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Abstract 
 

The research activities were focused on evaluating the effect of  Mo addition to 

mechanical properties and microstructure of A354 aluminium casting alloy. 

Samples, with increasing amount of Mo, were produced and heat treated. 

After heat treatment and exposition to high temperatures samples underwent 

microstructural and chemical analyses, hardness and tensile tests. 

The collected data led to the optimization of both casting parameters, for obtaining a 

homogeneous Mo distribution in the alloy, and heat treatment parameters, allowing the 

formation of Mo based strengthening precipitates stable at high temperature.  

Microstructural and chemical analyses highlighted how Mo addition in percentage 

superior to 0.1% wt. can modify the silicon eutectic morphology and hinder the 

formation of iron based β intermetallics. 

High temperature exposure curves, instead, showed that after long exposition hardness is 

slightly influenced by heat treatment while  the effect of Mo addition superior to 0,3% is 

negligible.  

Tensile tests confirmed that the addition of 0.3%wt Mo induces an increase of about 10% 

of ultimate tensile strength after high temperature exposition (250°C for 100h) while heat 

treatments have slight influence on mechanical behaviour. 

These results could be exploited for developing innovative heat treatment sequence able 

to reduce residual stresses in castings produced with A354 modified with Mo.  
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Riassunto 
 

L’attività di tesi è stata incentrata sullo studio dell’effetto della presenza di Mo sulle 

prestazioni meccaniche e sulla microstruttura della lega di alluminio da fonderia A354. 

Per tale ragione sono stati prodotti getti in lega A354 contenenti livelli crescenti di Mo, 

che dopo aver subito diversi trattamenti termici sono stati prima esposti ad alte 

temperatura e quindi sottoposti ad analisi microstrutturali, chimiche, a prove di durezza e 

trazione. 

Lo studio ha permesso di definire sia i parametri del processo di colata per ottenere un’ 

omogenea distribuzione del Mo nella lega solidificata, sia quelli del trattamento termico 

al fine di potere ottenere un rinforzo per precipitazione dovuto alla formazione di 

dispersoidi a base Mo stabili alle alte temperature. 

Le analisi microstrutturali e chimiche hanno inoltre evidenziato come l’aggiunta di Mo in 

percentuali superiori allo 0.1% induca sia un effetto positivo dovuto al mancato sviluppo 

di precipitati β a base Fe sia un effetto negativo legato alla mancata sferoidizzazione del 

Si eutettico. 

Le curve di degrado hanno invece evidenziato come dopo lunghi periodi di esposizione 

in temperatura le durezze del materiale non sia influenzata dalla percentuale di Mo 

aggiunta alla lega quando supera lo 0.3% e solo leggermente dal trattamento termico.  

Le prove di trazione hanno confermato che l’aggiunta di Mo (pari a 0.3%) determina un 

incremento della resistenza della lega dopo esposizione prolungata a 250°C per 100h di 

circa il 10%. Come per le durezze anche la resistenza a trazione, dopo esposizione in 

temperatura, appare poco influenzata da modifiche dei parametri di trattamento termico. 

Questo permetterebbe di valutare la possibilità di utilizzare sequenze di trattamento 

termico della lega con Mo in grado di ridurre le tensioni residue nei getti senza 

penalizzarne la resistenza. 
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Chapter 1 - Introduction  

 

1.1    An introduction on aluminium 

 

Aluminium is the third most abundant element on Earth’s crust after oxygen and silicon, 

but nevertheless its manufacture and use were limited up to XIX century. 

In fact only in 1807 its existence was postulated by the English chemist Davy, while it 

was produced (even if in small quantities) for the first time by the Danish Oersted in 

1825. 

But the interest for this metal aroused only after 1845, the year in which the German 

Wohler proved some properties of the new material including lightness. 

Subsequently more and more efficient production processes were developed, starting 

from the thermo-chemical one by Sainte-Claire Deville (which was so costly that 

aluminium was even more expensive than gold) to the electrolytic by Hall and Heroult 

(1886), then improved and patented by the Bayer in 1888 [1]. 

 

The main properties of aluminium are [1]: 

• Low density (2.7 g/���) 

• High intrinsic resistance and Young’s modulus (that is related with material 

density) 

• Ductile behaviour even at low temperature 
• Elevated corrosion resistance (thanks to the formation of a thin layer of protective 

oxide on its surface) 

• Good deformability and machinability 

• High malleability 

• Elevated electrical conductivity (if related with metal density is even bigger than 

that of copper) 

• Good thermal conductivity 

• High riciclability 

 

Thanks to these properties today aluminium alloys are more and more employed in many 

areas, particularly that of  transports. 
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One of the most important sector is that of automotive, in which these materials have 

been finding many applications during the years (for example chassis, motor elements 

and wheel rims manufacture), allowing to substitute materials like steel and cast iron, 

contributing to reduce vehicles weight greatly and then also fuel consumptions and 

emissions [2]. 

