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Abstract 

The morphological and functional unit of all the living organisms is the cell. The 

transmembrane proteins, localized in the plasma membrane of cells, play a key role in 

the survival of the cells themselves. These proteins perform a variety of different tasks, 

for example the control of the homeostasis. In order to control the homeostasis, these 

proteins have to regulate the concentration of chemical elements, like ions, inside and 

outside the cell. These regulations are fundamental for the survival of the cell and to 

understand them we need to understand how transmembrane proteins work. Two of 

the most important categories of transmembrane proteins are ion channels and 

transporter proteins. The ion channels have been depth studied at the single molecule 

level since late 1970s with the development of patch-clamp technique. It is not 

possible to apply this technique to study the transporter proteins so a new technique 

is under development in order to investigate the behavior of transporter proteins at 

the single molecule level. 

This thesis describes the development of a nanoscale single liposome assay for 

functional studies of transporter proteins based on quantitative fluorescence 

microscopy in a highly-parallel manner and in real time. The transporter of interest is 

the prokaryotic transporter Listeria Monocytogenes Ca2+-ATPase1 (LMCA1), a 

structural analogue of the eukaryotic calcium pumps SERCA and PMCA. This technique 

will allow the characterization of LMCA1 functionality at the single molecule level. 

Three systematically characterized fluorescent sensors were tested at the single 

liposome scale in order to investigate if their properties are suitable to study the 

function of the transporter of interest. Further studies will be needed in order to 

characterize the selected calcium sensor and pH sensor both implemented together in 

single liposomes and in presence of the reconstituted protein LMCA1. 
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Sommario 

L'unità morfologica e funzionale di tutti gli organismi viventi è la cellula. Le proteine 
transmembrana, localizzate nella membrana plasmatica delle cellule, svolgono un 
ruolo chiave per la sopravvivenza delle cellule stesse. Le funzioni svolte da queste 
proteine sono diverse, una delle più importanti è il controllo dell’omeostasi. Al fine di 
svolgere questo compito, tali proteine devono regolare la concentrazione di elementi 
chimici, quali ioni, all'interno e all'esterno della cellula. Questo tipo di processi di 
regolazione, fondamentali per la sopravvivenza della cellula, può essere compreso 
dallo studio funzionale delle proteine transmembrana. Due dei maggiori sottogruppi di 
proteine transmembrana sono rappresentati dai canali ionici e dalle proteine di 
trasporto. I canali ionici sono stati profondamente studiati a livello di singola molecola 
dalla fine degli anni settanta del novecento, grazie allo sviluppo della tecnica del patch-
clamp. Tale tecnica non ha avuto successo per lo studio delle proteine di trasporto, 
così una nuova tecnica è in fase di sviluppo al fine di studiare il comportamento delle 
proteine di trasporto a livello di singola molecola. 
Questa tesi descrive lo sviluppo di un assay nanometrico a liposoma singolo per lo 
studio funzionale delle proteine di trasporto. Tale assay è basato sulla microscopia a 
fluorescenza quantitativa e permette delle analisi in tempo reale e altamente 
parallelizzate. La proteina di nostro interesse è Listeria monocytogenes Ca2+-ATPase1 
(LMCA1), un analogo strutturale delle pompe eucariotiche del calcio SERCA e PMCA. 
Questa tecnica permette la caratterizzazione delle funzioni di LMCA1 a livello di singola 
molecola. Tre sensori fluorescenti caratterizzati sistematicamente sono stati testati 
con l’assay a liposoma singolo per verificare se le loro proprietà fossero adatte allo 
studio della proteina di trasporto d’interesse. Ulteriori studi saranno necessari per la 
caratterizzazione dei sensori di calcio e pH selezionati attraverso l’implementazione 
contemporanea degli stessi in liposomi e in presenza della proteina ricostituita LMCA1. 
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2   Introduction 

In this thesis the characteristics and the aims of the fluorescent-based single liposome 

assay that is under development for functional studies of the calcium-proton 

antiporter LMCA1 at the single molecule level are explained. In the introduction 

section it is given an insight on the important role of membranes in biology with a 



 
7 

 

focus on homeostasis regulation (Section 2.1) and on the proteins that allow this 

regulation (Section 2.2). The most important assays and methods for studying ion 

channels and transporter proteins are explored (Section 2.3) and the transporter 

protein of interest is described (Section 2.4).  

In chapter 3 the general feature of the single liposome assay is presented, focusing on 

the potentials given by exploiting liposomes (Section 3.1) and fluorescence probes 

(Section 3.2) in the assay. Finally the characteristics of the assay for studying LMCA1 at 

the single molecule level are described (Section 3.3).  

In chapter 4 the experimental setup is described. The liposome preparation and the 

preparation of the support surfaces (flow cells) are explained (Section 4.1 and 4.3) and 

the experimental setups for spectrofluorometric experiments and TIRF microscopy 

experiments are shown (Section 4.2 and 4.4). In the last section the image analysis 

procedure is summarized (Section 4.5). 

The experimental analysis and the results are presented in chapter 5, in which the 

characterization is divided by type of fluorophore implemented in the single liposome 

assay. In each section it was first presented the analysis of average emitted signal by all 

the liposomes and then the focus was shifted to analysis of signal emitted by individual 

liposomes. 

In the last chapters 6 and 7 conclusions and future perspectives of this research can be 

found. List of materials and additional figures can be found in Appendix. 

 

2.1   Biological membranes and transmembrane proteins 

Cells are separated from the external environment by a plasma membrane. This 

membrane consists of amphipathic phospholipid molecules that form a phospholipid 

bilayer, where the polar heads of these molecules separate the hydrophobic coupled 

tails from the aqueous cytosolic and extracellular environments. This lipid bilayer 

forms a barrier that is relatively impermeable to most water-soluble molecules and it 

creates disequilibrium. This disequilibrium is fundamental for the cell to perform all 

the chemical reactions that are needed to convert the provided energy into a usable 

form and to fulfill the tasks necessary for survival. Even though the plasma membrane 

is impermeable, the cells are open thermodynamic systems, which mean they can 

exchange matter and energy with the external environment across the plasma 

membrane. In order to communicate with the outside environment, a number of 

transmembrane proteins are embedded in the bilayer.[1]  

Transmembrane proteins have three regions or domains that can be defined: the 

domain into the bilayer, the extracellular domain outside the cell and the intracellular 

domain inside the cell. Even though a cell membrane is somewhat fluid, the 

orientation of transmembrane proteins does not change. These proteins play several 

roles in the functioning of cells. Receptors are useful for signaling to the cell what the 
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external environment contains. Linkers connect adjacent cells together by membrane 

junctions or anchor cells to extracellular matrix. Ion channels and  transporter proteins 

are associated with controlling the exchange of materials across the membrane, 

allowing or preventing the passage of molecules or ions.[2,3] 

 

2.2   Ion channels and transporter proteins 

Ion channels let ions pass through the membrane according to the electrochemical 

gradient generated by a different concentration of ions inside and outside with respect 

to the cell membrane. Ion channels differ from porins located into the outer 

membrane of bacteria, mitochondria or chloroplasts as the latter are relatively large 

(their diameter can be approximately between 14 and 26 Å in the case of 

chloroplasts)[4a] and less selective compared with ion channel (their diameter can go 

down to 5 Å)[4b]. It is actually the selectivity the main difference between ion channels 

and porins. Due to the presence of a selectivity filter inside the structure of the 

channels, they are able to let pass only particular ions through the membrane with a 

transport rate 105 times greater than the fastest rate mediated by any known 

transporter protein. Another important distinction between ion channels and porins is 

that ion channels are gated. This means they are not constantly opened but they 

alternate opened states to closed states. Mostly the gate opens in response to a 

specific stimulus, for example a change in the voltage across the membrane, 

mechanical stress and binding of a ligand or of a neurotransmitter.[4c] When a stimulus 

happens, it modulate the macroscopic ionic conductances by influencing the 

probability that the single channels will be in their open state, not by modulating the 

single channel conductance. As a result the response of a single channel to repeated 

stimuli is still stochastic but if a large population is analyzed the response can be 

predictable. [5] 

 

 

Figure 1 Cross section of opened or closed state of an ion channel. Here, a cross section of a channel 
protein is shown. It forms a hydrophilic pore across the lipid bilayer only in the “open” conformational 
state. Polar groups are aligned along the wall of the pore, while hydrophobic amino acid side chains 
interact with the lipid bilayer (not shown). In the opened conformation, the selectivity filter narrows to 
atomic dimensions in one region (the selectivity filter), where the ion selectivity of the channel is 
largely determined. (Molecular Biology of the Cell. 4th edition - Alberts B, Johnson A, Lewis J, et al. New 
York: Garland Science; 2002). 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4959/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4959/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5305/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5400/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4807/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5787/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5355/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5070/
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Transporter proteins have a function similar to that of ion channels. They bind specific 

solutes and transfer them across the lipid bilayer by undergoing conformational 

changes. One of the differences between ion channels and transporter proteins is the 

fact that transporters can carry a solute not only “downhill” following the 

electrochemical gradient but also “uphill” against the electrochemical gradient, using 

energy provided by ATP hydrolysis, by a downhill flow of another solute (such as Na+ 

or H+) or by light. The passage of the solute through the membrane by transporter 

proteins is based on different steps: the solute molecule binds to the transporter, the 

transporter undergoes conformational changes and finally the molecule is free to leave 

the transporter on the other side of the membrane. Since the passage of solutes 

depends on conformational changes of the transporter, the rate of transport goes 

from 100 to 104 ions or molecules per second, much slower compared to the one of ion 

channels.[4d] The transporters that carry solutes “downhill” can be called carriers while 

the ones that carry the solutes “uphill” using an extra source of energy can be called 

pumps. [4c] 

 

Figure 2 Three ways of driving active transport. “The actively transported molecule is shown 
in yellow, and the energy source is shown in red”. (Molecular Biology of the Cell. 4th edition - Alberts B, 
Johnson A, Lewis J, et al. New York: Garland Science; 2002.) 

 

2.3   Methods for studying  ion channels and transporters 

Ion channels are involved in a variety of fundamental physiological processes and 

represent a class of attractive drug target. Many techniques and assays were 

developed for studying ion channels. Nowadays ion channels can be studied in bulk 

and at the single molecule level in a high throughput manner and the available 

techniques are able to provide pharmacologically relevant data. [6,7] High throughput 

screening methods include ligand binding assay, flux-based assay, fluorescence-based 

assay, and automated electrophysiological assay. [8,9]  

The first technique that allowed an insight on the behavior of single ion channel is the 

patch-clamp technique, developed by Neher and Sakmann (1976). This method is 

based on the electric isolation of a membrane’s patch from the external solution and 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5400/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5263/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5486/
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on the resolution of currents through single ion channels. A glass micropipette filled 

with electrolyte is sealed on the plasma membrane of a cell where ion channels are 

located. The glass pipette represents the recording electrode and another electrode is 

put into the bath around the cell as a reference ground electrode, as it is shown in 

Figure 3. Since the diameter of the pipette’s tip is of the order of micrometers, the 

number of ion channels inside the patch is very small and it is possible to reach 

diameters that can select just one single channel. The recorded current flow 

represents the current that passes through the ion channels.[10] As it is possible to see 

from Figure 4, the difference of current between opened and closed state can be 

around 5 pA and the noise is relatively low.  

 

Figure 3 Example of a patch-clamp circuit. A high gain operational amplifier is connected to the circuit 
so that the current flowing through the ion channel is measured as a voltage drop across the resistor R f. 
The resistance of Rf should be near 50 GΩ in order to decrease the noise. (Patch clamp techniques for 
single channel and whole-cell recording - DAVID OGDEN and PETER STANFIELD). 

