java.lang.reflect.Method object, which rep-

resents the method, and the arguments list. In this method the developer

can define its own interception logic.

...

@Override

public Object invoke(Object proxy, Method method,

Object[] args) throws Throwable

{

Object result;

Log.d("MyInvocationHandler", "pre-execution");

result = method.invoke(this.target, args);

Log.d("MyInvocationHandler", "post-execution");

return result;

117

}

...

Listing 5.1: Code sample for the InvocationHandler invoke method. The code

prints Android logs before and after the method execution.

Tthe code above gives a simple example of an implementation of the method

invoke of InvocationHandler interface. The piece of code prints a string be-

fore and after the execution of the intercepted method.

The java.lang.reflect.Proxy is a factory class and in order to obtain a proxy

object which implements a defined interface, it is necessary to call the

method newProxyInstance. This method requires: the target interface class

loader object; a class object array with all the interfaces that the proxy

should implements; and a class which implements the InvocationHandler

interface.

Figure 5.1: Comparison between the AspectJ and the Dynamic Proxy Proxy inter-
ception overhead on a Fibonacci’s function implementation.

As explained in the Section 4.2, the same behaviour of the Java Dy-

namic Proxy could be obtain using the AspectJ framework. AspectJ should

118

be faster than the other solution because it injects some parts of the code

at compile-time and not entirely at run-time. In order to verify this idea

we measured the overhead generated by the interception using the two

different approaches.

The test method was a Java implementation of the Fibonacci’s function

executed for many times and the results are shown in the Figure 5.1.

The AspecJ’s overhead is more limited than the Java Dynamic Proxy ap-

proach. In addition, the AspectJ framework allows us to intercept anno-

tated classes and methods without any kind of intervention of the devel-

oper. For the mentioned reasons, we decided to use AspectJ for the goals

introduced in the Section 3.4.2.

@Aspect

public class AspectRemoteable {

private static final String

POINTCUT_METHOD_REMOTABLE =

"execution(@Remoteable * *(..))";

@Pointcut(POINTCUT_METHOD_REMOTABLE)

public void methodAnnotatedWithRemoteable() {}

@Around("(methodAnnotatedWithRemoteable())")

public Object weaveJoinPointRemotable(

ProceedingJoinPoint joinPoint) throws

Throwable {

...

}

...

}

Listing 5.2: Code extract from the AspectRemote definition. This aspect

intercepts the invocation of methods marked with the @Remoteable

annotation.

119

The extracted code is from the AspectRemoteable aspect class of the Of-

floading Middleware Service. The defined pointcut intercepts every single

method marked with @Remoteable and it executes the cross-cutting con-

cern define in the method weaveJoinPointRemotable. AspectJ provides an

object ProceedingJoinPoint which representes the run-time status of the in-

tercepted object. The ProceedingJoinPoint gives us the possibility to collect

and modify the state of the target object, and to decide where and when to

run the intercepted methods. We have implemented the same behaviour

for the other annotations explained in Section 3.4.2.

5.1.2 Decision Maker Implementation

The Decision Maker, or Decision Engine, is the component designed

to evaluate information from custom developer offloading policies and

some additional data from the device status. So, it has principally two

tasks: it should take track of the offloading policies defined by the user

and evaluate the device state. In the Section 3.4.2 it is shown how to de-

fine a new policy and how to assign it to a method or a class. From an

implementation point of view the interceptors catch the definition and the

instantiation of the new policy classes, they can also store a reference to its

run-time object in a designed data structure. The Offloading Middleware

Service contains a specific component for this task, PolicyContainer. It is a

Java singleton object populated at run-time with the policies initialised in

the developer code. Since the policies are meant to be dynamic and not

static, the container should link to the related live object. When the Deci-

sion Maker evaluate the policies it queries the PolicyContainer in order to

get the policy associated with the method or with the class of the method.

In this way, when a remoteable method is going to be executed. the De-

cision Engine can evaluate the developer rules and decide if migrate the

code on the remote machine.

However, there is still another condition to evaluate, the state of the

device. The device could be disconnected or the data traffic could be not

suitable for the communication. So, the offloading decision needs to con-

120

sider this factors in order to be accurate. For the connection monitoring

we use the Android monitoring tools. As mentioned in the Section 4.1,

Android provides a complete stack to support the mobile applications de-

velopment. In particular, Android provides a notification service to prop-

agate information about the state of the device. In order to listen to this

notification, it is necessary to use the BroadcastReceiver and register it to

a specific intent type. For the network monitoring purpose the corre-

spondent type is Intent.ACTION MANAGE NETWORK USAGE. The An-

droid system notifies the BroadcastReceiver when the state of the network is

changed. The BroadcastReceiver can obtain the network information from

the ConnectivityManager, for example the type of the network, WiFi or cel-

lular networks, or the link speed of the connection. The same behaviour

could be applied to the battery monitoring, Android indeed propagates

an intent every time the battery percentage changes, its specific name is

Intent.ACTION BATTERY CHANGED.

5.1.3 Execution Manager Implementation

The Execution Manager is the engine of the offloading mechanism.

This component includes the logic: to encapsulate the run-time object in

a container with all the necessary information to resume the execution re-

motely; to call the communication interface in order to send the message;

to unwrap the received package from the remote machine; manage the

execution; to send the object back with the updated states and its result;

open the response package and resume the regular execution on the orig-

inal endpoint. So, the internal architecture of the Execution Manager is

divisible in two entities: a client and a server. The client part is in the de-

vice which runs the code and wants to offload it. The server part is in the

machine which can support remotely the original execution of the device.