 

1.2    Aluminium alloys 

 

Primarily aluminium alloys can be distinguished in two categories: wrought and cast 

alloys. 

The first ones are casted as ingot or billet and then mechanically worked by processes 

such as rolling or extrusion to final form. 

Cast alloys instead are manufactured directly to final or near final form without any 

mechanical working. 

The wrought and casting alloys, their properties, nomenclature and applications are 

definitely different [1]. 

 

Inside every category it’s possible to further distinguish every alloy series on the basis of 

the capability of undergoing a heat treatment, which guarantees an improvement of 

mechanical properties by precipitation of secondary phases. 

Relatively to non-heat treatable alloys their performances can be enhanced by adding the 

aluminum with other alloying elements (both for wrought and casting alloys) or through 

various degrees of cold working or strain hardening (just for wrought ones) [1]. 

 

1.2.1      Casting alloys 

 

Aluminium is widely employed in foundry as a consequence of [1]: 

• Low melting point 

• High molten metal fluidity 

• Good superficial finish 

• Low gas solubility (except hydrogen) 
 

At the same time foundry alloys show a series of problems, which reduce their 

properties. 
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The most important ones are high solidification shrinkage and thermal expansion 

coefficient, as well as hydrogen absorption, which cause the development of stress, voids 

and cracks (for example “hot tears”) 
[1]. 

 

Pure aluminium is not usually used for structural applications because of its low 

hardness, Young’s modulus and wear resistance, as well as absence of fatigue limit. 

So, in order to produce a material of adequate strength for manufacturing structural 

components, it is necessary to add other elements to it, which allow producing a selection 

of different alloys, that can be used in a wide assortment of structural applications [3]. 

 

Casting alloys could be distinguished according to their composition in different series 

by using IADS (International Alloy Designation System) nomenclature [1]: 
 

• 1xx.x - Pure aluminium – It shows elevated corrosion resistance and 

machinability, but it’s characterised by very low mechanical properties and can’t 

undergo heat treatments. 

Applications: Food and chemical industries, electrical cable 

 

• 2xx.x - Al-Cu – The addition of copper increases mechanical properties 

(especially after heat treatment) and makes heat treatable the alloy. 

Otherwise this series is affected by low fluidity and ductility as well as corrosion 

resistance (in fact it’s susceptible to stress-corrosion cracking). 

Applications: cylinder heads for automotive and aircraft engines, pistons for 

diesel engines, exhausting system parts. 

 

• 3xx.x - Al-Si-Cu/Al-Si-Mg – This series is heat treatable and shows high 

mechanical performances and good fluidity and wear resistance.  

At the same time copper-containing alloys show good machinability but also 

decreased corrosion resistance. 

Applications: automotive cylinder blocks and head, car wheels, aircraft fittings, 

casings and other parts of compressors and pumps. 

 

• 4xx.x - Al-Si – The presence of silicon induces high fluidity, moderate strength 

and ductility, good wear and corrosion resistance. 

Otherwise these alloys can’t undergo heat treatment. 
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Applications: pump casings, thin wall castings, cookware. 

 

• 5xx.x - Al-Mg – By adding magnesium to pure aluminium, it’s possible to reach 

the optimal compromise between mechanical and corrosion resistance. It’s 

characterised by moderate cast properties and good machinability and shows 

good appearance when anodized. 

Applications: car wheels, pressure vessels, chemical plants 

 

• 7xx.x - Al-Zn – The presence of zinc generates good dimensional stability and 

corrosion resistance and makes the heat treatment possible. 

Otherwise this series shows low fluidity and cast properties. 

Applications: aircraft parts 

 

• 8xx.x - Al-Sn – This non heat treatable series demonstrates high wear resistance 

and good machinability, but very low mechanical properties. 

Applications: anti-friction components 

 

• 9xx.x – Other compositions 

 

(The last “x” after the point shows if the material is used for castings if x=0  or for ingots 

if x=1) 

 

1.2.2     Aluminium-silicon alloys 

 

One of the most commonly used alloying elements in casting alloys, thanks to the 

properties induced to aluminium and the capability of counterbalancing the detrimental 

effects of cast alloys is silicon. 