 

Figure 4 Examples of data recorded from patch clamp experiment. The current that flows through 
single channel molecules can be recorded using the patch-clamp method. The opening and closing of 
the gate produces two distinct current levels: a background-current when the gate is closed and a larger 
current when the gate is open. The probability that the gate opens depends on the control mechanism, 
for example in a chemically controlled channel on the concentration of the ligand. The data in the figure 
show rat skeletal neuromuscular junction single channel activated by acetylcholine. (Patch clamp 
techniques for single channel and whole-cell recording; DAVID OGDEN and PETER STANFIELD) 
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The conventional patch clamp technique was improved in order to have higher 

throughput and experimental conditions that could decrease the systematic error so 

new patch clamp techniques were developed, such as planar or lateral patch clamp.[11] 

Furthermore the technique was coupled with fluorescence assays that allow to have 

an insight on the intracellular side of channels and to directly investigate 

conformational changes and ionic currents across the membranes.[12,13,14]  

On the other hand, transporter proteins play important physiologic roles such as 

nutrient uptake, secretion of proteins or signal molecules, exclusion of waste or 

exogenous compounds and energy transduction. As it is for ion channels, different 

techniques were developed in order to describe their properties. The patch-clamp 

technique was also used to study transporters at the single molecule level but the 

signal to noise ratio was too low due to the low transport rate of these proteins. It was 

only possible to notice “channels-like” behaviors on the analyzed transporters. [15,16] 

The three most commonly used membrane assays for studying the large family of ABC 

transporters are the nucleotide trapping assay, the ATPase assay and the vesicular 

transport assay.[17]  

The nucleotide trapping assay indirectly measures the rate of transport measuring the 

amount of nucleotide trapped in the binding site of the transporter. Usually the 

catalytic cycle of transport and the ATP hydrolysis involve the formation of a transition 

state complex. This complex contains the occluded nucleotide in the nucleotide 

binding site, which can be stabilized using trapping agents. This is not an high 

throughput method and it is mostly used to have an insight into the molecular 

mechanism of the transport process.[17]   

The ATPase assay is based on the principle that compounds interacting with the 

transporter modulate ATPase activity of the latter. This assay indirectly measures the 

activity of the transporters measuring  the amount of inorganic phosphate released by 

the enzyme during the ATP hydrolysis.[18a] The ATPase assay is one of the most widely 

used screening tools in the pharmaceutical industry. One of the problems of this assay  

is related to the fact that some compounds are translocated very slowly by the 

transporter, which results in a slow rate of ATP hydrolysis that do not yield detectable 

amount of inorganic phosphate.[17]  

The vesicular assay measures the substrate carried into vesicles which have the ATP 

binding site and the substrate binding site of the transporter facing the buffer outside. 

Substrates of the transporter are taken up into the vesicles and the quantity of the 

transported molecules can be determined by different techniques after rapid filtration 

of the vesicles from the incubation solution. This assay type has the advantage of 

measuring the actual disposition of the substrate across the biological membrane but 

it works only for compounds with a low permeability to the vesicles’ membrane.[17] 

All the previously explained assays for studying transporters are not focusing on the 

single molecules but give information on an ensemble of transporter molecules. On 

the one hand it can be interesting to study emergent properties of ensembles as for 
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example the ones characterized by organized complexity because it is known that 

these properties arise as an interaction among smaller or simpler parts that do not 

exhibit such properties.[18b] On the other hand the average signal that comes from an 

ensemble of transporter proteins is characterized by an indistinguishable overlapping 

series of events and  it is necessary to have a single molecule approach in order to 

discover a certain behavior that could be masked.[19] 

In the recent years different single molecule assays were developed for studying 

transporter proteins at the single molecule level. Atomic force microscopy was used to 

probe topology, conformational changes and initial substrate-carrier interactions of 

Na+-glucose co-transporter (SGLT1) in living cells on a single-molecule level.[20] In 

another research, molecular transporters of the cell-penetrating-peptide (CPP) type 

were studied. The transporter was fluorescently labeled and the interaction of the 

molecule with the plasma membrane of Chinese Hamster Ovary (CHO) cells was 

imaged.[21] Also other recent researches developed liposomes-based arrays for rapid 

and massively parallel single-molecule studies of activity of transporters.[22,23] 

 

2.4 Transporter of interest: Listeria Monocytogenes Ca2+ ATPase 1 

The assay that is under development aims to characterize the calcium pump LMCA1 

found in the pathogenic bacterium Listeria Monocytogenes. Listeria Monocytogenes is 

a gram-positive facultative intracellular pathogen and a leading cause of listeriosis with 

high mortality rates (~30%). The organism survives diverse conditions such as low 

temperature, low pH and high salt concentrations.[24] The homeostasis of this 

bacterium, as it happens for other prokaryotes and also eukaryotes, is kept by 

membrane pumps. In particular LMCA1 maintains the intracellular Ca2+ concentration 

in the μM range. This pump belongs to the subgroup II of the P-type ATPase family, it 

shares a 38% sequence identity with SERCA and a 29% sequence identity with 

PMCA.[25] Since LMCA1 shares part of the sequence with SERCA, it can be considered 

its homologue. As it is possible to see from Figure 5, the pH optimum of LMCA1 is 

around 9 and the calcium affinity of LMCA1 is in the μM range. LMCA1 is an antiporter: 

it carries calcium ions out of the cell and it carries protons inside, with a  stoichiometry 

of 1 Ca2+ : 1 H+ per ATP hydrolyzed.[26] 
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Figure 5 Activity of LMCA1 as a function of pH or calcium concentration.  
A) ATPase activity of LMCA1 and SERCA1a (dashed line) as a function of pH. B) ATPase activity of LMCA1 
as a function of Ca2+ concentration measured at pH 7.5. [26] 

It is important to investigate calcium pumps for their role both in bacteria and humans. 

Calcium is one of the most important carriers of information for virtually all processes 

important to cell life, both for eukaryotic and prokaryotic cells. It has been seen that 

different pathologic conditions can be related to a dysfunction on the regulation of 

calcium concentration.[27] In particular the cardiac SERCA2a, an isoform of SERCA,  

regulates the calcium concentration in the heart muscles and it has a crucial role in 

contraction-relaxation processes of the heart. A decrease in expression level of this 

pump can lead to a variety of pathological conditions. [28,29,30] 

 

3   Single liposome activity assay 

In order to study the function of LMCA1 at the single molecule level, a fluorescent-

based single liposome assay is being developed exploiting the possibilities given by 

liposomes coupled with fluorescent techniques, which make use of fluorophores 

sensitive to the substrate translocated by the pump itself. 

 

3.1 Potentials of an assay based on single liposomes 

Liposomes are synthetic vesicles composed at least of one lipid bilayer. There are 

different types of liposomes, according to size and number of lipid bilayers: SUVs, LUVs 

or MLVs.[31] In particular SUVs can be considered as small nanoreactors that can be 

used to perform a variety of different experiments at the nanoscale. Under certain 

conditions they have the ability to sustain electrochemical gradients and keep a 

spherical shape. They are made of lipids, this makes them an ideal biocompatible 

environment for reconstitution of transmembrane proteins. Also water-soluble 

molecules, for example biologically relevant molecules like DNA, can be encapsulated 

in their lumen to allow the investigation of their properties. They can be an ideal 

model system for studying processes that take place both in the lumen or on the lipid 
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membrane. In the past years different researches used single liposome assays, for 

example for the investigation of fusion processes of synaptic vesicles to presynaptic 

membrane in neurons and for studies about lipid membrane curvature dependent 

protein-recruitment. One of the most important and useful properties of an assay 

based on liposomes is the possibility of high throughput and a great potential for single 

molecule measurements. [32,33] 

Different procedures can be followed to make SUVs. The one followed in this thesis is 

based on the rehydration of thin lipid films.[34,35] The liposomes are prepared mixing all 

the components of the liposomes’ membrane in a vial. These are dried from the 

solvent with a nitrogen flow and with incubation in vacuum. After the drying process a 

thin film is formed on the bottom of the cuvette. Rehydration buffer containing the 

elements to be encapsulated is poured into the vial in order to form the liposomes, 

which are still multilamellar and with a high size heterogeneity. A freeze-thawing 

process performed on liposomes decreases multilamellarity, it increases the loading 

capacity and it breaks down the largest liposomes. It is even possible to extrude the 

liposomes through a polycarbonate membrane to select their diameter between 30 

nm and 200 nm or larger sizes. It is necessary to fix the liposomes on a support in order 

to exploit the high throughput possibilities of the assay and to perform experiments on 

the single liposomes. A layer of biotinilated PLL-g-PEG or BAS is used to cover a glass 

support that represents the surface on which the fixed liposomes will be analyzed at 

the microscope. In this way the surface is passivated, in order to reduce unspecific 

binding.[32] This process makes also sure that liposomes adhere on the surface and 

prevents their deformation.[36] After the passivation process, NeutrAvidine or 

StreptAvidine are flushed into the chamber and they are attached to the surface by 

biotin anchors. Subsequently Liposomes are incubated into the chamber and they bind 

to NeutrAvidine/StreptAvidine tetramers by biotin anchors contained into liposomes’ 

membranes.[37,38]   
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Figure 6 Array of liposomes attached to the passivated surface. The surface is passivated using BSA or 
PEG in order to avoid unspecific binding and to ensure that liposomes keep their shape. Liposomes are 
anchored to the surface by NeutrAvidine or StreptAvidine proteins. These proteins are linked both to 
liposomes and to the surface by biotin linkers. In this way liposomes are fixed on space and time. Since 
fluorophores can be embedded in liposomes, these can be analyzed at the TIRF microscope for 
investigation of biologically relevant molecules present into the lumen or into the membrane of the 
liposomes.[32]   

 

3.2 Single liposome assay coupled with fluorescence techniques 

Fluorescent dyes can be encapsulated in the lumen of liposomes or embedded into the 

membrane of liposomes. In this way the liposomes attached to passivated surface can 

by analyzed with TIRF microscopy. In the micrograph of Figure 7 is possible to see an 

example of immobilized liposomes recorded with TIRF microscopy technique. The 

liposomes are seen as diffraction limit spots and their intensity varies proportionally to 

the concentration of substrate at which the fluorophores are sensitive.[32] Analyzing 

the intensity of the liposomes is possible to have quantitative results regarding for 

example the concentration of the substrate present inside the lumen. The density of 

attached liposomes can be determined in order to keep them separated and to avoid 

overlapping liposomes. Using single liposome assays is possible to select, in one single 

frame, up to about 1000 not overlapping liposomes. It is possible to gain information 

about the average response of all the liposomes after an exchange of external 

conditions. On the same time it is possible to have an insight on the response of each 

single liposome, comparing their properties with each other and with the average 

response.  
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Figure 7 Micrograph of single liposome assay.  
The liposomes, attached to the passivated surface, are seen as diffraction limited spots. It is possible to 
select each one of them and analyze their signal upon changes of the external buffer. These changes 
could lead to activation of reconstituted proteins that could allow us the study of their activity 
measuring the intensity changes of individual liposome. (scale bar of 10 μM). 

 

3.3   Single liposomes activity assay for LMCA1 

The lipids composition of the liposomes’ membrane and the buffer are both chosen 

trying to simulate an environment in which the pump works. The transporter protein 

LMCA1 is supposed to be located into the membrane of liposomes after the 

reconstitution. The proteins can be oriented inward and outward. The ATP will be 

provided into the buffer outside so only transporters with an ATP-binding site that has 

access to ATP will work. In this conditions, when ATP is provided H+ will be pumped out 

of the liposomes while Ca2+ ions will be pumped inside. In order to gain information 

about the activity of the pump, it is possible to take advantage of both the changes of 

pH and changes of Ca2+ concentration employing a pH sensor and a Ca2+ sensor. In 

order to make sure we are analyzing liposomes containing single molecules, the 

liposomes that show an activity should be a small percentage (around 10%) of the total 

number of attached liposomes during each activity measure. Since the pump has its 

maximum activity around pH 9, the activity experiments have to be performed in 

alkaline conditions so the pH sensor should be sensitive to changes between pH 6 and 

pH 10. Since the two fluorophores will have to be used together, they will have to be 

chosen considering their spectral properties: the excitation and emission peaks have to 

be at different wavelengths. Also when two types of fluorophores are employed in the 

same liposomes, it is necessary to keep the two types separated from each other to 

avoid cross talking. This phenomenon is a consequence of FRET: one excited 

fluorophore can transfer its energy to another fluorophore if they are close enough 

and if their spectra are overlapping. For this reason the pH sensor is conjugated to lipid 

and employed in the membrane of the liposomes while the calcium sensor is 

encapsulated into the lumen. Upon proton and calcium translocation, an accumulation 
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of positive charges inside the liposomes can build an electrochemical gradient that can 

modify the activity of the pump. In order to avoid this problem, ionophore valinomycin 

will be used to let get out from the lumen one K+ for each Ca2+ pumped in.  

 

Figure 8 Single liposomes assay for functional studies of LMCA1. The liposomes are attached to the 
passivated surface and contain both fluorophores sensitive to calcium encapsulated into the lumen and 
lipid-coupled pH sensors on the membrane. After injection of ATP, pumps start pumping Ca2+ ions inside 
the lumen and H+ outside into the external buffer. The fluorophores change their intensity according to 
Ca2+ or H+ concentration changes. (In the Figure is shown only a change in intensity of calcium sensor). It 
is possible to record the intensity changes over time with a TIRF microscope and gain information about 
the activity of the transporter protein.  