As mentioned earlier, it is thus possible to modularise the Execution

Manager component in two main parts, client and server. The Execution

Manager part running on the client is called Execution Controller and it is

represented by the following interface.

121

public interface IExecutionController {

Object executeMethodRemote(ProceedingJoinPoint

execObject) throws Throwable;

Object executeMethodLocal(ProceedingJoinPoint

execObject) throws Throwable;

}

Listing 5.3: Interface definition of the IExecutionController. This interface

provides two different methods for the local and the remote

execution.

The two methods are dedicated are called by the Decision Maker or by

the interceptors directly if the developer has specified a static partitioning

for the related classes or methods. For instance if the method is marked

with @onMobileDevice the Interceptors directly call the executeMethodLocal

without querying the Decision Maker component. On the other hand, if

the static decision specifies to run the code remotely the method called will

be executeMethodRemote. The Execution Controller in this case will anyway

query the Decision Maker in order to verify if the connection is established

or if the available bandwidth is enough to migrate the code. The argu-

ment of the interface methods is a ProceedingJoinPoint object, which is the

AspectJ representation of the intercepted target object. The object contains

similar information to the Reflection representation of a run-time object.

On the one hand, the logic of the local execution operations is sim-

pler than the other one. Because it is actually an invocation of the proceed

method of the AspectJ ProceedingJoinPoint class. The AspectJ object will

simply continue the regular local execution.

On the other hand, the remote execution is a more complex scenario to

manage. After verifying that the offloading is viable, the Execution Con-

troller has to wrap the run-time object with some related information in or-

der to provide an executable bundle to the other side. The ProceedingJoin-

122

Point is not a Serializable object, that is a Java object not suitable for the

network communication. For this reason, the Execution Controller needs

to reconstruct a transferable object with some information from the Pro-

ceedingJoinPoint object and additional data. The described object will im-

plements the interface IExecutableBundle. In the Figure 5.2 it is shown the

IExecutableBundle content in the UML format.

Figure 5.2: UML representation of the IExecutableBundle interface.

The IExecutableBundle implementation is the representation of the ex-

ecution state. The communication layer transfers the bundle from an end-

point to the other.

The Execution Controller has to keep unchanged the sequential nature

of the offloadable code. So, after the invocation of the sending method

the Execution Controller blocks the related thread until the remote ex-

ecution is not accomplished. Since The Android platform supports the

multi-threading programming, the ExecutionController has to block mul-

tiple threads and to unlock the correct one when it receives the related

response from the remote endpoint. The IExecutableBundle implemen-

tation indeed contains also the id of the related thread. This field is not

shown in the UML above because it is a low-level implementation choice.

On the server side it is located the other part of the ExecutionMan-

ager, the Code Offloading Execution Service (COES). The execution object is

received through the communication interface. It performs the task of un-

123

wrapping the IExecutableBundle implementation and resume the execu-

tion from the other endpoint. The Code Offloading Execution Service is

implemented using an Android service. As mentioned in the Section 4.1.2

the Android services are designed to run code in the background without

any user interactions. This decision is driven by the necessity to run the

code even if the application is not shown on the screen. An Android activ-

ity would thus not be feasible for the described task. The server part of the

Execution Manager needs to manage multi threads, different threads from

the mobile devices may want to offload tasks. In more details, the COES

needs to run every offloading request in a different thread in order to not

affect the multi-threading design of the application.

5.1.4 Synch Controller Service Implementation

As mentioned previously, the developer could vary the synchronisa-

tion behaviour. The programmer could select two types of synchronisa-

tion: lazy and eager.

Firstly, the lazy synchronisation is simpler, in the moment of the offload-

ing request the entire object state will be transferred on the other endpoint.

This solution is always suitable but in some case the offloading could be

seriously delayed by this approach.

Therefore, the eager policy of synchronisation could be suitable for big

state transferring. The concept is indeed to keep consistent the mobile de-

vices data with their related avatars. The developer can mark fields with

@SyncrhonizedField in order to ask the offloading software to transfer the

field state during the offloading functions. Thus, if the selected synchroni-

sation policy is eager the Offloading Middleware Service updates a remote

cache every time a field marked with @SynchronizedField is modified. As

mentioned before, this approach could improve the offloading execution

time, since the state of the run-time object is already available on the other

machine.

The responsible for the eager state synchronisation is the Synch Con-

124

troller Service. Like the Code Offloading Execution Service, the Synch Con-

troller Service is implemented as an Android service in order to be ex-

ecuted in a background thread. The state changes are stored in a data

structure, it is defined by the StatusCache class.

Figure 5.3: UML representation of the StatusCache data structure.

As it is shown in the Figure 5.3 the data updated values are stored

inside a Map, which is a Java native data structure. The StatusCache pro-

vides various methods to access or modify the content of the internal map.

The map is implemented by a java.util.concurrent.ConcurrentHashMap to

manage concurrency on the contents. In more details, the map uses the

class CacheKey as keys and the class Object for the values. The CacheKey

class is needed to reference live objects and to distinguish also different

instances of the same class. For this purpose we use a couple of fields to

identify each instance: an unique ID and the field name of the owner class.

The Synch Controller Service is present in both the offloading endpoints, it

manages the synchronisation based on a time-out in order to optimise the

communication. The modifiedKeys field helps to keep track of the modified

objects which are due to be synchronised at the next time-out expiration.