Al-Si alloys are employed in many different foundry processes such as the sand, die and 

investment casting [1]. 

 

In fact this element guarantees [1]: 

• High castability 

• Low thermal expansion coefficient 

• High thermal and electric conductivity 
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• Good mechanical properties and hardness 

• High corrosion and wear resistance 

• Possibility of  being heat treated  (in combination with adequate alligants) 
 

These features allow the wide use of Al-Si alloys in many sectors such as automotive and 

aeronautic ones. 

 

As it was said before one of the greatest problems for cast alloys is the presence of 

defects (resulting both from solidification and casting itself). 

Therefore the use of silicon is significant since it increases the molten metal fluidity, 

which results in a better mold filling and in a consequent reduction of internal casting 

defects, while reduces the thermal expansion coefficient (which induces stresses and 

cracks) and enhances corrosion resistance [1]. 

 

According to silicon content inside the matrix it’s possible to distinguish hypoeutectic (5-

10 % Si), eutectic (11-13%) and hypereutectic (14-20%). 

 

 

Figure 1 – Aluminum-silicon phase diagram [4] 
 

As it could be observed in Al-Si phase diagram reported in fig. 1 pure aluminium melts 

at 660°C and silicon at 1414°C, while at 577°C and for a content of the latter equal to 

12.6% wt. eutectic point is recorded. 

About solubilities it could be stated that the silicon’s one in aluminium is really low due 

to the limited extension of the area corresponding to α-phase (that is pure aluminium), 
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while that of the second element in the first one is fairly nil and this causes primary 

silicon formation already for low weight percentages of the latter. 

 

Hypoeutectic alloys are employed due to their good castability and corrosion resistance 

and are characterised by a microstructure made up of  α-Al dendrites (corresponding to 

the white regions of the photograph on the left in fig. 2) and eutectic Al-Si (identified by 

darker areas. 

 

The hypereutectic alloys instead show a better fluidity, an excellent corrosion resistance 

and a fairly good thermal conductivity. 

Their microstructure is mainly composed by particles of primary silicon (identified by 

big and dark areas in the photograph on the right in fig. 2) enclosed by a matrix formed 

by eutectic Al-Si. 

 

 
Figure 2 – Images by optical microscope of the microstructures of a hypoeutectic (on the left) and 

hypereutectic (on the right) Al-Si alloy at 100x magnification [3] 

 

Anyway the properties of Al-Si alloys depend closely on dimension, morphology and 

distribution of silicon rather than only on his content. 

As seen before the morphology of the eutectic silicon particles is generally needle or 

plate-like and the primary silicon particles are large and faceted, producing stress 

concentrations that degrade the mechanical properties of the material. Therefore, it’s 

usually applied a chemical modification to refine the size of these particles and to change 

their morphologies, enhancing consequently alloy ductility [1]. 
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Figure 3 – Images by optical microscope of the microstructures of hypoeutectic Al-Si unmodified (on 

the left) at 50x magnification and modified with strontium (on the right) at 20x magnification 

 

Nevertheless the use of strontium is preferred to that of sodium, because the latter is 

more reactive and less stable at high temperature present inside molten metal than the 

former, so it’s not possible to define exactly its content inside the alloy and the effects of 

sodium fade relatively rapidly (overall when the molten metal is held at temperature for a 

prolonged period before solidification). 

 

1.2.3    State of the art on alloying elements of Al-Si alloys 

 

To increase the performance (particularly at high temperature), the addition of further 

alligants able to create a series of intermetallics (during solidification phase or due to 

precipitation as a consequence of heat treatment) is necessary [1]. 

 

The criteria by which choose the alloying elements for Al-Si alloys are [4]: 

• Development of a reinforce phase 

• Low solubility in solid phase 

• Low diffusivity in matrix 

• Low influence on alloy castability 

 

Nowadays the most commonly used alloying elements are as follows: 

 

• Copper – It  provides substantial increases in mechanical and fatigue resistance 

and hardness and facilitates precipitation hardening. 
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The introduction of copper to aluminium can also reduce ductility and corrosion 

resistance, while the susceptibility to solidification cracking (the so-called “hot 

tears”) is increased. 

It’s usually present at percentages between 0.5 and 5.5% wt. [1]. 

 

• Magnesium - The addition of magnesium (0.6-1.3% wt.) to aluminium enhances 

corrosion resistance and hinders hydrogen absorption (especially after heat 

treatment), but on the other hand it increases thermal expansion and reduces 

ductility [1]. 