 

The aim of this project is the characterization of different fluorescent sensors to be 

employed in the single liposome assay for functional studies of the transmembrane 

protein LMCA1. Three different fluorescence sensors were previously characterized in 

bulk: the calcium sensors Fluo-5N, Oregon Green Bapta-5N and the pH sensor Snarf-

DOPE. All of them showed suitable properties for studying LMCA1. We characterized 

them at the single liposome level to verify if these fluorophores could be employed for 

the investigation of LMCA1 with the single liposome assay.  
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4   Experimental setup and apparatus   

4.1   Preparation of liposomes 

The liposomes were prepared using the thin lipid film rehydration method.[34] The 

desired amount of lipids and possible membrane dye that will compose the liposome’ 

membranes were poured in a clean glass vial using chloroform-resistant pipettes. The 

glass vials were left under nitrogen flow for approximately 10 minutes in order to have 

a complete evaporation of the solvent chloroform and until the formation of a thin film 

on the bottom of the vials was completed. Then the vials were left at least for one 

hour in a vacuum pump in order to be sure that the solvent was completely 

evaporated. If membrane dye was present, they were covered with aluminum paper 

during the process to avoid photobleaching. After the incubation in the vacuum pump, 

the dried thin film was rehydrated with a rehydration buffer of the desired pH, which 

was containing the dye that was supposed to be encapsulated. The rehydration buffer 

composition was always: Tris buffer (20 mM) at pH 8.7, KCl (200 mM), MgCl2 (1 mM), 

DTT (1 mM) and it contained also the dye to be encapsulated. DTT is a reducing agent 

that stabilizes the liposomes and the protein on their surface. It is supposed to be 

added fresh in every solution because it has a short life-time and it is sensitive to air 

oxidation. The volume of rehydration buffer had to be equal to the total volume of 

lipids and membrane dye used to form the lipid film. The rehydrated solution was 

pipetted in an eppendorf tube and then vortexed for 30 seconds. After vortexing, the 

tubes were dipped in liquid nitrogen for 1:30 minute and in hot water (50° C) for 5 

minutes, for 10 times. The process of freeze-thawing was supposed to break down the 

biggest liposomes, to reduce the multilamellarity and to increase the dye 

encapsulation rate. Straight after the freeze-thawing process, the solution with 

liposomes were pipetted in small eppendorf tubes (20 μL), that were frozen in liquid 

nitrogen and then stored in the -20° C fridge, covering them with aluminum paper. 

4.1.1   Snarf-DOPE containing liposomes 

Snarf-DOPE liposomes were prepared with the lipid composition in which the protein is 

supposed to work during the activity measurements. The liposomes composition in 

molar percentage was: 

E. coli polar lipids 74.3 % 
Egg yolk PC 24.7 % 
BT-PEG2000-DSPE 0.5 % 
Snarf-DOPE 0.5 % 

The total amount of rehydration buffer used was 500 μL and there was not any dye to 

be encapsulated. The vials containing free Snarf-DOPE dye were prepared by Camilla 

Thorlaksen. 
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4.1.2   Oregon Green Bapta-5N containing liposomes  

Initially the Oregon Green Bapta-5N liposomes were prepared with the same 

composition used for Snarf-DOPE liposomes (E. Coli + egg yolk). Using this lipid 

composition and with a dye concentration of 100 μM in the rehydration buffer, 62% of 

liposomes resulted empty. Due to this poor dye encapsulation efficiency it was decided 

to use the following composition in molar percentage: 

DOPC (850375C) 99.3 % 
BT-PEG2000-DSPE  0.5 % 
ATTO655-PE 0.2 % 

The total amount of rehydration buffer used was 500 μL and it was containing Oregon 

Green Bapta-5N. Different concentrations of dye in the rehydration buffer were used: 

250 μM, 100 μM, 50 μM, 25 μM, 10 μM. With this composition and with a dye 

concentration of 100 μM in the rehydration buffer, 25% of liposomes resulted empty. 

 

4.2   Spectrofluorometric measurements 

In order to characterize the dyes 

in bulk, spectrometric 

measurements were performed 

using a Horiba Jobin Yvon 

FluoroMax-4 spectrofluorometer, 

keeping the temperature at 25°C 

with a Wavelength Electronics 

LFI-3751 thermoelectric 

temperature controller. With a 

spectrofluorometer it is possible 

to record emission and excitation 

spectra of a fluorescent solution 

in order to investigate its 

fluorescent properties. As it is 

possible to see from the scheme 

in Figure 9 this instrument can 

have a xenon lamp as a source of 

exciting light. Monochromators 

are used to select both the 

emission and the excitation wavelengths. The gratings in the monochromators are 

used to decrease stray light.  The excitation light passes through the shutter and 

reaches a beam splitter. Part of the excitation light is reflected to a reference cell, 

Figure 9 Scheme of a Spectrofluorometer.  
A monochromator selects the wavelength of the 
excitation light. Part of it goes to the reference cell, part 
goes into the sample chamber. The light emitted by the 
sample passes through a second monochromator and 
then is collected, converted in digital signals and 
displayed on a monitor. 
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which generally contains a stable reference fluorophore. It is possible to correct the 

changes in the intensity of the arc lamp dividing the intensity from the sample by the 

intensity from the reference fluorophore. The light that passes through the sample 

goes through the second monochromator and finally arrives to the detector. The 

fluorescence is detected with photomultiplier tubes and quantified with the 

appropriate electronic devices, using counts per second (CPS) as a unit of measure.[39] 

In each experiment the sample solutions were added to a 1500 μL quartz cuvette, 

mixing the solution with a pipette to ensure homogeneity. The cuvette was cleaned 

before each experiment rinsing 5 times with milliQ and 5 times with methanol and 

then drying under nitrogen flow. The concentration of dye and the slit width were  

chosen in order to keep the counts range of the spectrofluorometer in the acceptable 

range between 100000 and 2 millions counts. 

4.2.1   Snarf-DOPE - spectrofluorometric measurement 

The measurements to obtain a pH-calibration curve for the pH sensor Snarf-DOPE were 

performed on 1 mL solution containing: Snarf-DOPE mock liposomes (about 100x 

dilution),  Tris buffer (20 mM) at different pH values (from pH 4 to pH 12), KCl (200 

mM), MgCl2 (1 mM), DTT (1 mM), CCCP (5 µM) and Valinomycin (62.5 nM). To ensure 

the stabilization of the signal, 3 minutes of incubation were waited, monitoring the 

intensity of the signal with kinetic measurements. Every measure for each pH value 

was repeated in triplicate, each time preparing from scratch the solution to be injected 

in the cuvette. The cuvette was cleaned after each measure rinsing 5 times with milliQ 

and 5 times with methanol and then drying under nitrogen flow. The excitation 

wavelength used was 532 nm, the emission wavelengths range was from 550 nm to 

700 nm. The slit width was 8 nm both for excitation and emission. 

4.2.2   ATTO655-DOPE  - spectrofluorometric measurement 

The mock liposomes used in this experiment were fabricated by Mateusz Dyla from the 

Molecular biology and genetics Department, Aarhus University, Denmark. The 

liposomes composition was:   

E. coli polar lipids 74.66 % 
egg yolk PC 24.89 % 
DOPE-cap-biotin 0.30 % 
ATTO655-PE 0.50 % 

and the rehydration buffer used contained: Tris-HCl pH 8.5 (20 mM), KCl (200 mM), 

MgCl2 (1 mM), DTT (1 mM). 

The measurements to obtain excitation and emission spectra for the fluorescent dye 

ATTO655-DOPE were performed on 1 mL solution containing: ATTO655-DOPE mock 

liposomes (about 200x dilution), Tris buffer pH 8.7 (20 mM), KCl (200 mM), MgCl2 (1 

mM), DTT (1 mM), Ca2+ (25 µM), ionomycin (10 nM) and valinomycin (62,5 nM). Four 
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emission spectra were collected setting the following excitation wavelengths: 640 nm, 

532 nm, 491 nm, 405 nm. The emission wavelengths range was from 650 nm to 800 

nm. The excitation spectrum was collected setting an excitation wavelength range 

from 400 nm to 670 nm and an emission wavelength at 679 nm that corresponds to 

the emission peak of the dye in these conditions. The slit width was 4 for excitation 

and 3 for emission. 

 

4.3   Preparation of flow cells 

In order to perform the experiments at the TIRF microscope, a support where to fix the 

fluorescent liposomes was needed. Flow cells were used since it is possible to fix on 

them the liposomes and quickly exchange the external buffer. Flow cells were 

prepared assembling together cleaned glass slides (thickness 170 ± 10 μm, Assistant, 

Sondheim, Germany) and a sticky-slide VI 0.4 (Ibidi, Germany). Glass slides  were 

cleaned by 2 sonications in 2% Helmanex, 2 in milliQ water and 1 in methanol storing 

them in methanol. The glass slide was dried from Methanol under nitrogen flow and 

then it was put inside a plasma cleaner (PDC-32G; Harrick Plasma)  for 3 minutes under 

vacuum. Right after the cleaning, the glass slide was put on a sticky-slide and then the 

tubing was inserted (“thick” tubing: TYGON standard, 1.6/4.8 mm, IDEX Health & 

Science GmbH, United States – “thin” tubing: Polytetrafluoroethylene, 1.0x0.5 mm, 

Bohlender GmbH, Germany). The flow cell was connected to a pump and a 200 μL of 

1.0 g/l pll-PEG-Biotin/pll-PEG (1:100) solution was flushed into the chambers and 

incubated for 30 minutes. Finally 2 mL of HEPES buffer was flushed into the chambers 

and the flow cell was stored in a fridge at 4 °C.  

Before  each experiment the chamber was flushed with 1 mL of HEPES buffer and 200 

μL of 0.1 g/l NeutrAvidin in HEPES buffer. After incubation of 10 minutes, 2 mL of 

sample buffer were flushed into the chambers. The liposomes were immobilized on 

the surface flushing with 250 μL of sample with the concentration needed for the 

experiment. Depending on the desired density of liposomes, a different incubation 

time was waited. After the incubation the non-bound vesicles were flushed away 

flushing again with 2 mL of sample buffer. 
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4.4  TIRF microscopy 

TIRF microscopy is a technique 

based on an induced evanescent 

wave of excitation. The depth of 

this evanescent wave determines 

the limit of penetration of light 

over the cover slip and it allows a 

focus only on the sample 

extremely close to the surface, on 

a range of some nanometers. The 

evanescent wave is generated 

only when the incident light 

becomes totally internal 

reflected at the glass-sample 

interface. This happens for a 

particular incident angle called critical angle. This technique is very useful to 

investigate processes that occur close to the plasma membrane. In this case it was 

necessary in order to have a high temporal resolution and to reduce the background 

noise.[40] The microscope used had four different lasers with  emission wavelengths of 

405 nm, 491 nm, 532 nm and 640 nm. It was possible to use the microscope both in 

single view or dual view. When used in single view, the camera collects the light 

coming from the sample without additional filters, except the excitation filter that cuts 

the wavelengths of the laser. When used in double view, the light that comes from the 

sample, after the excitation filter, passes through a system of mirrors that contains an 

additional dichroic mirror. This dichroic mirror splits the signal in two parts, sending 

the light above a certain wavelength (640 nm in our case) to one half of the camera 

and the light below to the other half. The microscope settings (laser power, exposure 

time, presence of additional ND filters and type of ND filters) were determined in order 

to quantify and minimize photobleaching. The percentage of average signal decreased 

due to photobleaching in each experiment was 10% of the total average signal. 

Photobleaching measurements were carried out in the same condition in which the 

experiment was supposed to be performed.  

 

4.4.1    Snarf-DOPE - TIRF microscopy measurement 

 

The mock liposomes containing membrane dye Snarf-DOPE used for the pH titration 

were fabricated by Camilla Thorlaksen. The liposomes composition in molar 

percentage was:   

E. coli polar lipids 74.3 % 
egg yolk PC 24.7 % 

Figure 10 Total Internal Reflection Fluorescent Microscopy. 
The sample is excited by the incident light. When light is 
totally internally reflected, the evanescent wave is 
generated and it excites only fluorophores immediately 
above the cover slip, decreasing the background noise. 
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BT-PEG2000-DSPE 0.5 % 

Snarf-DOPE 0.5 % 

and the rehydration buffer used contained: Tris-HCl pH 8.5 (20 mM), KCl (200 mM), 

MgCl2 (1 mM), DTT (1 mM).  

 

 pH titration 

 

The liposomes (30x dilution) were incubated for 15 minutes then 2 mL of sample 

buffer at pH 12 ( Tris-HCl (20 mM), KCl (200 mM), MgCl2 (1 mM), DTT (1mM), CCCP (5 

µM), Valinomycin (62.5 nM) )  were used for flushing away the non-bound liposomes. 

The right position of the sample was chosen and after 3 minutes of incubation, 5 

images were recorded. Sample buffer at pH 11 was flushed and after 3 minutes of 

incubation, 5 images were recorded. This process was repeated also for the pH values 

in the range between pH 10 and pH 4 in order to obtain the calibration curve. The 

excitation wavelength of the laser was 532 nm (20% laser power), the exposure time 

was 500 ms, the microscope was set on double with a cutoff wavelength of 640 nm, 

and a neutral density filter 3.0 was used to decrease the power of the laser.  The 

experiment was repeated in triplicate. 