The StatusCache has a time to live in order to be cleared and to avoid

memory overloading.

When the Code Offloading Execution Service receives a package and

if the assigned synchronisation policy is eager, it will instantiate a new ob-

ject and put as internal state the updated one owned by the Status Cache.

125

The Code Offloading Execution Service could access the Status Cache only

through the Synch Controller which manages the life cycle and the up-

dates of the temporary memory.

5.1.5 Communication Interface Implementation

The communication support is an essential tool in order to make the

offloading functions work. As mentioned in the Section 3.1, an important

feature of the Moitree middleware is the communication support. Since

the offloading middleware service should be used as a middleware ser-

vice of Moitree, it is possible to use its communication layer. In particular,

it is possible to define a Moitree’s dedicated channel for the offloading

mechanism.

The communication required for the code migration is peer to peer

with a blocking behaviour. In simpler words, the execution on the mobile

device should send directly the Execution Bundle to the related avatar and

wait for a result. The nature of the Moitree communication is event-based,

this means that it is not possible to use blocking native call. The Moitree

APIs indeed allows the developer to specify callbacks related to a specific

event. The Code Offloading Execution Service registers on the avatar a

callback to unwrap the execution bundle received from the mobile devices

and run the code.

...

AvatarApplicationInfo avatarApplicationInfo =

AvatarApplicationInfo.getInstance();

Avatar avatar = avatarApplicationInfo.getAvatar();

avatar.setOffLoadingDataListener(this.channel, new

AvatarOffloadingDataListener() {

@Override

public void onOffloadingDataAvailable(

Serializable serializable) {

IExecutableBundle executableBundle = (

IExecutableBundle) serializable;

126

try {

BlockingQueue<IExecutableBundle> queue =

null;

int Tid = executableBundle.getTid();

if(queueMap.containsKey(Tid)) {

queue = queueMap.get(Tid);

} else {

throw new NullPointerException();

}

queue.put(executableBundle);

} catch (InterruptedException e) {

e.printStackTrace();

} catch (NullPointerException e) {

e.printStackTrace();

}

}

});

...

Listing 5.4: The sample code registers a callback to the Avatar communication

layer and it notifies the specific blocked thread when it receives the

offloading result from the AVM.

In the mobile device we also need to register a callback to manage the

offloading execution result messages. In addition, as stated previously,

it is necessary to support the multi-threading behaviour. For this reason,

we introduce a specific component which performs the task of multiplex-

ing the communication channel and manage the unblocking of multiple

threads. This component is named Communication Manager. It runs on

a dedicated thread and it listen to the communication channel. The code

above show the callback registered by the Communication Manager to

manage the unlocking of multiple threads. Every thread which is waiting

for the offloading response is blocked on a java.util.concurrent.BlockingQueue

referenced by its own thread ID in a data structure. Thus, when an IEx-

127

ecutableBundle with a specific thread ID is received the Communication

Manager put it in the related queue awaking its thread.

5.2 Evaluation

After introducing the design and the implementation choices of the

offloading middleware service, we show some evaluation results by split-

ting the evaluation parts in: micro-benchmarks and macro-benchmarks.

We have taken this decision in order to be sure that the system is working

properly in terms of offloading performances without introducing delays

and overheads. Since the project is integrated with the Avatar communica-

tion part, we need to separate the delay introduced by the communication

and the actual performances of the offloading functions. Furthermore, as

mentioned earlier, the thesis project aims to support not only single user

applications but also distributed scenarios. The goal of the evaluation is to

verify that the offloading software behaves correctly in both the environ-

ments, and we need to check it separately.

The first level focuses on the performances related to the offloading

mechanism applied to a simple scenario, such as an end to end code mi-

gration. So, in this level we do not consider the distributed environment

or the other group members as we stated in the Section 3.4.3. We want to

measure how the software performs simply referring to the code offload-

ing behaviour.

The macro-benchmarks level aims to show the evaluation of a dis-

tributed scenario application considering different policies specified by

the developer. Therefore, we want to show how the Offloading Middle-

ware Service could optimises specific parameters of a distributed app ex-

ecution based on different developer policies.

5.2.1 Test Applications

We use two applications in order to test the offloading middleware

service and to collect results.

128

The first application is an image manipulation app. The application

allows the user to select an image and to select different kind of graphic

filters, such as blurring, gray-scale rendering or inverting the colours. This

computation could be done locally on the mobile device or rather using the

remote virtual machines support. This application is particularly useful to

measure the micro-benchmarks of the thesis project software. The image

manipulation filters suitable for the task are characterised by heavy com-

putation and the size of the target pictures is large enough to check the

communication overhead. The user can select an image and apply differ-

ent filters, such as grey scale filter and blur filter.

The blur filter is implemented by a Gaussian function with a user de-

fined radius. We implemented two different versions of the same Gaus-

sian implementation, one in plain Java code and one in C++. One of the

offloading middleware service goal is to support NDK code offloading,

for this reason we want to test how it behaves in this scenario. The code

used for the Java and for the C++ implementation is relatively the same,

considering the languages syntax and characteristics. In the Figure 5.4 it

shown the result of the Gaussian blur filter applied to an input picture.