 

Silicon alone in aluminium produces a non-heat-treatable alloy. However in combination 

with magnesium and copper it generates a precipitation hardening heat-treatable alloy 

and so it’s possible to increase the properties of the base alloy, but at the same time this 

reduces ductility, corrosion resistance and molten metal fluidity. 

 

• Tin  – Tin is mainly employed because of its capability of  improving tribological 

behaviour, by reducing friction, but also thanks to the higher machinability it 

gives to alloys [1]. 

 
 

• Iron – Iron is always available in alloys even if it’s usually considered an 

impurity, so in most alloys efforts are made to keep it as low as economically 

possible. In fact it causes alloy embrittlement, porosity increase and reduces 

castability, corrosion resistance, ductility and toughness. 
 

 
Figure 4 – Microstructure of an as-cast hypoeutectic alloy containing �-������� phase 
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Nevertheless it’s added to particular alloys (may be added deliberately up to 

3% Fe), which need hardness and high temperature resistance increases and the 

disadvantages of iron are not important or are counterbalanced by other elements 

(for example manganese and chromium) [1]. 

 

• Manganese – It’s usually considered an impurity and so is maintained at low 

percentages in high quality components. 

However it can be used as a modifier of needle-like iron intermetallics, in fact 

these change their morphology from β to α-phases, increasing alloy ductility and 

reducing casting defects. 

A high volume fraction of MnAl�in alloys containing more than 0.5% in 

manganese can improve mechanical resistance. 

Finally it can be employed to improve anodizing finish [1]. 

 

• Zinc – In combination with copper and/or magnesium allows the enhancement of 

mechanical properties by precipitation hardening after heat treatment [1]. 

 

• Titanium – Titanium is added at percentages of about 0.1-0.2% to aluminium 

primarily as a grain refiner. This effect is enhanced if boron is present in the melt 

or if it is added as a master alloy containing it. 

In fact fine TiAl� nuclei can be covered by compounds such as TiB� and (Ti, 

Al)B�, which promotes the deposition of aluminum on nuclei themselves, 

generating fine grains [1]. 

 

• Lithium  -  The addition of lithium to aluminium can substantially increase 

strength and Young’s modulus, provide precipitation hardening and decreases 

density. 

In fact every 1% by weight of lithium added to aluminum reduces the density of 

the resulting alloy by 3% and increases the stiffness by 5%. This effect works up 

to the solubility limit of lithium in aluminum, which is 4.2%. 

Nevertheless the addition of lithium causes the reduction of ductility and fracture 

toughness[1]. 
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• Chromium  – It increases the corrosion resistance and modifies the morphology 

of iron intermetallics, increasing the ductility of the alloy, as well as allows grain 

refinement. 

Otherwise its addition strongly reduces molten metal fluidity, causing 

subsequently internal casting defects [5]. 

 

• Cobalt – Cobalt is mainly utilised for his beneficial effect on iron intermetallics.  

In fact it modifies their morphology from β to refined and distributed α-phases, 

increasing ductility and mechanical resistance of the alloys [6]. 

 

In Al-Si-Cu-Mg series the most commonly used hypoeutectic alloys are A319, A356 and 

A354 (the last of which was the focus of the study). 

 

The considered alloys are characterised by different compositions, which are described in 

the table below: 
 

 %Si %Cu %Mg %Fe %Mn %Ti %Ni %Zn 

A319 5.5 – 6.5 3 - 4 ≤ 0.1 ≤ 1.0 ≤ 0.5 ≤ 0.25 ≤ 0.35 - 

A354 8.6 – 9.5 1.6 - 2 0.4 – 0.6 ≤ 0.2 ≤ 0.1 ≤ 0.2 - ≤ 0.1 

A356 6.5 – 7.5 ≤ 0.2 0.2 – 0.4 ≤ 0.2 ≤ 0.1 ≤ 0.2 - ≤ 0.1 

 

Table 1 – Compositions of A319, A354 and A356 alloys with percentages of alloying elements [7, 8] 

 

The different compositions obviously affect the alloys features. 

In fact compared to A319 alloy A354 and A356 ones exhibit higher molten metal 

fluidity, shrinkage and hot cracking resistance (anyway all the alloys demonstrate high 

values for these parameters), while corrosion resistance is elevated in A356 alloy and 

moderate in the other ones. 

 

Also mechanical properties show substantial differences. 