4.4.2   Oregon Green Bapta-5N - TIRF microscopy measurement 

 

 Investigation of self-quenching effect 

The liposomes (200x dilution) were incubated for 5 minutes then 2 mL of sample 

buffer ( Tris-HCl pH 8.7 (20 mM), KCl (200 mM), MgCl2 (1 mM), DTT (1mM) ) were used 

for flushing away the non-bound liposomes. The right position of the sample was 

chosen and a movie of 10 minutes was recorded in order to see if an increase of signal 

could indicate the presence of self-quenching effect for the encapsulated dye. This 

experiment was repeated for liposomes containing different concentration of Oregon 

Green Bapta-5N: 250 μM, 100 μM, 50 μM, 25 μM, 10 μM. The excitation wavelength of 

the laser was 491 nm (15% laser power) for the Oregon Green Bapta-5N channel and 

640 nm (8% laser power) for the ATTO655 channel, the exposure time was 500 ms, the 

microscope was set on single view and a neutral density filter 2.0 was used to decrease 

the power of the laser.   

4.4.3   Fluo-5N - TIRF microscopy measurement 

The mock liposomes containing encapsulated Fluo-5N (they will be called full 

liposomes) were fabricated by Mateusz Dyla from the Molecular biology and genetics 

Department, Aarhus University, Denmark. The liposomes composition in molar 

percentage was:   
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E. coli polar lipids 74.66 % 
egg yolk PC 24.89 % 
DOPE-cap-biotin 0.30 % 
ATTO655-PE 0.50 % 

and the reconstitution buffer used contained: Tris-HCl pH 8.5 (20 mM), KCl (200 mM), 

MgCl2 (1 mM), DTT (1 mM), Fluo-5N (1 mM).  

Mock liposomes without any encapsulated dye ( they will be called empty liposomes) 

were fabricated by Mateusz Dyla from the Molecular biology and genetics 

Department, Aarhus University, Denmark. The liposomes composition in molar 

percentage was:   

E. coli polar lipids 74.66 % 
egg yolk PC 24.89 % 
DOPE-cap-biotin 0.30 % 
ATTO655-PE 0.50 % 

and the rehydration buffer used contained: Tris-HCl pH 8.5 (20 mM), KCl (200 mM), 

MgCl2 (1 mM), DTT (1 mM). 

 Ca2+ titration 

The full liposomes (200x dilution) were incubated for 10 minutes then 2 mL of sample 

buffer ( Tris-HCl pH 8.5 (20 mM), KCl (200 mM), DTT (1mM) )  were used for flushing 

away the non-bound liposomes. The right position of the sample was chosen, 5 images 

were recorded both on the fluo-5N channel and on the ATTO655 channel and then 

sample buffer containing ionomycin (10 µM) was flushed. After 3 minutes of 

incubation 5 images were recorded on the fluo-5N channel then sample buffer with 

ionomycin (10 μM) and calcium (1 μM ) was flushed. This process was repeated for all 

the different calcium concentrations needed to obtain the calibration curve: 1 μM, 5 

μM, 10 μM, 20 μM, 50 μM, 100 μM, 200 μM, 300 μM and 500 μM.  The excitation 

wavelength of the laser was 491 nm (15% laser power) for the Fluo-5N channel and 

640 nm (8.5% laser power) for the ATTO655 channel, the exposure time was 500 ms, 

the microscope was set on single view and a neutral density filter 2.0 was used to 

decrease the power of the laser.   

 Investigation of cross emission of ATTO655 

In this experiment were used both the empty liposomes and the full liposomes. The 

empty liposomes (200x dilution) were incubated around 10 minutes then 2 mL of 

sample buffer ( Tris-HCl pH 8.5 (20 mM), KCl (200 mM), MgCl2 (1 mM), DTT (1 mM),  

valinomycin (62.5 nM) ) were used for flushing away the non-bound liposomes. The 

right position of the sample was chosen and fifteen images of empty liposomes were 
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recorded: five on the ATTO655 channel and ten on the Fluo-5N channel. Subsequently 

the full liposomes were incubated and after about 10 minutes 2 mL of sample buffer 

were used for flushing away the non-bound liposomes. Again fifteen images were 

recorded as previously in the same position. The excitation wavelength of the laser  

was 491 nm (55% laser power) for the Fluo-5N channel and 640 nm (15% laser power) 

for the ATTO655 channel, the exposure time was 500 ms, the microscope was set on 

double view and a neutral density filter 3.0 was used to decrease the power of the 

laser. The experiment was repeated in duplicate.  

 Unspecific binding to the membrane of liposomes 

The empty liposomes (200x dilution) were incubated for 10 minutes then 2 mL of 

sample buffer ( Tris-HCl pH 8.5 (20 mM), KCl (200 mM), MgCl2 (1 mM), DTT (1 mM), 

valinomycin (62.5 nM)  ) were used for flushing away the non-bound liposomes. The 

initial part of the experiment was performed to check if the injection of calcium could 

modify the signal. The right position of the sample was chosen and fifteen images of 

the initial condition were recorded: five on the ATTO655 channel and ten on the Fluo-

5N channel. 200 μL of sample buffer with calcium (500 μM) were flushed. Ten images 

on the Fluo-5N channel were recorded. In the second part of the experiment the 

system was brought back to the initial conditions. Fifteen images of the initial 

condition were recorded: five on the ATTO655 channel and ten on the Fluo-5N 

channel. 200 μL of sample buffer with free Fluo-5N (100 μM) were flushed. Ten images 

on the Fluo-5N channel were recorded. 200 μL of sample buffer with calcium (500 μM) 

were flushed. Ten images on the Fluo-5N channel were recorded. The excitation 

wavelength of the laser  was 491 nm (45% laser power) for the Fluo-5N channel and 

640 nm (15% laser power) for the ATTO655 channel, the exposure time was 500 ms, 

the microscope was set on double view and a neutral density filter 3.0 was used to 

decrease the power of the laser. The experiment was repeated in triplicate.  

 

4.5 Image analysis 

All the images recorded with the TIRF microscope were first preprocessed with ImageJ 

or FIJI and subsequently analyzed with Igor’s routines. The preprocessing stage was 

useful firstly to increase the signal to noise ratio: images of the sample were recorded 

minimum in triplicates and then averaged so as the background noise could be 

decreased. Secondly it was possible to align the images recorded throughout all the 

experiment and correct the drifting effect: all the images were aligned using 

translations and rotations according to the brightest one of the recorded stack. This 

aligning process could be done manually or using the specific plug-in of ImageJ: 

StackReg. During this stage the images were also rearranged in the right order, cut or 

combined in order to be analyzed. 
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Then the preprocessed images were analyzed using one of the particle tracking and 

analyzing routines written in Igor: NGPA by S. M. Chrsitensen or TAMT by M. Tuktus. In 

particular TAMT was used to analyze the images of Snarf-DOPE while NGPA was used 

for the rest of the images. Both the routines perform a 1D or 2D gaussian fitting on 

intensity peaks over a user defined threshold. The integrated intensity represents the 

fluorescent signal from the immobilized liposomes. It is possible to accept or reject the 

results according to user defined parameters such as minimum size, circularity and 

fitting error. It is also possible to colocalize signal between two different channels, for 

example this is necessary to analyze data from a ratiometric experiment or this is 

useful when more than one dye is employed into the liposomes. In our case it was 

useful to colocalize signal emitted by membrane dye (ATTO655) and encapsulated dye 

(Oregon Green Bapta-5N or Fluo-5N): in this way it was possible to exclude those 

liposomes that do not colocalize such as empty liposomes (their signal comes only 

from ATTO655) and conglomerates of free dye unspecifically bound to the surface 

(their signal comes only from Oregon Green Bapta-5N or Fluo-5N). Once the liposomes 

are selected on the first frame, the program can keep track of them through a series of 

images. Finally it is possible to plot the intensity of each liposome versus time or versus 

other quantities such as pH values or ions concentrations. Whit TAMT it was also 

possible to correct the images for the background using three different methods: 

“rolling ball” algorithm, gaussian filtering and low-frequency filtering. 
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5   Data analysis and results 

The main goal of the single liposome assay for functional studies of LMCA1 is to allow 

an insight on the activity of the pump at the single molecule level employing 

fluorescent sensors that are sensitive to concentration changes of the substrate 

translocated across the liposomes’ membrane by the pump itself. The liposomes are 

immersed in an aqueous medium in which other elements such as ions can be flushed 

during the experiments. Both the composition of liposomes’ membrane and aqueous 

buffer were chosen in order simulate in the best way possible the biological 

environment in which the protein naturally works. In the following sections the 

characteristics of three different fluorescence sensors will be discussed and it will be 

described their suitability to the single liposome assay. 

 

5.1 Characterization of Snarf-DOPE for the single liposome assay 

The compound Snarf-DOPE consists of the pH sensor Carboxy Snarf-1 conjugated to 

lipid DOPE. This compound was synthesized for our use by Thomas Pomorski. [41] 

Carboxy Snarf-1 is a cell impermeable pH sensor. It has an excitation peak at 532 nm 

while it has two emission peaks: one at 583 nm and one at 640 nm. The presence of 

two peaks is due to the fact that this dye has two fluorescent states: monoanion and 

dianion. Upon changes of pH it exhibits an emission wavelength shift from 583 nm to 

640 nm. The presence of two peaks can be useful in order to perform ratiometric 

experiments. It was decided to conjugate Carboxy Snarf-1 to lipid DOPE in order to 

obtain Snarf-DOPE and to use it as a membrane dye. The presence of Snarf-DOPE into 

the membrane of liposomes will allow us the measurement of pH changes of the 

environment in which liposomes are immersed. In the following sections properties of 

Snarf-DOPE will be shown, both in bulk and in the single liposomes assay. CCCP, a 

protonophore that translocates protons across the lipid bilayer, was used during the 

experiments in order to equilibrate the concentration of protons inside and outside 

the liposomes upon changes of buffer at different pH values.  

5.1.1   Bulk characterization 

In order to verify if the properties of Snarf-DOPE in bulk could suite the single liposome 

assay for studying LMCA1, spectrofluorometric experiments were performed. The 

response of Snarf-DOPE to pH changes was investigated as so to calculate the fold 

increase of the intensity ratio. Snarf-DOPE liposomes were dissolved into sample 

buffer containing CCCP and valinomycin and its intensity was measured upon changes 

of pH. For details on the exact protocol used to perform the pH titration see Section 

4.2.1 . As it is possible to notice from Figure 11-A, the dye exhibits two emissions 

peaks: one more prominent at 583 nm and the other one at 650 nm. As far as the pH 
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increases, the peak at 583 nm increases while the peak at 650 nm decreases, 

undergoing a fluctuation in the intensity of emitted light. It was possible to calculate 

the intensity ratio curve in Figure 11-B dividing the intensity at 583 nm by the intensity 

at 650 nm for all the different pH values.  

As it is possible to see in Figure 11-B, the intensity shift is localized between pH 6 and 

pH 10, which is the range in which LMCA1 is supposed to have high activity. The 

intensity ratio increases of I1 = (3.3 ± 0.2) units in this range. A sigmoidal fit was 

performed on the intensity ratio curve and it was found a pKa bulk = (9.3 ± 0.1). The 

function used to fit the intensity ratio curve is a sigmoidal function defined as follow: 

 

𝑓(𝑥) =  𝑏𝑎𝑠𝑒 + {
𝑚𝑎𝑥

1 + 𝑒
(

(𝑥ℎ𝑎𝑙𝑓−𝑥)
𝑟𝑎𝑡𝑒

)
} 

 

The parameter that represents the pKa of the intensity ratio curve is xhalf, defined as 

the x at which the function has a value corresponding to half of the maximum 

saturation value.  

Since the value of pKa bulk is in a range in which LMCA1 has a high activity and the 

intensity ratio increases of I1 = (3.3 ± 0.2) units, Snarf-DOPE has the right bulk 

properties to be tested also with the single liposome assay for studying LMCA1. 

  

Figure 11 Spectrofluorometric measurements of liposomes containing membrane dye Snarf-DOPE 
A) Emission spectra for different  pH values showing the presence of two peaks at the wavelength of 583 

nm and 650 nm. Every spectrum is an average of three different spectra. 

B) Intensity ratio profile was determined by dividing the emission peak at 583 nm with the corresponding 

emission peak at 650 nm. The curve was fitted with a sigmoidal function from which it is possible to obtain 

the average pKa bulk = (9.3 ± 0.1). Each data point was obtained as an average between three experiments. 