The second application is FaceDate, an introduction of this application

is in Section 1.5. However, the flow could be partially modified from the

original version in order to make it more user-friendly and to test appo-

sitely the offloading middleware service. The original application trains

the face recogniser engine at start time using the pictures included in a de-

fault directory. This requires the user to wait some seconds before start us-

ing the app. Furthermore, if the user specifies new preference images the

app restarts the training to consider the new data. This decision was taken

because the OpenCV [40] Java APIs did not support the face recogniser

update. In the latest version the OpenCV developers have introduced an

update method, so, it is possible to modify the recogniser state with one

or more new pictures.

The new FaceDate version uses the update functionality of the OpenCV

libraries. In the new scenario if the user adds some new pictures the ap-

plication does not instantly retrain the recogniser. The application updates

129

Figure 5.4: Input e Output of the Image Manipulation App used to test the Of-
floading Middleware Service.

the recogniser state only when a new request of match come from another

user. This decision is made to avoid that the user waits the end of the

training every single time he modifies the preference dataset. The update

is a part of the find match functionality.

The offloading middleware service could be applied to the FaceDate

new version, it can actually reduce the time needed for the training and

to find a match. Furthermore, we can define different custom policies in

order to modify the offloading behaviour of the FaceDate application. For

test purpose we selected two extreme policies, a policy which mostly de-

cides to offload the code in order to improve the performances and an

opposite case in which is necessary to keep the computation local in order

to guarantee the user privacy. We have found two samples that are appli-

130

cable to real commercial application and they are simply to understand.

• Privacy Policy: This policy focuses on provide a high level of privacy.

As mentioned earlier, the app uses human faces pictures, so users

could use different faces to specify his preferences. The user may

want to not transfer this information on the avatar, for instance be-

cause he does not trust to store sensitive pictures on the cloud. So,

this policy executes all the functionalities related to the pictures on

the mobile devices. For instance, the training and the update func-

tions should be keep on the device because they need the pictures

in order to accomplish their tasks. On the other hand, the match

functions uses only extracted features to work, it is thus possible to

offload this functionality to the Avatar VM;

• Low-latency Policy: The user who requests a search could care for a

quick response, for instance the user is accessing a certain area and

he wants to find a date before moving to a new place. The offload-

ing should modify its behaviour based on the time of execution. For

example, according to the time of execution estimation the on-line

update could be done on the local device or on the avatar. If the

time of execution of the mobile devices is less than the communica-

tion overhead the offloading software would decide to run locally.

Conversely, if the offloading of the update method helps to decrease

the time of execution, considering also the communication delay, the

decision will migrate the code to the Avatar VM;

In the following code we assign the policy FaceDatePolicy to a the method

testUpdateAndMatch.

@Remoteable(SynchType.LAZY)

public class FaceDetection implements Serializable

{

@CustomPolicy(policyClass = FaceDatePolicy.class

)

131

public int testUpdateAndMatch(byte[] imageBytes,

PreferenceUpdateObject prefs) {

testTrain(prefs);

return faceMatch(imageBytes);

}

}

Listing 5.5: This code applies a policy to a defined method using the annotation

CustomPolicy

The FaceDatePolicy is an implementation of the low-latency policy described

earlier.

It is even possible to define more policies, such as battery consumption

optimisation, network bandwidth preservation or location based policy.

The latter indeed could influence the offloading decisions analysing the

position, or it is even possible that the user may want to use only certain

networks for the offloading because he is afraid of malicious activities in

public places.

5.2.2 Metrics

In order to evaluate the results obtained in the test procedure it is nec-

essary to introduce some metrics. We want to split the evaluation results

in two level: micro-benchmarks and macro-benchmarks.

The micro-benchmarks focus on the offloading mechanism performances

and they evaluate how well the offloading behaves with different compu-

tation level and/or with different data to transfer. As mentioned in the

Chapter 2, the execution time of a piece of code is an important parame-

ter to weight an offloading software. The battery preservation is another

important goal of the offloading. So, we would like to collect the battery

consumption of the test applications in the offloading scenario and in the

plain mobile execution one, relatively.

The time of execution could be measure running the code multiple

132

times and collecting the overall time needed to complete the task. After

that, it is possible to estimate the average value in order to isolate the de-

lays issued by the Android platform operations and by the Java language

management. The overall execution time of the offloading task contains

also the communication delay.

The battery consumption could be measure evaluating the energy needed

to finalise the execution of a specific method. Unfortunately, the Android

platform does not provide a fine-grained functionality like this. However,

it is possible to measure the required battery needed to run an application.

So, a workaround could be to run repeatedly a single method for a long

time. The measurement would be done for both the scenarios, local and

remote. The screen could be a big source of power draining but the evalu-

ation would not be affected by it because the screen is used in both cases.

This approach includes also the required energy for the communication.

The macro-benchmarks aim to evaluate the performances of the Of-

floading Middleware Service in a distributed scenario taking in account

the custom policies defined by the developer. In this case we need to ver-

ify if the offloading software can really satisfy the developer policies and

guarantee better performance for the specified parameters.

5.2.3 Micro-Benchmarks Results

For the first benchmarks level we have used two devices a LG Nexus

5 and a Motorola Nexus 6. While the Nexus 5 is equipped with a Quad-

core Krait 400 @ 2.3 GHz and 2 GB of RAM, the Nexus 6 has a Quad-core

Krait 450 @ 2.7 GHz and 3 GB of RAM. On the other side, we have used

a server with a Hexa-Core Intel Xeon Processor E5-2620 @ 2.4 GHz and 82

GB of RAM. The server hosts a virtual machine with 6 virtual cores and

4 GB of RAM, our Avatar VM. The virtual machine and the two handsets

are equipped with Android, the server instead has Linux Mint 64-bit. All

the tests have been conducted on a WiFi network in the labs of the New

Jersey Institute of Technology.