In the table below some data are reported to illustrate how alloys composition influences 

their behaviour: 
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 Young’s 

modulus (Gpa) 

Yield strength 

(MPa) 

Ultimate tensile 

strength (Mpa) 

Elongation (%) 

A319 74 90 - 95 155 - 195 2 - 3 

A354 73 250 - 310 320 - 380 2 - 5 

A356 73 190 - 250 260 - 275 3 - 10 

 

Table 2 – Mechanical characterisation of A319, A354 and A356 alloys [7, 8] 

 

Observing the table, it’s possible to see that Young’s modulus values are fairly identical, 

while the other parameters show substantially different ones. 

In fact A319 alloy is characterised by the lowest values in resistance, but at the same 

time undergoes the lowest deformation. Conversely among these alloys A354 one 

exhibits the highest mechanical resistance, whilst A356 one the biggest deformation [7, 

8]. 

Finally, as each considered alloy is heat-treatable, it should be remembered that the 

values reported above can be further modified and increased by specific treatment. 

 

Anyway as a consequence of their features these alloys apply to different fields. 

A319 alloy is employed in engine parts (for example cylinder heads), gasoline and oil 

tanks. 

On the contrary some A356 typical applications are cylinder heads, wheels, engine 

support pylon, truck chassis parts, aircraft (for example wing flaps) and missile 

components. 

Finally research on A354 alloy has been begun during last years and has been focused on 

its employment in engine parts [7,8]. 

 

1.3   Heat treatments 

 

Heat treatment is a process conducted to develop desirable mechanical properties 

required for service performance. 

According to their composition alloys could be heat-treated or not. 

For example, considering cast alloys, 2xx, 3xx, 7xx and 8xx alloys are heat-treatable, 

while 1xx, 4xx, 5xx and 9xx not. 
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Figure 5 – General schemes of heat treatment of aluminum alloys. In particular the image on the 
right shows the effects of the process on the microstructure of copper-containing alloys [10] 
 

Aluminium heat treatments are usually divided in 3 stages: solution, quenching and 

ageing. 

The most commonly used heat-treatment for aluminum alloys is T6, which induces the 

highest hardness, wear resistance, mechanical properties and consists of a primary 

solution phase, followed by rapid cooling and artificial ageing [9,10]. 

 

• Solution treatment 

 

Solution treatment involves heating the alloy to a temperature just below the lowest 

melting point of the alloy system (usually between 500 and 550°C), holding at this 

temperature until the base metal dissolves a significant amount of the alloying elements 

and becomes homogeneous. 

The control of temperature and time is fundamental, because, if duration is too short not 

all alloying elements added will be dissolved and made available for precipitation 

hardening, while if too long more energy than necessary will be used and grain growth 

and overheating will develop [9,10]. 

 

• Quench 

 

After that the alloy is rapidly cooled to retain as much of the alloying elements in 

solution as possible and so produces a supersaturated solid solution, that is an unstable 

condition in which the alligants exceed the solid solubility limit at room temperature. 

The objectives of quench are to retain the maximum amount of the precipitation 

hardening elements in solution to form a supersaturated solid solution at low 
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temperatures and to suppress precipitation during rapid cooling of the casting from the 

high solution treatment temperature. 

Cooling rates should be selected to retain as much solute as possible in solid solution, 

minimize component distortion and reduce the duration time over certain critical 

temperature ranges, avoiding diffusion of smaller atoms, which can lead to the 

precipitation. 

 

In fact a slow rate of cooling would reduce residual stresses and distortion in the 

components, however it causes detrimental effects such as: precipitation during quench, 

localized over-ageing, increase tendencies for corrosion and result in a reduced response 

to ageing treatment due to the reduction in supersaturation of solute [9,10]. 

 

• Ageing 

 

Then the last phase is characterised by the precipitation of intermetallics, which exploits 

the previous supersaturation and could be developed “naturally” at room temperature or 

promoted artificially by heating the alloy at a range temperature between 120-200°C. 

 

The precipitation stage can be divided in: supersaturated solid solution → formation of 

GP zones → coherent precipitates → semi-coherent precipitates → incoherent 

precipitates 

(the length of each step in the sequence depends on the thermal history, the alloy 

composition and the aging temperature) [9] 

 

After solution treatment and quenching the matrix has a high super-saturation of solute 

atoms. 

Clusters of atoms form rapidly from the supersaturated matrix and evolve into GP zones.  

From GP zones metastable coherent precipitates form (indicated by “ after the letter 

identifying the phase), which thanks to the high degree of coherency with matrix give 

great strengthening to the material. 

As ageing proceeds, the coherent precipitates start to dissolve and the semi-coherent ones 

(indicated by ‘) begin to generate by nucleating on dislocations. 