The error bar is the standard deviation. The liposomes where diluted about 100x in a solution of Tris 

buffer 20 mM at different pH containing: 1 mM MgCl₂, 200 mM KCl, 1 mM DTT, 5µM CCCP and 62.5 nM 

valinomycin. 

5.1.2   Single liposomes level characterization: calibration curve and pKa distribution 

In order to characterize Snarf-DOPE at the single liposomes level, the liposomes 

containing Snarf-DOPE were attached to the surface of a flow cell, following the 

procedure explained in Section 4.3 . In order to quantify the response of the 
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fluorophore to pH changes, a ratiometric experiment was performed. It was necessary 

to select two different emission ranges using the dual view of the microscope: a lower 

range in the interval of wavelengths (582 ± 37.5) nm and an higher range in the 

interval of wavelengths over 650 nm. It is possible to see from Figure 12 an example of 

a micrograph showing liposomes during the ratiometric experiment: the upper part of 

the image represents the emission signal in the range [582 ± 37.5] while the lower part 

represents the emission in the range over 650 nm. 

 

Figure 12 Micrograph showing liposomes attached to the passivated surface during the pH titration. 
In the upper half, in red, the 650 nm channel. In the lower half, in green, the 583 nm channel. The 
analysis was performed only on liposomes colocalized between these two channels. (Scale bar = 10 μM). 

Liposomes were colocalized between the 650 nm channel and the 583 nm channel 

(over 80 % colocalization rate). During the analysis each colocalized liposome was 

fitted with a two dimensional gaussian function: the intensity of each liposome is 

represented by the area underlying the fitting function. Only fits with an error on the 

intensity lower than a tenth of the estimated value were accepted. The average 

emission signal of the two different channels was plotted as a function of the pH 

values where the intensity was normalized to the intensity at pH 12, as it is shown in 

Figure 13-A,B. The average intensity ratio is shown in Figure 13-C. It was calculated 

dividing each data point of 583 nm channel by the corresponding data point of 650 nm 

channel. A sigmoidal fit was performed on the average intensity ratio in order to 

calculate the average pKa microscope_avg = (8.0 ± 0.1). Snarf-DOPE responded to pH 

changes also in the single liposome assay: the intensity ratio increases of I2 = (5.5 ± 0.4) 

units between pH 10 and pH 6. Both the pKa microscope_avg value and the increase of the 

intensity ratio I2 in the pH range between pH 10 and pH 6 suggest that Snarf-DOPE can 

be a good candidate for functional studies of LMCA1 because this fluorophore can 

sense pH changes in an alkaline environment in which activity experiment will be 

performed. 
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Figure 13 Ratiometric measurement at microscope of liposomes containing Snarf-DOPE. The average 
signal from three different experiments is shown as a function of the pH.  
A) Average signal collected in the range of (582 ± 37.5) nm. B) Average signal collected over 650 nm. 
Both A) and B) are normalized by the intensity at pH 12. C) Ratio between the two previous averaged 
signal. 150 liposomes were analyzed. The intensity ratio curve was fitted with a sigmoidal function from 
which it is possible to obtain the average pKa microscope_avg = (8.0 ± 0.1). It is possible to notice that the 
intensity ratio increases of I2=(5.5 ± 0.4) units between pH 10 and pH 6. The experiment was repeated 
three times. The error bars represent the standard deviation.  

The fluorophore was characterized at the single liposome level in order to evaluate the 

heterogeneity of the fluorescent response of individual liposomes. In particular the 

aim was to establish a one-to-one correspondence between intensity ratio values and 

pH values and to verify if this conversion could be valid for all the liposomes or a local 

conversion for each liposome was necessary. The distribution of intensity ratio values 

of every single liposome was plotted for each pH value as so to have an indication of 

the heterogeneity of the response of the single liposomes, as it is possible to see in 

Figure 14. It is possible to notice that the widths of every distribution cover different 

pH values. In the graph of Figure 15 the average value of each distribution plotted 

against the corresponding pH value is shown and the error bar corresponds to the 

width of the corresponding gaussian distribution. It is already clear from Figure 15 that 

it is not possible to establish a one-to-one correspondence between intensity ratio 

values and pH values. For example given an intensity ratio value of 3 units, this can 

correspond to three different pH values: pH 6, pH 7 and pH 8. Both Figure 14 and 

Figure 15 are based on the intensity value of single liposomes and show a certain 

heterogeneity among all the liposomes.  
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Figure 14 Distribution of intensity ratio at different pH values for the single liposomes containing 
Snarf-DOPE  
The distributions of the intensity ratios of the single liposomes were plotted for the pH values of interest 
and each one was fitted with a gaussian function. The distributions have a standard deviation around 1: 
the response of the liposomes to pH changes is heterogeneous.  

 

Figure 15 Distribution of intensity ratio for the single liposomes containing Snarf-DOPE 
In the figure is shown the mean of every  distribution with the relative standard deviations  as a function 
of the pH. The distributions show a relatively high heterogeneity on the response to pH changes of the 
single liposomes. For example, the intensity of 3 units corresponds to three different pH values, as 
shown from the blue dashed line. 
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Every single liposome was characterized performing a sigmoidal fit of each trace. The 

pKa of the fluorescent dye into the membrane of each liposome was estimated fitting 

the trace of each liposome with a sigmoidal function, as it is shown in Figure 16-A. Only 

the fits with  an absolute error on the pKa lower than one fifth of the estimated value 

were accepted. A distribution of all the estimated pKa is shown in Figure 16-B. The 

average pKa microscope_single = (8.0 ± 0.9) is in a range that is still suitable for studying 

LMCA1 with the single liposome assay but its uncertainty covers almost three different 

pH values, suggesting that there is a high heterogeneity among the liposomes.  

  

Figure 16 A) Example of a single liposome trace - B) Distribution of the pKa  
A)Example of one of the selected traces fitted with sigmoidal function. The error bars on each data point 
represent the error of the gaussian fitting done during the image analysis. A trace was accepted only if 
the error on the estimated value was less than one tenth of the estimated value itself.  
B)The histogram shows the distribution of the pKa for every single liposome. 85 liposomes were 
analyzed. The pKa was calculated fitting every single trace of intensity ratio with a sigmoidal function and 
selecting only the fits with  an absolute error on the pKa  lower than one fifth of the estimated value. The 
histogram of the distribution was fitted with a gaussian function. The calculated average pKa 

microscope_single=(8.0 ± 0.9) is in a range that is appropriate for studying LMCA1. The width of the 
distribution of the pKa suggests that there is heterogeneity in the response to pH changes for individual 
liposomes, so a local calibration is needed. 

Both from the estimated intensity values and widths of Figure 15 and from the 

distribution of pKa in Figure 16 it is possible to state that the response of liposomes to 

pH changes is heterogeneous. Due to this heterogeneity, it is not possible to globally 

convert an intensity ratio value into only one pH value. The conversion from intensity 

ratio values into pH values has to be done locally for each single liposome so a local 

calibration is necessary. 

5.1.3   Summary of the properties of Snarf-DOPE  

Snarf-DOPE was tested with the single liposome assay in order to describe its 

properties at the single liposome level. The pH titration performed at the 

spectrofluorometer showed the presence of two emission peaks at 583 nm and 650 

nm. It was possible to calculate the intensity ratio as a function of pH values and 

estimate a pKa bulk = (9.3 ± 0.1). The fold increase of more than 4 units in the range 

between pH 10 and pH 6 and the value of the pKa bulk both suggest that Snarf-DOPE has 

the right bulk properties for studying LMCA1 with the single liposome assay because 
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this fluorophore can sense pH changes while the pump will use ATP to transport 

calcium into the liposomes and protons outside. 

The dye was successfully implemented in the single liposome assay and the average 

fold increase upon pH changes at the microscope I2 = (5.5 ± 0.4) is higher than the one 

at the spectrofluorometer I1 = (3.3 ± 0.2). This could be because when the titration is 

performed at the spectrofluorometer the measured intensity is an average intensity of 

the solution in which liposomes are dissolved whereas with the measures recorded at 

the microscope it is possible to discard the liposomes that did not respond. A pH 

titration allowed the measure of an average intensity ratio: pKa microscope_avg =(8.0 ± 0.1).  

From the distribution of the pKa of single liposomes it was estimated the pKa 

microscope_single = (8.0 ± 0.9). The estimated pKa microscope_single value suggests that Snarf-

DOPE is sensitive to pH changes in the right pH range for studying LMCA1. The fold 

increase I2 = (5.5 ± 0.4) in the right range of pH values makes Snarf-DOPE suitable for 

the single liposome assay. The width of the distribution of pKa microscope_single suggests 

that the conversion from intensity ratio values to pH values is not valid for all the 

liposomes and it is necessary to locally convert the intensity ratio values into pH 

values. The low statistic due to the small allowed error on the data fit can be improved 

replacing the long pass filter at higher wavelengths with a band pass filter that select 

only the light close to the peak, increasing the signal to noise ratio.  

 

5.2 Characterization of Oregon Green Bapta-5N in the single 

liposomes assay 

Oregon Green Bapta-5N is a low affinity calcium sensor dye. It has an excitation peak 

at 491 nm and an emission peak at 521 nm. From previous bulk experiments, Oregon 

Green Bapta-5N appeared to be suitable with the single liposome assay for studying 

LMCA1. It was found experimentally by Simon Bo Jensen a Kd of about 31 µM, which is 

in the right range for studying LMCA1. We wanted to employ this dye as encapsulated 

dye in order to measure calcium concentration changes inside the lumen of the 

liposomes. In the following section some of the properties of Oregon Green Bapta-5N 

will be discussed at the single liposome level. 
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Figure 17 Excitation and emission spectrum of Oregon Green Bapta-5N. Excitation peak at 491 nm in blue, 
emission peak at 521 nm in red. (Graph originally from "Life technologies") 

5.2.1 Single liposomes level characterization: presence of self-quenching effect 

In order to describe the properties of Oregon Green Bapta-5N at the single liposomes 

level, liposomes containing encapsulated dye were fabricated and attached to the 

surface of a flow cell as explained in Sections 4.3 . The presence of self-quenching 

effect was seen during photostability measurements performed on the liposomes 

containing Oregon Green Bapta-5N. Quenching refers to a process that decreases the 

fluorescence intensity of a given substance. For instance FRET is based on quenching: a 

donor dye in excited state transfers energy to an acceptor quencher dye. This 

interaction is extremely dependent on the distance of the two dyes. In the case of self-

quenching donor and acceptor are the same dye and the distance between the 

molecules of dye depends directly on the concentration of the dye itself.[42,43,44]  The 

presence of self-quenching can represent a problem for the single liposome assay 

because it can influence the data analysis of activity measurements. During activity 

measurements the active traces should show an increase of signal due to calcium 

pumped inside the lumen of liposomes by LMCA1. In presence of self-quenching, if a 

trace shows an increase of signal, this could be either due to activity of LMCA1 or self-

quenching and it could be not possible to distinguish among the two. Self-quenching 

can be removed decreasing the concentration of encapsulated dye. There is a limit on 

the dilution of dye since below a certain concentration the encapsulation rate is too 

low and It becomes difficult to localize liposomes on the surface.  

Experimentally it is possible to recognize the presence of self-quenching looking at the 

profile of a photostability measurement: first the signal increases due to the self-

quenching effect then after a certain period of time, depending on the type of dye and 

on the experimental settings (exposure time and intensity of laser light), the signal 

starts to decrease due to photobleaching. An experimental example of self-quenching 

is shown in Figure 18-A. In order to reduce self-quenching, liposomes containing 

Oregon Green Bapta-5N were fabricated with different concentration of encapsulated 
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dye: 250 μM, 100 μM, 50 μM, 25 μM, 10 μM. If the concentration of encapsulated dye 

in the rehydration buffer is 10 μM, the average signal from all the liposomes does not 

show self-quenching, as shown in Figure 18-B. 

It was necessary to investigate the presence of self-quenching also at the single 

liposomes level. Analyzing the single liposomes traces from sample containing a dye 

concentration of 10 μM, it was seen that 4% still show self-quenching since the signal 

was increasing at least over 1.1 folds, as it is possible to see in Figure 19 (in this 

experiment 16 out of 400 vesicles showed self-quenching). As stated before the goal of 

the single liposomes assay would be to measure the activity of single molecules of 

LMCA1. In order to have high probability of presence of single LMCA1 molecules into 

the liposomes membrane, the percentage of liposomes that show activity during an 

activity measurement should be around 10%. If Oregon Green Bapta-5N is employed, 

4% of traces will show self-quenching. This means that among the active traces, 30% 

will increase the signal due to self-quenching and not because of LMCA1 activity.  