We have used the image manipulation app introduced in the Section

133

5.2.1 with different images. The goal of this evaluation is to verify the im-

provement in terms of time of execution introduced by the offloading. We

want to verify that the increment of the computation complexity would

also improve the contribution of the offloading technology. In addition,

another parameter to check is the communication overhead introduced to

move the picture from the local device to the avatar machine and to move

back the blurred image.

Figure 5.5: Results collected executing a Gaussian Blur filter with the offloading
support and without it. In this case the code filter is implemented
with Java.

The Figure 5.5 shows the result collected during the experiments. The

Gaussian filter computation varies based on the image size. If the picture

is relatively small the offloading contribution is null, or better its over-

head introduced delays. In this case a smart decision could be to execute

the blur functions on the mobile device. However, when the size of the

pictures increase and consequently the computation, the offloading con-

tribution becomes stronger. The benefits of the offloading mechanism are

particularly visible in the last measurement. We aim to provide the sup-

port for the Android NDK because it is particularly suitable for the de-

134

velopment of computing intensive application, such as signal processing,

computer vision, data mining and real-time apps. For this reason we also

implemented the filters in C++ code and the Figure 5.6 shows the collected

results.

Figure 5.6: Results collected using a C++ implementation of the Gaussian Filter
function.

As expected, the native code version is faster than the Java implemen-

tation, however, the offloading has positive results even in this case. If we

compare the local execution in the Java version with the offloading exe-

cution in the C++ scenario, the needed time is many times lower and the

user experience would be positively influenced.

The other micro-benchmarks parameter defined in the Section 5.2.2

is the energy consumption. We have done an additional experiment to

test what is the impact of the offloading mechanism on the energy con-

sumption. As stated earlier, the battery is an important feature of mobile

devices and we want to be sure that our system is capable to preserve

energy. We have done the experiment using the same application and a

constant image. We have extend the time of execution in order to see how

135

Figure 5.7: Power consumed by the image manipulation app with the support of
the offloading software and without it.

the offloading energy consumption behaves in increasing time. We have

applied a Gaussian filter function on the same picture repeatedly in order

to have stronger results, not driven by unpredictable variables.

The Figure 5.7 shows that the power consumed by the offloading sup-

ported execution is lower than the simple local one. In addition, the energy

consumption of the local scenario increases linearly in time, inversely the

offloading behaviour is sub-linear. Therefore, the offloading technology

saves battery and it particularly behaves better in case of durable execu-

tions.

Moreover, it is important to realise how much the offloading functions

impact on the regular execution. We want to measure the migration over-

head weight on the total time. This delay is introduced mainly by two fac-

tors: interception of the methods invocation and the language reflection,

and the communication time introduced by the Avatar system. We have

collected this measurements using the same image manipulation app. In

this case also we have used different images with incremental size. The

136

Table 5.1 shows the collected results and it is possible to see that the over-

head introduced by the offloading mechanism is generally low. Before the

code execution of the actual method, the Interceptors and the Execution

Manager generates some delay in order to pick up the method execution

and also to extract and prepare the state of the run-time object.

Execution Time Offloading
(milliseconds)

Overhead Interception and
Run-time State Extraction Time
(milliseconds)

Overhead State Update
(milliseconds)

Percentage Overhead
on Total Execution Time

3212 2.11 0.06 0.06%
664 2.75 0.07 0.40%
490 2.93 0.08 0.61%
145 2.79 0.06 1.97%

Table 5.1: Results introduced by the offloading functions.

The last column of Table 5.1 shows the percentage of the total over-

head respect to the total time of execution. The percentage is negligible

compare to the total time of execution, and this consideration is particu-

larly suitable for big heavy computation, as the first row of the table.

The communication overhead introduced by the offloading mecha-

nism is another important factor to check. We have collected this informa-

tion during the execution of the image manipulation app. The data trans-

ferred and the time necessary to transfer it on a WiFi network is shown

in the Table 5.2. Like the previous parameters, the communication cost

Execution Time Offloading (milliseconds) Communication Time (milliseconds) Transferred data
3212 13 237.312Kb
664 4 61.362Kb
490 2 36.437Kb
145 0.1 6.701Kb

Table 5.2: Table with communication information collected during the image ma-
nipulation app.

of the experiment is generally negligible even if the size of the data is in-

creased. Naturally, if the data sizes are too big the gain obtained with the

offloading would be mitigated or in the worst cases cancelled.

5.2.4 Macro-Benchmarks Results

This section focuses on the macro-benchmarks evaluation. In the Sec-

tion 5.2.3 there are listed the results obtained from a single user applica-

137

tion. We have done experiments in order to evaluate the Offloading Mid-

dleware Service in a distributed scenario. The sample application used for

this experiments is FaceDate, already presented in the Section 5.2.1.

The tests have been conducted using up to four devices: a LG Nexus

5, a LG Nexus 5X, a Oneplus One and a Motorola X Pure. As mentioned

in the Section 5.2.3, the Nexus 5 is equipped with a Quad-core Krait 400

@ 2.3 GHz and 2 GB of RAM. The Nexus 5X has a Quad-core Cortex-A53

@ 1.82 GHz supported by a Dual-core Cortex-A57 @1.82 GHz and 2 GB of

RAM. The Oneplus One device is equipped with a Quad-core Krait 400 @

2.5 GHz and 3 GB of RAM. Finally, the Motorola X Pure adopts a Hexa-

core Qualcomm Snapdragon 808 @ 1.8 GHz and 3 GB of RAM. We have

decided to use different devices in order to have a strong feedback about

the software in a heterogeneous system.