Then continued aging causes the equilibrium precipitation to occur. 

Due to the incoherency of the new compound with matrix, its relatively large size and 

coarse distribution, mechanical properties reduce significantly [10]. 
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Nevertheless the optimal condition to reach maximum hardness corresponds to about 

90% of coherent and 10% of semi-coherent precipitates. 

Finally, as for solution treatment also during ageing the control of temperature and time 

is essential. Otherwise the precipitates would be incoherent with matrix, too coarse and 

wouldn’t induce great strengthening to the alloy [9,10]. 

 

1.3.1      Heat treatment of Al-Si-Cu-Mg and Al-Si-Mg alloys 

 

The major phases in as-cast microstructure of Al-Si alloys are primary α-Al, eutectic Si 

(whose morphology depends on the presence of chemical modifiers such as strontium) 

and intermetallic phases [7,8]. 

 

In chronological order during solidification the sequence of phase formation in 

hypoeutectic Al-Si-Cu-Mg alloys is [9,10]: 

1. Al� (Mn, Fe)�Si� 

2. α-aluminum phase, Al� (Mn, Fe)�Si� and/or Al FeSi 

3. Eutectic phase (Al+Si),	Al FeSi and Mg�Si 

4. CuAl� 
 

Copper forms an intermetallic phase with Al that precipitates during solidification either 

as blocky ϑ-CuAl� or as alternating lamellae of α-Al + CuAl�. 

Otherwise during solidification copper can create other compounds in combination with 

magnesium and with different chemical compositions: ternary S-CuMgAl�, quaternary Q 

and λ phases (Q and λ consist of Al, Cu, Mg, Si and are characterised by the uncertainty 

in the stoichiometric composition, even more in precipitate form, which changes 

according to the chemical composition of the alloy) [11]; while in presence of iron 

generates other ones as Cu�FeAl+. 

The CuAl� phase can be blocky shape or finely dispersed α-Al and CuAl� particles within 

the inter-dendritic regions.  

The presence of nucleation sites such as Al FeSi platelets or high cooling rates during 

solidification can result in fine CuAl� particles. The blocky CuAl� phase particles are 

difficult to dissolve during solution treatment, unlike the fine CuAl� phase particles that 

can dissolve within 2 hrs. 
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Magnesium is usually present as Mg�Si in Al-Si-Mg alloys if it’s not in solution, but it 

can also form quaternary compounds with other alloy elements. 

Moreover in absence of copper Fe and Mg can combine to produce π-Al,FeMg�Si� 

(which is difficult to dissolve during solution treatment) [9,10]. 

 

• Solution treatment 

 

In Al-Si-Cu-Mg alloys the aims of solution treatment are mainly the dissolution of Cu- 

and Mg- rich particles formed during solidification (that is CuAl� and Mg�Si), 

homogenization of the as-cast microstructure and alloying elements and spheroidisation 

of eutectic Si particles. 

These features impart improved ductility and fracture toughness to the component and 

reduce micro-segregation of other alloying elements in the primary Al matrix [9,10]. 

 

The time at the nominal solution treatment temperature must be long enough to 

homogenize the alloy and must then be chosen carefully to allow the maximum 

dissolution of intermetallic phases. 

In alloys containing high levels of copper complete dissolution of CuAl� phase is not 

usually possible. 

The time needed for this stage depends on the as-cast microstructure (that is the size, 

distribution and type of intermetallic phases and the morphology of the Si particles) and 

on the temperature used. 

 

The temperature that can be used is limited by incipient melting of phases formed from 

the last solidified melt, that is rich in solute elements due to segregation. Localised 

melting results in distortion and substantially reduced mechanical properties [9,10]. 

 

Cast Al-Si-Mg alloys can be solution treated at about 550 °C, while in Al-Si-Cu-Mg 

alloys having a low magnesium content (0.5% wt.) it’s recommended to use a solution 

temperature of 495-500°C, because at 505°C fusion of copper-rich phases can occur. 

 

Finally not all phases dissolve during a solution treatment.  

In fact the Q phase is reported to be stable or to dissolve very slowly for alloys having a 

high Cu concentration (3.5-4.4% wt.) and various Mg concentrations when solution 
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treated at 500°C, while the π-Fe phase transforms into the β-Fe phase and Mg in solid 

solution when the Mg concentration is low (0.3-0.4% wt.) [9,10]. 

 

• Quench 

 

The quench rate is especially critical in the temperature range between 450 °C and 200 

°C for most Al-Si casting alloys, where precipitates form rapidly due to a high level of 

supersaturation and a high diffusion rate. 