  

Figure 18 Self-quenching effect disappears decreasing the concentration of encapsulated 
OregonGreenBapta-5N. Average signal  
Average signal from colocalized liposomes containing Oregon Green Bapta-5N at concentrations of A) 50 
μM and B) 10 µM. It’s possible to notice that self-quenching effect is still present at concentration of 50 
μM looking at the shape of the curve. It disappears decreasing the concentration to 10 µM, when the 
signal decreases due to photobleaching.  

From the calibration curve of Oregon Green Bapta-5N in Figure 20 we can find that a 

fold increase of 1.2 folds corresponds to a calcium concentration of about 25 μM. 

Given these conditions, it will not be possible to investigate activity of the pump at 

least below 25 μM on 30% of the active traces because it is not possible to distinguish 

if the fold increase is due to self-quenching or due to an increased calcium 

concentration into the lumen of the liposomes. Therefore even if Oregon Green Bapta-

5N represented a good candidate from bulk experiments, it was decided to discard it 

as a calcium sensor for the single liposomes assay. 
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Figure 19 Self-quenching effect from a trace of a single liposome containing encapsulated 
OregonGreenBapta-5N 10 µM. 
Example of a single trace from the liposomes at a concentration of 10 µM. The intensity is normalized by 
the average of the intensity of the first 10 frames. At this concentration 4% of the single traces still show 
self-quenching with an increase of signal up to 1.2 folds. 

 

 

Figure 20 Calcium titration on liposomes containing Oregon Green Bapta-5N. 
The graph shows the fold increase in the average signal coming from all recorded liposomes containing 
Oregon Green Bapta-5N. An increase of 1.2 folds corresponds to a calcium concentration of 25 μM. 
From figure 18 it is possible to see that self-quenching is responsible for an increase up to 1.2 folds. 
From these results it is possible to conclude that, employing Oregon Green Bapta-5N it is not possible to 
distinguish if the signal is increased because of self quenching or because of activity of LMCA1 when we 
are below 25 μM. The experiment was performed once and the intensity was normalized by the 
intensity at 0 μM calcium.  

5.2.2   Summary of the properties of Oregon Green Bapta-5N  

From bulk experiments, Oregon Green Bapta-5N showed right properties to be 

employed as a calcium sensor for the single liposomes assay. When encapsulated into 

liposomes, the dye showed self-quenching. It was possible to remove self-quenching 

from the average signal decreasing the concentration of encapsulated dye. Analyzing 

the single traces, self-quenching was still present in 4% of the liposomes. Since the 

percentage of traces showing self-quenching was too high compared with the 

expected percentage of active traces (10%) it was decided that the dye’s properties did 

not suite the single liposome assay for functional studies of LMCA1. Also it is important 

to consider that when it was used a dye concentration of 10 μM, that is much lower 

compared with the initial one of 700 μM, the encapsulation rate was half ( more than 
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1000 vesicles were colocalized when the dye concentration was 700 μM while 400 

were colocalized when the dye concentration was 10 μM) and also this represents a 

problem if Oregon Green Bapta-5N would be used in the single liposome assay 

because the statistic would be low since many liposomes would not contain dye or the 

dye contained would not be enough to allow the detection of its fluorescence. 

 

5.3 Characterization of Fluo-5N in the liposomes assay 

Fluo-5N is a low affinity calcium sensor dye that increases its emission as the 

concentration of calcium increases. It has an excitation peak at 494 nm and an 

emission peak at 516 nm. From previous experiments in bulk or at the single liposome 

level performed by Mads Møller, Fluo-5N resulted suitable for being employed in the 

single liposome assay. Here we wanted to investigate different properties of the 

liposomes containing encapsulated Fluo-5N. First the heterogeneity in response to 

calcium of every single liposome was quantified. Secondly we wanted to evaluate the 

presence of cross emission between Fluo-5N in the lumen of the liposomes and ATTO-

655 in the membrane of the liposomes. Finally we wanted to exclude the possibility of 

unspecific binding of Fluo-5N to the membrane of liposomes. Ionomycin, a calcium 

ionophore, was used during the experiments in order to equilibrate the concentration 

of calcium ions inside and outside the liposomes upon changes of buffer at different 

calcium concentrations.  

5.3.1   Single liposomes level characterization 

 Calibration curve and Kd distribution 

 

In order to characterize Fluo-5N at the single liposomes level, the liposomes containing 

Fluo-5N were attached to the surface of a flow cell, following the procedure explained 

in Section 4.3 . Fluo-5N was successfully implemented in the single liposome assay, and 

the average fold increase of liposomes upon changes of calcium concentration is of 11 

folds, as it is possible to see from Figure 21. The intensity was normalized to the 

intensity of 0 μM calcium. From the graph it is possible to notice also that the average 

Kd is higher than the expected value (90 µM). This can be due to the fact that the dye 

has a different Kd when encapsulated in these liposomes. Despite the higher Kd, his 

value is still in a useful range for the investigation of the properties of the transporter 

LMCA1. 
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Figure 21 Calcium titration on liposomes containing Fluo-5N.  
The data points represent the average intensity of liposomes containing Fluo-5N in response to varying 
Ca2+ concentration. The data were fitted with a Michelis Menten binding function with a translation 
factor. The intensity was normalized by the intensity at 0 μM calcium. The liposomes where diluted 
about 200x in a solution of Tris-HCl pH 8.5 (20 mM), KCl (200 mM), DTT (1mM). 

During the analysis each colocalized liposome was fitted with a two dimensional 

gaussian function and only fits with an error on the intensity lower than a tenth of the 

estimated value were accepted. The signal to noise ratio was enhanced averaging 

recorded images of the same conditions. A fit was performed on the average intensity 

in order to calculate the average Kd=(120.0 ± 0.1). The function used to fit the intensity 

ratio curve is a Michelis Menten defined as follow: 

 

𝐼(𝑐) =  𝐴 + (
M · c
𝑘𝑑 · c

) 

 

A is a translational factor that describes the initial intensity of the fluorophore in 

absence of calcium, M represents the maximum intensity of the fluorophore when 

saturation is reached. Both the estimated Kd value and the fold increase suggest that 

Fluo-5N can be a good candidate for functional studies of LMCA1. 

The fluorophore was characterized at the single liposome level in order to evaluate the 

heterogeneity of the fluorescent response of individual liposomes. The distribution of 

intensities of every single liposome was plotted for each calcium concentration value 

as so to have an indication of the heterogeneity of the response of the single 

liposomes, as it is possible to see in Figure 22.  
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Figure 22 Distribution of intensities from Fluo-5N containing liposomes in presence of different calcium 
concentrations. 
It was plot the distribution of the intensities of the liposomes containing Fluo-5N for each calcium concentration 
used during the titration; in particular the figures show the distributions of the intensities in presence of 0 μM, 5 
μM, 20 μM, 100 μM, 300 μM and 500 calcium concentration. The distributions follow a lognormal distribution. 
From the results in the table it is possible to notice a high heterogeneity in the response of the single liposomes to 
calcium concentration changes.  

A fit was performed on each single liposome trace in order to estimate the Kd in each 

vesicle as it is shown in Figure 23-A. Only the fits with an absolute error on the Kd 

lower than one fifth of the estimated value were accepted. A distribution of all the 

estimated Kd is shown in Figure 23-B. The average Kd = (99 ± 54) is in a range that is 
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suitable for studying LMCA1 with the single liposome assay but its uncertainty suggests 

that there is a high heterogeneity among the liposomes.  

 
Figure 23 Example of a single liposome trace. Distribution of the Kd. N=70. 
A)Example of one of the selected  titration curves relative to a single liposome and fitted with a Michelis 
Menten function. The error on each data point was chosen to be 10 times less than the measured value 
in order for the trace to be accepted.  
B)The histogram shows the distribution of the Kd of the single liposomes. The Kd has been calculated 
fitting  every titration curve with a Michelis Menten function and selecting only the fits with  an absolute 
error on the Kd  lower than one third of the measured value. The histogram of the distribution has been 
fitted with a gaussian function. The calculated average Kd=(99 ± 54) it’s in a range that is good for 
studying LMCA1. As it is possible to see from the distribution, there is heterogeneity in response to 
calcium concentration changes for individual liposomes. 

Both from the data of Figure 22 and from the distribution of Kd in Figure 23 it is 

possible to state that the response of liposomes to pH changes is heterogeneous. It is 

necessary to take into account this heterogeneity when activity measurements will be 

performed in order to compare the active traces. 

 Investigation of cross emission of ATTO655 

The liposomes containing encapsulated Fluo-5N were fabricated also with membrane 

dye ATTO655. ATTO655 is a fluorescent label that is commonly used and designed for 

high sensitivity applications. It has an excitation peak at 655 nm and an emission peak 

at 680 nm in 0.1 M phosphate pH 7,0.[46] In the single liposome assay ATTO655 is used 

for colocalization. Since ATTO655 and Fluo-5N have excitation peaks and emission 

peaks at different wavelengths, it is possible to record images of attached liposomes 

first when only ATTO655 is emitting and then when only Fluo-5N is emitting. The 

emission of ATTO655 identifies the membrane of liposomes while the emission of 

Fluo-5N is related to lumen of liposomes. It is possible to colocalize the two recorded 

emissions in order to select only those ROIs containing liposomes that emits both in 

the ATTO655 channel and in the Fluo-5N channel.  

Some ROIs in which there is signal only in the Fluo-5N channel could be found: this can 

be due to conglomerates of free Fluo-5N attached to the surface. It is also possible to 

find some ROIs in which there is signal only in the ATTO655 channel: this is due to 
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liposome that does not contain encapsulated Fluo-5N. It is possible to have also 

another issue related to the emission of ATTO655. As stated before, Fluo-5N and 

ATTO655 have different excitation peaks: ATTO655 can be excited with 640 nm laser 

light while Fluo-5N can be excited with 491 nm laser light. Since the excitation 

spectrum of fluorescent dyes has a certain distribution, ATTO655 can be excited also 

with 491 nm laser light: this may represent a problem if the emission of ATTO655 is 

comparable with the emission of Fluo-5N when the sample is excited at 491 nm. We 

wanted to quantify how much of the total emitted signal is emitted by ATTO655 and 

how much is emitted by Fluo-5N, when the sample is excited at 491 nm in the single 

liposome assay. 

An excitation spectrum of ATTO655 was recorded, correcting for the signal of the 

buffer in which the liposomes containing only ATTO655 (empty liposomes) were 

dissolved. From the corrected excitation spectrum of Figure 24 we can see that 

ATTO655 can be excited at 491 nm, and the intensity at 491 nm is 2% of the intensity 

corresponding to 640 nm. The emission was chosen at 679 nm that correspond to the 

emission peak in the emission spectrum measured in the same conditions, as it can be 

seen in Appendix B.2. 

 

Figure 24 Excitation spectrum of liposomes containing ATTO655-DOPE. 
Excitation profile with emission at 679 nm of a solution of tris buffer 20 mM containing ATTO655-DOPE 
liposomes 200x diluted, KCl 200 mM, MgCl₂ 1 mM, DTT 1 µM and Valinomycin 65.2 nM. The intensity of 
the dye at 491 nm is 2% of the intensity at 640 nm, suggesting that a small percentage of ATTO655 can 
be excited at the same wavelength at which the Fluo-5N is excited. The spectrum was corrected 
subtracting the excitation profile of the dummy buffer. Each data point is a average of three measures.  

 

The emission signal of empty liposomes and the one of liposomes containing both 

ATTO655 and Fluo-5N (full liposomes) were recorded exciting both at 491 nm. It was 

possible to compare directly the average intensity of all the selected empty liposomes 

with the average intensity of all the selected full liposomes because both the two types 

of liposomes were incubated in the same cell. The background was corrected 

subtracting its average value from the recorded images. In order to calculate the 

average value of the background, 10 background ROI’s were selected from the 

recorded images and then averaged. In Figure 25-A it is possible to see the average 
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intensity emitted by the empty and the full liposomes. The signal emitted by the full 

liposomes is composed of the signal emitted by ATTO655 and Fluo-5N. If this signal is 

compared with the signal emitted by empty liposomes, it is possible to conclude that 

the majority of the signal emitted by full liposomes ( 68% ) is emitted by ATTO655. This 

problem can be solved in two different ways: 1) the concentration of membrane dye 

ATTO655 can be diluted until its emission when excited at 491 nm becomes 

neglectable, 2) the emitted light can be filtered, selecting only the emission range of 

Fluo-5N that is below 640 nm. It is possible to select an emission range below 640 nm 

using the dual view of the TIRF microscope. In Figure 25-B average intensities of empty 

and full liposomes are shown when the dual view setup is used. In this case when the 

sample is excited at 491 nm, the emission of ATTO655 is completely filtered and all the 

recorded signal is related to emission of Fluo-5N.  