We have run three different experiments using a variable number of

devices. As stated in the Section 5.2.1, we introduced the update feature

in the FaceDate app. The experiments aim to show how the Offloading

Middleware Service reacts and modifies the app performances based on

the developer policy. We played the roles of developer in this case and

we have defined two different policies already presented in the Section

5.2.1, a privacy and a low-latency policy. This policies have two different

behaviours about the offloading decisions: the privacy policy avoids every

type of transferring of sensible pictures like preference images; the low-

latency policy aims to optimise the execution time needed to accomplish

a date search, so it probably would prefer the offloading of heavy task

with small data transferring instead of running locally. As explained in

the Section 5.2.1, when the user adds new preference images the app does

not update immediately the recogniser state but it waits for the next search

in order to decide if it is better to offload or not based on the ruling policy

specified by the initiator user.

The first experiment has been led with two devices: a Nexus 5X and a

Motorola X Pure. The Motorola X Pure has been selected as user who re-

quests for a date, the Nexus 5X has played the rule of a normal member of

the group who replies to the request. On the Nexus 5X we have varied the

138

number of pictures to update in order to see how the relationship between

the low-latency execution and the privacy one.

Figure 5.8: Experiment results of the FaceDate application using two devices and
varying the number of pictures to update.

The results are similar to the image manipulation ones because in the

low-latency policy scenarios the Decision Maker component decides to

run the code remotely in order to improve the execution time. The Figure

5.8 shows the results collect which support the previous considerations. In

the privacy policy, the Decision Maker avoids the offloading mechanism

for training and updating of the recogniser because it cannot transfer the

pictures through the network. However, the face matching functions are

executed remotely because they do not need the real pictures.

The increase of the picture numbers highlights the performances of the of-

floading scenario against the simple local execution. The time represented

on the Y axis is the first response received from the participant devices, in

this first case there is only one participant.

We have increased the number of participants to three in order to ver-

ify if the results would be similar or strongly different. We have selected

139

a Nexus 5X, a Motorola X Pure and a Nexus 5. The results collected are

similar to the previous experiment. The low-latency policy drives the De-

cision Maker component to run the code remotely, since the connection is

fast and the performances gain in terms of computation is bigger than the

introduced communication delay. The results described are shown in the

Figure 5.9

Figure 5.9: Second FaceDate experiment using three devices.

The number of devices does not modify the result in a strong way. The

distributed nature of the application supports this consideration and it is

also true that increasing the number of devices would not affect strongly

the first response time. It is the first device to response the real factor to

influence the results and not the number of them.

We have run a last experiment with four devices, so the same devices

including a Oneplus One. As expected the results have been coherent with

the previous affirmation and they are shown in the Figure 5.10. The col-

lected results have confirmed that the scalability of the offloading func-

tions is guaranteed and the overall execution time for a search request

in scenarios with a different number of devices is almost constant. The

140

communication layer needs to use a broadcast communication in order to

propagate the user request. The Avatar communication introduce some

delays in order to deliver the information to the other members, therefore

an improvement of the communication layer will also affect the results

shown in the graphs, improving certainly the time of execution of a re-

search. It is also possible to unplug the Avatar Communication Manager

and replace it with a different solution in order to obtain better results. The

offloading software could work in many systems which provide VMs as

cloud infrastructure supports. In this case, naturally the communication

constraints will vary and so the overall time of execution.

Figure 5.10: Last Experiment using four devices.

The results collected in the last two experiments have highlighted an-

other important consideration. The offloading technology in a distributed

scenario is capable to balance the device hardware specifications. The first

response in the privacy policy scenario is always from the Motorola X Pure

because it is the most powerful device used in the experiments. In the

low-latency cases the winners are almost random. In order to clarify this

concept it is shown the Table 5.3.

141

Number of devices Number of Images to Update Device of First Response
for Privacy Policy

Device of First Response
for Low-Latency Policy

3 20 Motorola Pure X Nexus 5
3 50 Motorola Pure X Motorola Pure X
3 100 Motorola Pure X Motorola Pure X
4 20 Motorola Pure X Nexus 5X
4 50 Motorola Pure X OnePlus One
4 100 Motorola Pure X Motorola Pure X

Table 5.3: This table shows the first device to response to the initiator user in the
FaceDate app comparing the low-latency policy with the privacy one.

5.2.5 Results Considerations

The results collected during the experiments have driven us to many

considerations.

On the one hand, from the micro-benchmarks data we have confirmed

that the offloading technique it is really capable to improve the perfor-

mances particularly with high computation tasks. On the other hand, the

development choices adopted have guaranteed good results in terms of

system overhead on the distributed scenario.

The battery consumption observed is really a positive feature of the

thesis project, since it can improve the user experience and it can also sup-

port longer execution for mobile applications. The offloading software

designed could meaningfully help the distributed application ideas of the

Section 3.3. In addition, the developer could use the policies definition

in order to improve desired parameters, for instance we have improved

the time of execution in the experiment scenarios. For the input data pro-

vided to the policies classes the developer could use every kind of profil-

ers or monitors and he can develop his own new policies to have ad-hoc

behaviours.