At higher temperatures the supersaturation is too low, while at lower ones the diffusion 

rate is too low for precipitation to be critical [9,10]. 

 

For example in Al-Si casting alloys silicon may diffuse from the matrix to eutectic Si 

particles and Mg�Si phases may form on the eutectic Si particles or in the matrix, 

reducing the supersaturation of magnesium and silicon in the matrix [10]. 

 

Moreover the effectiveness of the quench is dependent upon the quench media (which 

controls the process rate) and interval. 

The media used for quenching aluminium alloys include water, brine solution and 

polymer solution. Water is usually the dominant quenchant for aluminum alloys, but it 

often causes distortion, cracking and residual stress problems [10]. 

 

Considering Al-Si-Mg alloys, if water at 25°C is used as a quenchant the α-Al matrix 

consists of a large number of needle-shaped and coherent β″-Mg�Si precipitates [10]. 

The size of the precipitates is approximately 3 to 4 nm in diameter and 10 to 20 in length. 

Instead with a water quench at 60°C the density of the precipitates decreases, while their 

size increases slightly; at the same time a significant number of fine Si precipitates 

resulting from precipitation of excess silicon could be observed in the α-Al matrix. 

Otherwise with a slow quench in air, very different precipitation features are normally 

evidenced. In fact the material remains at high temperatures for a longer period, which 

enhances the diffusion of silicon and magnesium. 

So besides a high density of fine β″-Mg�Si precipitates the α-Al matrix also contained a 

large number of areas with coarse rods β′-Mg�Si grouped parallel to each other [10]. 
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• Ageing 

 

The age hardening response depends on the fraction, size, distribution and coherency of 

precipitates formed. Al-Si-Cu-Mg alloys and Al-Si-Mg alloys generally have a high age 

hardening response, while Al-Si-Cu alloys have a slow and low one [9]. 

 

The main process of precipitation in Al-Si-Cu, Al-Si-Mg and Al-Si-Cu-Mg alloys can be 

summarized as follows: supersaturated solid solution; formation of GP zones; formation 

of metastable phases; formation of equilibrium phases [10]. 

 

In particular the precipitation sequence for an Al-Si-Cu alloy is based upon the formation 

of CuAl�-based precipitates. 

The precipitation sequence of this phase develops generally as follows [10]: 

α	-./01-23.12304→ GP Zones → θ′′ → θ′ → θ 

 

The sequence begins with the clustering of Cu atoms, which then leads to the formation 

of coherent, disk-shaped GP zones. 

During ageing GP zones arise homogeneously; these zones manifest as two-dimensional, 

copper-rich disks. 

As time increases, these GP zones increase in number while remaining approximately 

constant in size. 

As the ageing temperature is increased above 100°C, the GP zones dissolve and are 

replaced by θ′′ precipitates. These precipitates are three dimensional disk-shaped plates 

having an ordered tetragonal arrangement of Al and Cu atoms; θ′′ also appears to 

nucleate uniformly in the matrix and is coherent with the matrix in binary Al-Si-Cu 

alloys. 

The high degree of coherency gives great strengthening to the material. As aging 

proceeds, the θ′′ starts to dissolve and θ′ begins to form by nucleating on dislocations. 

The latter also has a plate-like shape and is composed of Al and Cu atoms in an ordered 

tetragonal structure, but, as it grows, loses coherency with the matrix and so a decrease in 

strength properties may be observed, while continued aging causes the equilibrium θ-

CuAl� precipitate to occur.  
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Tetragonal in shape, the θ phase is completely incoherent with the matrix. Due to its 

morphology, its relatively large size and coarse distribution, mechanical properties 

reduce significantly [10]. 

 

Instead the sequence of precipitation in Al-Si-Mg alloys can be described as follows 

[10]: 
 

i. Precipitation of GP zones 

ii. Intermediate phase β′′-Mg�Si 

iii. Intermetallic phase β′-Mg�Si 

iv. Equilibrium phase β-Mg�Si, FCC structure, rod or plate-shaped. 

 

The maximum alloy strength (peak-aging) is achieved just before the precipitation of the 

incoherent β-platelets. 

Thus during ageing the dissolution of unstable clusters increase the solute concentration, 

while larger clusters that are stable remove solute by growing into GP zones that become 

nucleation sites for β’’ [9]. 

 

The precipitation sequence for Al-Si-Cu-Mg alloys is similar but more complex, as Q”, 

S”, λ” and θ” phase may also form. 