 

Figure 25 Comparison between signal coming from empty liposomes (1) and full liposomes (2) for two 
different filtering setup. 
The emitted light was collected from the whole spectrum in A) and from below 640 nm in B). In both 
cases the liposomes were incubated in the same flowcell. The excitation was at 491 nm and the signal 
from the background was corrected. It is possible to notice that when the signal is collected from the 
whole spectrum, 68% of the signal coming from full liposomes is emitted by ATTO655 while using the 
other setup the signal coming from ATTO655 is neglectable. 

 

We can conclude that when Fluo-5N and ATTO655 are employed together respectively 

as encapsulated dye and membrane dye in the single liposome assay, it is necessary to 

consider the cross emission effect of ATTO655. The percentage of signal emitted by 

ATTO655 is the majority of the emitted signal when the sample is excited at 491 nm. 

Since during activity measurements we are interested in intensity changes on the 

emission of Fluo-5N, it is possible to filter the extra signal emitted by ATTO655 

selecting the emission range below 640 nm and collecting only the light emitted by 

Fluo-5N. 

 Unspecific binding to the membrane of liposomes 

The single liposome assay exploits fluorophores sensitive to substrates that are 

translocated by LMCA1 in order to measure its activity. As explained before in Section 

3.2 a combination of two fluorophores would be preferred: an encapsulated dye 

sensitive to calcium concentration changes and a membrane dye sensitive to pH 

changes. When the encapsulated fluorophore is excited, we can measure its intensity 
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and correlate it to a certain calcium concentration. If during the encapsulation process 

the fluorophore not only is encapsulated into the liposomes but sticks also to the 

external side of the membrane then the emitted signal will not describe only the 

concentration of calcium into the lumen and it will have to be corrected for the signal 

emitted by unspecifically bound dye. We wanted to investigate the presence of 

unspecific binding of Fluo-5N to the membrane of liposomes and possibly quantify the 

percentage of its emission.  

In order to perform this measure, empty liposomes were attached to the surface of a 

flow cell as explained in Section 4.3, subsequently they were incubated with 100 μM 

Fluo-5N. Finally the sample was incubated also with 500 μM calcium so as the 

presence of Fluo-5N stick to the membrane would be more highlighted. Dual view of 

the microscope was used to select the emission range: the upper part collect light 

emitted above 640 nm and corresponds to emission of ATTO655, lower part collect 

light emitted below 640 nm and corresponds to emission of Fluo-5N. In Figure 26 is 

shown a micrograph of empty liposomes recorded after the incubation of Fluo-5N and 

in presence of calcium. It is possible to see that the liposomes are visible only when the 

membrane dye ATTO655 is excited. If we excite the sample in the Fluo-5N channel, we 

cannot record any significant emission.  

 
Figure 26 Micrograph showing empty liposomes excited at two different wavelength in presence of 
calcium and Fluo-5N. Profiles of two corresponding positions of the micrograph. 
The upper part shows liposomes excited at 640 nm, collecting the light above 640 nm (ATTO655 
channel). The lower part shows liposomes excited at 491 nm, collecting the light below 640 nm (Fluo-5N 
channel). From the intensity plots it is possible to see that the liposomes are emitting only in the 
ATTO655 channel, while in the Fluo-5N channel it is not possible to recognize any liposome. It is possible 
to conclude qualitatively that Fluo-5N does not bind to the membrane of liposomes. (Scale bar = 10 μM). 

Looking at the Figure 26 it is already possible to conclude qualitatively that Fluo-5N 

does not bind to the membrane of liposomes. In order to have also quantitative 

results, we analyzed the images recorded in the Fluo-5N channel. Since it was not 

possible to select any liposome in the Fluo-5N channel, the coordinates of the ROIs 

containing liposomes were taken from the ATTO655 channel then the analysis was 

performed in the images recorded in the Fluo-5N channel. As it is possible to see from 
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Figure 27, the average intensity calculated in the selected ROIs does not change either 

after incubation with free Fluo-5N or in presence of both calcium and Fluo-5N. This is 

an evidence that Fluo-5N does not bind to the membrane of liposomes. It was possible 

also to quantify the percentage of background signal as 99% of the total emitted 

signal, as expected from the qualitative analysis of the micrograph in Figure 26.  

 

Figure 27 Average intensity of liposomes upon incubation with Fluo-5N and Calcium. 
Sample tested: liposomes containing only membrane dye ATTO655. Sample was excited at 491 nm and 
emission signal was collected below the wavelength of 640 nm. The background was corrected. A) The 
sample was attached to the surface and the emission signal was collected. B) The emission signal was 
then collected in the same position, after incubation with Fluo-5N 100 μM. C) Finally the emission signal 
was collected in the same position after incubation with calcium 500 μM. There is no appreciable 
average increase of signal meaning that Fluo-5N does not stick to the external part of the membrane. 
The intensity shown represent 1% of the total recorded signal, the rest is background. The experiment 
was repeated three times and the error bars represents standard deviation of the mean. 

 

5.3.2   Summary of the properties of Fluo-5N  

The liposomes containing Fluo-5N were tested at the microscope in the single 

liposome assay. The calcium titration allowed the measure of the intensity response of 

the dye upon changes of calcium concentrations. It was possible to calculate the 

distribution of the Kd from which is possible to conclude that liposomes have an high 

heterogeneity in response to calcium concentration changes. It is necessary to take 

into account this heterogeneity during activity measurements. It was investigated the 

unspecific binding of Fluo-5N to the external part of the liposomes’ membrane. The 

cross emission of ATTO655 was individuated and it was quantified the percentage of 

the signal emitted from ATTO655 as the majority of the emitted signal when no filters 

are used to select the emission range. The effect can be removed filtering the emitted 

light in order to collect only the signal emitted by Fluo-5N. It was also investigated the 

presence of unspecific binding to the external membrane of liposomes and it was seen 

that Fluo-5N does not bind unspecifically. 
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6   Conclusions and Outlook 

In this thesis the development of a single liposome assay for functional studies of 

transporter proteins LMCA1 was presented. The assay can represents a novel 

technique for studying transporters based on quantitative fluorescence. It exploits the 

properties of the employed fluorophores to monitor the activity of the protein and it 

gives the possibility to have an insight into its activity at the single molecule level.  

Three different fluorophores were characterized in order to decide if they were 

suitable with the single liposome assay for studying LMCA1. Exploiting the 

characteristics of the assay it was possible to analyze both average signal coming from 

all the liposomes and the signal coming from each single liposome. In this way it was 

possible to characterize the properties of the fluorophores at the single liposome level 

and quantify the level of their heterogeneity. 

Snarf-DOPE represents a good candidate for the single liposome assay from bulk 

experiments. It was successfully implemented as membrane dye into liposomes. From 

the analysis of the average signal coming from all liposomes, it shows a good response 

to pH changes with an average fold increase of around (5.5 ± 0.4) units in the pH range 

of interest. The average pKa is in a good range for studying the transporter LMCA1. The 

heterogeneity of the liposomes was quantified analyzing the signal from each single 

liposome. The response to pH changes at the single liposome level is heterogeneous 

and a local calibration is needed. It will be possible to implement additional filters to 

the dual view of the microscope in order to enhance the signal to noise ratio and 

increase the number of analyzed liposomes per experiment. In this way it could be 

possible to have higher statistics and arrive to even more robust conclusions about the 

properties of Snarf-DOPE. 

Oregon Green Bapta-5N containing liposomes were analyzed at the microscope in the 

single liposome assay. The fluorophore sensitive to calcium previously showed good 

bulk properties for the single liposome assay and it was successfully implemented into 

liposomes. The self-quenching effect was removed decreasing the concentration of the 

fluorophore. Again the analysis of the average signal was masking properties of the 

single liposomes: even if the average signal did not show the presence of self-

quenching, analyzing the signal emitted by single liposomes it was seen that self-

quenching was still present in 4% of the liposomes. It was decided to discard Oregon 

Green Bapta-5N since it wasn’t possible to decrease the concentration of encapsulated 

dye even more without losing signal to noise ratio.  

Fluo-5N was a good candidate from bulk experiments and it was successfully 

implemented in liposomes as encapsulated fluorophore. Unspecific binding of Fluo-5N 

to the membrane of liposomes was investigated and quantified: there is no significant 

unspecific binding to the external part of the liposomes’ membrane. The problem of 

cross emission between ATTO655 and Fluo-5N was presented and solved. It was also 
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quantified the heterogeneity of the response of liposomes to calcium concentration 

changes, investigating the Kd of the fluorophore encapsulated in each liposome.  

Two fluorophores resulted compatible with the single liposome assay among the three 

candidates: the calcium sensor Fluo-5N and the pH sensor Snarf-DOPE. Future 

experiment will have to be performed in order to establish the potencies of these 

fluorophores directly with the protein LMCA1. In particular the two fluorophores can 

be implemented together into liposomes in order to monitor the activity of LMCA1 in 

real time measuring pH changes and calcium concentration changes. When the two 

liposomes will be implemented together, it will be necessary to check also the 

presence of FRET between the two. 

The assay presented represents a good possibility for studying LMCA1 at the single 

molecule level but its potential is not limited to this transporter protein. It will be 

possible to use this assay also for studying other transporters at the single molecule 

level, as it was used already for studying the transporters AHA2 and ClC-ecl1. This is 

possible because the characteristics of the assay can be tuned to match different 

needs: it is possible to change fluorophores to match a different translocated substrate 

and the dimension of the liposomes can be controlled by extrusion. It is also possible 

to monitor increase in intensity due to a single ion entrance into the liposomes’ lumen, 

exploiting the TIRF microscopy technique possibilities. It is also interesting to underline 

the possibility of the assay of analyzing average signal coming from all the liposomes 

but mainly from each single liposome. In this way effects that could be masked by the 

overlap of many different signal can be discovered and investigated. 
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8   Appendix  

A - Materials 

Abbreviation Name MW (g/mol) Purchased 

Lipids 

DOPC 1,2-Dioleoyl-sn-glycero-3-phosphocholine 786.11 Avanti Polar Lipids 

DOPE-cap-biotin 
1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(cap biotinyl)  
(sodium salt) 

1105.48 Avanti Polar Lipids 

Egg PC 
L-a-phosphatidylcholine (Egg,Chicken) 
(Chloroform) 

770.123 Avanti Polar Lipids 

E. coli Polar Lipid 
Extract 

E.coli PE 67 %, E. coli PG 23.2 % and E. 
coli CA  
9.8 % 

798.637 Avanti Polar Lipids 

BT-PEG2000-DSPE 

1,2-distearoyl-sn-glycero-3- 
phosphoethanolamine-N- 
[biotinyl(polyethylene glycol)-2000]  
(ammonium salt) 

3016.8 Avanti Polar Lipids 

Fluorophores 

Fluo-5N 
Fluo-5N® pentapotassium salt, cell 
impermeant  

958.0582 Life Technologies 

Atto655-DOPE 
N-(ATTO 655)-1,2-Dioleoyl-sn-glycaro-3- 
phosphoethanolamine  

1366 ATTO-TEC 

Snarf-DOPE  1197.48 

Department of 
Plant and 
Environmental 
Sciences (Gerdi 
Christine 
Kemmer) 

Oregon Green  
Bapta-5N 

Oregon Green® 488 BAPTA-5N,  
Hexapotassium Salt, cell impermeant 

1159.28 Life Technologies 

Oregon Green 
Bapta-2 

Oregon Green® 488 BAPTA-2, AM, cell  
permeant  

1751.4454 Life Technologies 

Chemicals 

Valinomycin Valinomycin  1111.32 Sigma-Aldrich 

CCCP 
Carbonyl cyanide 3- 
chlorophenylhydrazone  

204.64 Sigma-Aldrich 

Ionomycin Ionomycin  709.00 Sigma-Aldrich 
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CaCl2 Calcium chloride dehydrate  147.01 Sigma-Aldrich 

KCl Potassium Chloride 74.56 Sigma-Aldrich 

MgCl2 Magnesium Chloride 203.2 Sigma-Aldrich 

NaOH Sodium Hydroxide 40.0 (Martinez Lab, KU) 

HCl Hydrogen Chloride 36.46 (Martinez Lab, KU) 

DTT Dithiothreitol 154.25 (Nissen Lab, AU) 

Proteins 

NeutrAvidin NeutrAvidin® biotin-binding protein   Life Technologies 

Buffers 

HEPES 

4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid, N-(2-
Hydroxyethyl)piperazine-N′-(2-
ethanesulfonic 
acid). 15mM  

 Sigma-Aldrich 

Tris base 
Tris(hydroxymethyl)aminomethane 
10 mM 

 Sigma-Aldrich 

Tris with ions 
20 mM Tris base, 200 mM KCl, 1 mM 
MgCl2, pH 3-12 

  

Solvents 

CHCl3 Chloroform, CHROMASOLV®, for HPLC   Sigma-Aldrich 

CH3OH Methanol, CHROMASOLV®, for HPLC   Sigma-Aldrich 

CH3CH2OH Ethanol  Sigma-Aldrich 

MilliQ Ultra pure water, 18.2 MΩ   

Detergents 

Helmanex Helmanex® III   Sigma-Aldrich 

Polymers 

Pll-PEG 
Poly-L-lysine-grafted (20 kDa) poly-
ethylene- 
glycol (2 kDa)  

 SuSoS 

Pll-PEG-biotin 

Poly-L-lysine-grafted (20 kDa) poly-
ethylene- 
glycol (2 kDa) and PEG-Biotin (3.4 kDa). 
The % of Biotin functionalized PEG is 15-
25%.  