As mentioned earlier, the execution supports by virtual machines could

balance the user devices hardware specification making the application re-

sult fairer. For instance, in scenarios similar to the FaceDate application if

two users are suitable for the face match the winner user would be random

and not always the same with a more powerful device. In this case for the

participant users the offloading also changes the logic of the application

giving more balanced results.

142

Firstly, the thesis project provides a easy-to-use programming tools

based on Java annotations to allow the developer to simply define Plain

Old Java Objects without changing the original code. Furthermore, the

programmer might want to define custom policies to feed the decision

engine of the thesis project. In this way, the programmer can influence

the offloading decision. A new policy could be defined as a simple Java

class and then the system can identify it through the annotation applied

on them. The scope of the policies is method-level, therefore the developer

can assign a policy to a single method or to a defined class.

On the one hand, we designed an offloading mechanism able to eval-

uate rules based on various parameters and migrate parts of code exe-

cutions. This is a common way to augment the Mobile Computing re-

sources and the first step in order to check the performances of the thesis

project has been to collect results using sample applications and varying

their computation load. We have observed that not only the time of execu-

tion has benefits of the cloud support but also the battery has been better

preserved. Finally, we have tested the offloading of C/C++ code in order

to verify the behaviour of the system using the Android NDK.

On the other hand, we have designed the system to be modular, it will

be indeed possible to modify or replace entire components in future. For

example, we have used simple profilers for the local mobile state but in fu-

ture applications the system may need more accurate tools, such as battery

estimation algorithms, location based information and computation load

monitoring. In addition, it is possible to provide some standard policies

for the developer, such as simple policies for common conditions, such as

battery preservation, bandwidth usage or location based policies.

Finally, the project is equipped with a simple cache memory used for

the eager state synchronisation between a mobile device and its avatar.

This component is extensible with more powerful features in order to en-

tirely manage the state synchronisation between the endpoints. This new

feature could furthermore improve the performances of the system and it

also could supply fail-tolerance support, enabling the execution resuming

after a device de-synchronisation.

143

Conclusions

The solution proposed by the thesis aims to provide a computation

offloading middleware service for the Avatar system. Our project is not

only able to migrate code from mobile devices to Avatar virtual machines

but it is also able to evaluate rules in order to decide whether to offload a

piece of code or not.

Firstly, the thesis project provides a easy-to-use programming tools

based on Java Annotation. The developer can simply define Plain Java

Old Object without changing the original code but just marking specific

methods or classes with the provided annotations. The programmer might

similarly want to define custom policies to feed the decision engine of the

system and in this way influencing the offloading decisions. The devel-

oper can define a custom policy defining a simple Java class, he can also

mark a method with it and then the system will automatically associate

the method to the defined annotation.. The scope of the policies is method-

level and so the developer could assign a policy to a single method or to

entire class.

We also want to enlarge the concept of computation offloading to mo-

bile distributed applications. The custom policies definition feature helps

in this goal providing a simple way to evaluate information related to dif-

ferent members of the distributed group. Therefore, our purpose is to pro-

vide different offloading decisions based on run-time user requests and/or

global distributed resources. The selection of different policies has shown

an improvement of the target parameter at run-time, for example the low-

latency policy has improved the overall time of execution. In addition, we

learned that the offloading technology applied to a distributed environ-

144

ment is able to reduce the hardware specifications gap between different

mobile devices.

Finally, the thesis project has been designed and implemented to be

compatible with the Avatar system. However, it could be possible to use

the software without the Avatar support replacing the communication

layer. The project could be applied to new systems, the unique hypoth-

esis is that the VM would execute the same application of the mobile de-

vice. We indeed designed the system to be modular and so it is simply to

unplug components and replaces them with new implementations. It is

possible to unplug the thesis project from the Avatar system and to con-

nect it to other solutions. The offloading software indeed could work with

many commercial solutions which provides virtual machines and related

management tools. The performances of the thesis project partially de-

pends on the communication layer and also on the virtual resources of the

VM. As stated previously the modular design of the thesis project enables

to replace components. In this way, it is possible to adapt the system to

new scenarios and to include new features.

145

Bibliography

[1] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Mobile com-

puting middleware. In Advanced lectures on networking, pages 20–58.

Springer, 2002.

[2] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed

systems: concepts and design. pearson education, 2005.

[3] David E. Bakken. Middleware. http://www.eecs.wsu.edu/˜b

akken/middleware.htm.

[4] BELLAVISTA P.; CORRADI A. EDS, editor. Mobile Middleware: Defi-

nition and Motivations, NEW YORK, 2006. Auerbach (CRC press).

[5] C. Borcea, Xiaoning Ding, N. Gehani, R. Curtmola, M.A. Khan, and

H. Debnath. Avatar: Mobile distributed computing in the cloud. In

Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2015

3rd IEEE International Conference on, pages 151–156, March 2015.

[6] Alan LaMont Pope. The CORBA Reference Guide: Understanding the

Common Object Request Broker Architecture. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1998.

[7] Aniruddha Gokhale and Douglas C Schmidt. Principles for optimiz-

ing corba internet inter-orb protocol performance. In System Sciences,

1998., Proceedings of the Thirty-First Hawaii International Conference on,

volume 7, pages 376–385. IEEE, 1998.

146

[8] P Reynolds and R Brangeon. Service machine development for an

open longterm mobile and fixed network environment. Project deliv-

erable, DOLMEN Consortium, 1996.

[9] Timm Reinstorf, Rainer Ruggaber, Jochen Seitz, and Martina Zitter-

bart. A wap-based session layer supporting distributed applications

in nomadic environments. In Middleware 2001, pages 56–76. Springer,

2001.

[10] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate

Stout. Java message service. Sun Microsystems Inc., Santa Clara, CA,

2002.

[11] Andrew T Campbell. Mobiware: Qos-aware middleware for mo-

bile multimedia communications. In High Performance Networking VII,

pages 166–183. Springer, 1997.

[12] Yating Wang, Ray Chen, and Ding-Chau Wang. A survey of mobile

cloud computing applications: Perspectives and challenges. Wireless

Personal Communications, 80(4):1607–1623, 2015.

[13] Saeid Abolfazli, Zohreh Sanaei, Erfan Ahmed, Abdullah Gani, and

Rajkumar Buyya. Cloud-based augmentation for mobile devices: mo-

tivation, taxonomies, and open challenges. Communications Surveys &

Tutorials, IEEE, 16(1):337–368, 2014.

[14] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and

Ashwin Patti. Clonecloud: elastic execution between mobile device

and cloud. In Proceedings of the sixth conference on Computer systems,

pages 301–314. ACM, 2011.

[15] Shadi Ibrahim, Hai Jin, Bin Cheng, Haijun Cao, Song Wu, and Li Qi.

Cloudlet: towards mapreduce implementation on virtual machines.

In Proceedings of the 18th ACM international symposium on High perfor-

mance distributed computing, pages 65–66. ACM, 2009.

147

[16] Saeid Abolfazli, Zohreh Sanaei, Muhammad Shiraz, and Abdullah

Gani. Momcc: market-oriented architecture for mobile cloud comput-

ing based on service oriented architecture. In Communications in China

Workshops (ICCC), 2012 1st IEEE International Conference on, pages 8–

13. IEEE, 2012.

[17] Randall Perrey and Mark Lycett. Service-oriented architecture. In Ap-

plications and the Internet Workshops, 2003. Proceedings. 2003 Symposium

on, pages 116–119. IEEE, 2003.

[18] Margaret van Steenderen. Universal description, discovery and inte-

gration. SA Journal of Information Management, 2(4), 2000.

[19] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava.

A survey of computation offloading for mobile systems. Mobile Net-

works and Applications, 18(1):129–140, 2013.

[20] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xin-

wen Zhang. Thinkair: Dynamic resource allocation and parallel ex-

ecution in the cloud for mobile code offloading. In INFOCOM, 2012

Proceedings IEEE, pages 945–953. IEEE, 2012.

[21] Z Yang. Powertutor-a power monitor for android-based mobile plat-

forms. EECS, University of Michigan, retrieved September, 2:19, 2012.

[22] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wol-

man, Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui:

making smartphones last longer with code offload. In Proceedings

of the 8th international conference on Mobile systems, applications, and ser-

vices, pages 49–62. ACM, 2010.

[23] Common language runtime (clr). https://msdn.microsoft.com

/en-us/library/8bs2ecf4.

[24] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal.

Cuckoo: a computation offloading framework for smartphones. In

148

Mobile Computing, Applications, and Services, pages 59–79. Springer,

2010.

[25] Android interface definition language (aidl). http://developer.

android.com/guide/components/aidl.html.

[26] Mohammad A. Khan, Hillol Debnath, Nafize R. Paiker, Naharain

Gehani, Xiaoning Ding, Reza Curtmola, and Cristian Borcea. Moitree:

A middleware for cloud-assisted mobile distributed apps. In The 4th

IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering, 2016.

[27] Android developers. https://developer.android.com/sdk/

index.html.

[28] Apple’s ios. http://www.apple.com/ios/.

[29] AspectJ Team. The aspectj programming guide, 2003.

[30] Marc Fleury and Francisco Reverbel. The jboss extensible server. In

Proceedings of the ACM/IFIP/USENIX 2003 International Conference on

Middleware, pages 344–373. Springer-Verlag New York, Inc., 2003.

[31] Spring. https://spring.io.

[32] Jonas Bonér. Aspectwerkz–dynamic aop for java. In Invited talk at

3rd International Conference on Aspect-Oriented Software Development

(AOSD). Citeseer, 2004.

[33] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented

programming. In ECOOP’97—Object-oriented programming, pages

220–242. Springer, 1997.

[34] LÁSZLÓ Lengyel and TIHAMÉR Levendovszky. Introduction to

aspect-oriented programming, 2005.

[35] G Chavez Christina von Flach and Carlos JP de Lucena. A theory of

aspects for aspect-oriented software development, 2010.

149

[36] Jeremy Blosser. Explore the dynamic proxy api. http:

//www.javaworld.com/article/2076233/java-se/ex

plore-the-dynamic-proxy-api.html, Nov 2000.

[37] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster.

Eclipse aspectj: aspect-oriented programming with aspectj and the eclipse

aspectj development tools. Addison-Wesley Professional, 2004.

[38] The aspectjtm 5 development kit developer’s notebook.

https://eclipse.org/aspectj/doc/released/adk15n

otebook/index.html.

[39] The javaTM tutorials. https://docs.oracle.com/javase/tut

orial/java/.

[40] Gary Bradski et al. The opencv library. Doctor Dobbs Journal,

25(11):120–126, 2000.

150