 SuSoS 
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B - Additional properties of liposomes containing Fluo-5N 

and ATTO655 

B.1   Calcium leakage  

As previously explained, the lipid bilayer of cells is particularly impermeable to ions, 

which allows cells to regulate salt concentrations and pH using different ion channels 

or pumps. Liposomes are nanoreactors whose membranes simulate the lipid bilayer of 

cells, where we can reconstitute the protein LMCA1. By adding ATP to the system, the 

reconstituted pumps start to transport calcium inside the lumen of the liposomes. We 

can measure the activity of the pump measuring the increased signal coming from the 

encapsulated Fluo-5N. We wanted to quantify and characterize calcium leakage across 

the liposomes’ membranes of our assay, because if this effect is present the 

concentration of calcium into the liposomes does not change only due to activity of the 

pump but also due to passive leakage. Also it is known from other studies that even if 

the lipid bilayer is almost impermeable to all ions, a certain leakage is still present. [45]  

 Experimental conditions 

The full liposomes (200x dilution) were incubated for 10 minutes then 2 mL of sample 

buffer ( Tris-HCl pH 8.5 (20 mM), KCl (200 mM), MgCl2 (1 mM), DTT (1 mM) )  were 

used for flushing away the non-bound liposomes. The right position of the sample was 

chosen and two movies were recorded. During the first movie a solution of sample 

buffer containing calcium (100 µM) was flushed into the chamber. During the second 

movie a solution of sample buffer containing calcium (100 µM) and ionomycin (10 µM) 

was flushed into the chamber. The position was kept along all the experiment. The 

excitation wavelength of the laser was 491 nm (15% laser power) for the Fluo-5N 

channel and 640 nm (8.5% laser power) for the ATTO655 channel, the exposure time 

was 500 ms, the microscope was set on single view and a neutral density filter 2.0 was 

used to decrease the power of the laser. The experiment was repeated a second time 

using a sample buffer without MgCl2. 

 Results 

We performed the calcium leakage experiment monitoring the response of liposomes 

to calcium concentration changes in presence and in absence of ionomycin. A solution 

of sample buffer containing 100 µM of calcium was added to the chamber where 

liposomes were previously attached to the surface. We decided to add 100 µM of 

calcium because this is the concentration corresponding to the Kd of the fluorophore. 

The solution was first injected in absence of ionomycin: in this situation the only way 

for calcium to enter into the liposomes was due to passive leakage through the 

liposomes’ membrane. After a certain amount of time we injected the same solution in 

https://en.wikipedia.org/wiki/PH
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presence of ionomycin. In this case ionomycin allowed equilibration of the system and 

the calcium could enter into the liposomes through ionomycin. We monitored the 

signal coming from the liposomes during both the injections. In Figure 28 is reported 

the average signal from all liposomes during one calcium leakage experiment. It is 

possible to notice an increase of intensity after the first injection in absence of 

ionomycin and a higher increase of intensity after the second injection in presence of 

ionomycin.  

 

Figure 28 Average signal during calcium leakage experiment. The signal from fluo-5N encapsulated in 
liposomes was collected: after 2 minutes of recording Tris buffer containing 100 μM of Ca2+ was flushed 
then after 12 minutes buffer containing 100 μM of Ca2+ and 10 μM of ionomycin was flushed. 

Analyzing the behavior of single liposomes it was possible to notice the presence of 4 

different behaviors. The percentage of the four behaviors is shown in Figure 29. The 

majority of the selected liposomes (~ 65%) are tight to calcium, since we could see an 

increase of signal only in presence of ionomycin. A small amount of liposomes (~ 10%) 

are leaky to calcium since there was an increase of signal in absence of ionomycin, 

which kept decreasing until the end of the experiment. A certain amount of liposomes 

(~ 20%) showed an intermediate behavior: their signal increased after injection of 

calcium both in presence and in absence of ionomycin. There is a very small 

percentage (~ 1%) of liposomes that did not respond to any calcium concentration 

changes. 

The intermediate behavior can be due to different factors. First it might be due to a 

partial equilibration: after the first injection in absence of ionomycin, calcium diffuses 

passively through the liposomes membrane but the concentration gradient is partially 

kept until ionomycin is introduced in the system and then the equilibration is 

completed. Secondly it might be also that to Fluo-5N is stick to the external part of the 

membranes: the dye could respond to calcium injection without need calcium to enter 

into the liposomes. This second hypothesis can be excluded from the results of the 

unspecific binding showed in Section 5.3.1 .  

We can conclude that the majority of liposomes are completely tight to calcium and 

that the leaky ones show two different behaviors: a small amount is completely leaky, 
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a bigger amount shows a partial equilibration. Future experiments can use these 

results to describe the activity of LMCA1 taking into account calcium leakage.  

 

Figure 29 Percentage of four different behavior followed by traces of single liposomes containing Fluo-
5N 
From the graph emerges that a majority of the liposomes are tight to Ca2+(A), about 10% are leaky (B) 
and about 20% show an intermediate behavior (C) that could suggests a partial equilibration. The rest 
(D) don’t respond to calcium both in presence and in absence of ionomycin. The experiment was 
repeated two times and the error bars are the standard deviation of the mean percentage. 

 

 

Figure 30 Single liposomes traces showing three different behaviors during calcium leakage 
experiment.  
The first graph shows an example of liposome tight to calcium: the signal increases only in presence of 
ionomycin. The second graph shows the trace of a liposome leaky to calcium: signal increase in absence 
of ionomycin after injection of calcium. The third graph shows the partial equilibration: signal increases 
both in absence and in presence of ionomycin. After 120 s calcium is injected, after 720 s calcium and 
ionomycin are injected. 
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B.2   Emission spectrum of ATTO655-DOPE containing liposomes in bulk 

In order to record the excitation profile of ATTO655, it was necessary to establish the 

position of the emission peak of the fluorophore. The emission profile was determined 

experimentally and the emission peak was found to be at 679 nm as can be seen on 

Figure 31. 

 

Figure 31 Emission spectrum of liposomes containing ATTO655-DOPE  
Emission profile with four different excitation wavelength of a solution of tris buffer 20 mM containing 
ATTO655-DOPE liposomes 200x diluted, KCl 200 mM, MgCl₂ 1 mM, DTT 1 µM and Valinomycin 65.2 nM. 
The emission peak was found experimentally at 679 nm for all four excitation wavelengths. It is possible 
to notice that the biggest amplitude is reached when the dye is excited at 640 nm. The dye is excited 
also at 491 nm, even if the intensity of the peak is 2% of the intensity of the peak when the excitation is 
640 nm.  

The emission peak was used in order to measure the excitation profile of liposomes 

containing ATTO655-DOPE. 
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C - Spectrometric measurements of Oregon Green Bapta-2 

in bulk 

Oregon Green Bapta-2 is a calcium sensor with higher affinity to calcium respect to 

Oregon Green Bapta-5N. It has a excitation peak at 492 nm and an emission peak at 

523 nm. It was tested in bulk in order to verify its compatibility with the single 

liposome assay. 

 Experimental conditions 

1) The measurements to obtain a calcium calibration curve for Oregon Green Bapta-2 

were performed on 1 mL solution containing: free Oregon Green Bapta-2 (0.5 µM ),  

Tris buffer (10 mM, pH 9 and pH 7). The excitation wavelength used was 488 nm, the 

emission wavelengths range was from 500 nm to 650 nm. The slit width was set at 1 

for both emission and excitation. Each spectrum is an average of three measures. 

When the calcium titration was performed in buffer at pH 9, the following calcium 

concentrations were used: 10 nM, 50 nM, 0.5 μM, 1 μM,  2.5 μM, 5 μM, 10 μM, 90 

μM, 200 μM, 500 μM. When the calcium titration was performed in buffer at pH 7, the 

following calcium concentrations were used: 0.5 μM, 1 μM, 50 μM, 100 μM, 200 μM. 

2) The measurement performed in order to compare the fold increase of Oregon 

Green Bapta-2 was performed on 1 mL solution containing: free Oregon Green Bapta-2 

(0.5 µM ),  either Tris buffer (10 mM, pH 8) or milliQ water. The excitation wavelength 

used was 488 nm, the emission wavelengths range was from 500 nm to 650 nm. The 

slit width was set at 1 for both emission and excitation. The measurements in water or 

tris were repeated three times. The concentration of calcium used to saturate the 

fluorophore was 500 μM. 

 Results 

Even upon changes of pH, the fold increase of the free fluorophore  in bulk was up 

to only 1.5 folds as it is possible to see from Figure 32, while from literature it was 

expected a fold increase of about 100 folds.[47] In order to establish if the weak fold 

increase was due to buffer composition, the fluorophore was diluted also in water 

and it was saturated with 500 μM of calcium. In Figure 33 the fold increase after 

injection of 500 μM calcium both in tris buffer pH 8 and water is compared. It is 

possible to notice a bigger fold increase when the dye is diluted in water, 

suggesting that the fluorescent properties of the dye are inhibited when it is 

diluted in tris. Since the buffer composition couldn’t be changed in order to suite 

the fluorophore and the fold increase was too weak, it was decided that the 

fluorophore didn’t suite the single liposome assay. 
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Figure 32 Calcium titration of free Oregon Green Bapta-2 
Emission profiles of Oregon Green Bapta-2 in solution with Tris buffer 10 mM at two different pH values: 
A) pH 9, B) pH 7. In both the experiments the fluorophore was diluted to a concentration of 0.5 µM in 
the cuvette. It’s possible to notice that the fold increase is around 1.5 and 1.1 folds, respectively.  

 

Figure 33 Response of free Oregon Green BAPTA-2 diluted in two different solutions: tris buffer (pH 8)  
and water. 
The dye in the two solutions has been saturated with a Ca2+ concentration of 500 µM. The fold increase 
of the signal when the dye is diluted in water is 2 compared with the lower fold increase when diluted in 
buffer. This suggests an interaction of the dye with the buffer that prevents it to fluoresce. 
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D - Shift of the pKa of Snarf-DOPE  

In Sections 5.1.1 and 5.1.2 the pKa of Snarf-DOPE was shown both for liposomes in 

bulk and in the single liposome assay. It is possible to notice a shift of the average pKa 

value between the experiment in bulk and the experiment at the microscope: pKa bulk = 

(9.3 ± 0.1), pKa microscope_avg = (8.0 ± 0.1). This can be due to the fact that the intensity 

ratio is calculated in two different ways. The intensity ratio of the bulk data is 

calculated dividing the intensity value corresponding exactly to the peak at 583 nm by 

the intensity value corresponding exactly to peak at 650 nm. At the microscope it is not 

possible to collect the emission signal corresponding exactly to the two emission peak 

wavelengths. Each intensity data point can be mathematically described as a definite 

integral of the emission spectrum: the intensity of the 583 nm peak is a definite 

integral from ~ 544.5 nm to ~ 619.5 nm, the intensity of the 650 nm peak is a definite 

integral from ~ 650 to infinity. The limits of the integrals do not refer to a specific 

wavelength because the used filters do not cut the light exactly at a specific 

wavelength. In the following graph the intensity ratio from bulk data was calculated 

integrating the emission spectra of Snarf-DOPE and dividing the corresponding 

calculated intensities. The extremes of the integrals are [550 - 620] nm for the peak at 

583 nm and [650 - 700] nm for the peak at 650 nm. These extremes were chosen to be 

similar to the filters used at the microscope. It is possible to see from the graph the 

estimated pKa = (9.0 ± 0.1) that is decreased compared to the pKa bulk = (9.3 ± 0.1) even 

if the value is still not comparable with pKa microscope_avg = (8.0 ± 0.1). This could be due 

to the fact that the extremes of the integrals used to calculate the intensities did not 

represent exactly the filters used during the microscope measures.  

 

 
Figure 34 intensity ratio curve from spectrofluorometric measurements of liposomes containing 
membrane dye Snarf-DOPE. The intensity of the peak at 583 nm was calculated integrating the emission 
spectrum in the interval [550 - 620] nm while the peak at 650 nm was calculated integrating the 
emission spectrum in the interval [650 - 700] nm. The intervals were chosen to be similar to the band 
filters used during the experiment at the microscope. 
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