The precipitation sequence in copper-containing alloys is influenced by the high density 

of dislocations formed during quenching due to the difference in thermal expansion 

between the Si particles and the α-Al matrix. 

For example fine and evenly dispersed θ’’ phases form in the centre of the dendrites, 

while coarse θ’ phases form on the dislocations, close to the Si particles.  

The semi-coherent phases have a negligible strength contribution and can be seen as a 

loss of Cu and Mg atoms, that could have increased the fraction of coherent precipitates 

[9,10]. 

 

1.4    Thermal stability of precipitates 

 

Alloying elements such as copper and magnesium are often added to improve alloy 

strength at room temperature as well as at higher temperatures. 

Nevertheless these elements generate compounds (such as CuAl�, Mg�Si and CuMgAl�), 

which can only be effective for strength and creep resistance at temperatures below 200-
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250°C, in fact above 250°C they tend to become unstable, coarsen rapidly (due to 

Ostwald ripening) and then dissolve, leading to an alloy with an undesirable 

microstructure for high temperature applications. 

 

Therefore the behaviour of magnesium and copper compounds at high temperature forces 

the addition of other alloying elements, that are able to generate intermetallics and/or 

precipitates with elevated thermal stability, by which increase the alloys’ one [12]. 

 

1.4.1    Change of composition for high temperature applications 

 

To improve the alloy performances under these conditions, the presence of thermally 

stable and coarsening-resistant compounds is required and so other alloying elements 

have been considered. 

 

The most commonly employed ones are as follows: 

 

• Nickel – Nickel demonstrates low diffusivity and solid solubility and is able to 

change the morphology of iron intermetallics and increase high temperature 

performances by creating thermally stable compounds. 

Otherwise the presence of this element alone is negative: reduces ductility, 

toughness and mechanical resistance of alloys [13]. 
 

 
Figure 6 – Aluminum-nickel phase diagram [14] 
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For example the addition of 0.4% wt. in nickel causes a decrease in tensile 

properties of about 10% compared with the base alloy, that is attributed to the 

formation of brittle compounds and to a Ni–Cu reaction which interferes with the 

formation of CuAl� precipitates, thereby affecting the age hardening process [15]. 

But in combination with zirconium not only nickel’s detrimental effects can be 

counterbalanced but also high temperature properties are able to further improve. 

It may be deduced that the elements must interact between themselves or with 

other elements contained in the base alloy in order to form new phases, which 

partially reduce the quantity of element free to generate brittle intermetallics and 

enhance mechanical performances of alloys (both at room and at high 

temperatures) 
[15]. 

In particular an alloy containing 0.2% wt. in Zr + 0.2% wt. in Ni exhibits the 

highest increase of mechanical properties at room and high temperatures: ultimate 

tensile and yield strength at room temperature are respectively 7% and 9% higher 

than that of base alloy, while at 300°C they are 70% and 39% bigger [16]. 

 

 
Figure 7 - Microstructure of the as-cast alloy containing nickel. T, Q, 6666 and δ phases can be 
distinguished [13] 

 
Otherwise the negative effects of nickel compounds can be partially reduced by 

adding traces of manganese. In fact the latter dissolves in some intermetallics 

(especially T-Al7FeNi), increasing their ductility and then also that of alloy; 

otherwise manganese doesn’t enhance significantly the mechanical performances, 

because in presence of iron creates α-Al� (Fe,Mn)�Si�, that is brittle too. 

→→ →→
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The beneficial effects of nickel can be improved by applying heat treatment, 

guaranteeing an enhancement in mechanical performances. In fact some brittle 

compounds as δ-Al�CuNi and γ-Al+Cu=Ni tend to dissolve during solution 

treatment and during ageing are “replaced” by ϑ-CuAl� and Q-Al Mg,Cu�Si�, 

which reduce embrittlement and increase resistance [11]. 

Finally at elevated percentages (1% wt.) nickel even reduces creep resistance, 

quickening the phenomenon and in addition to disadvantages reported before its 

elevated cost and density (≃ 8.9 g/���) limit further the utilization of this 

alloying element [16]. 

 

• Zirconium  – Zirconium is suitable as alloying element thanks to its low 

diffusivity, solid solubility and the capability of creating reinforce phases. 

It’s capable of increasing mechanical resistance, hardness, wear resistance (both 

at room and high temperature) and overall thermal stability. 

 

 

 

Figure 8 – Aluminum-zirconium phase diagram [17] 

 

Inside Al-Si-Cu-Mg alloys it’s usually employed below ∼0.15% wt., in order to 

avoid the primary precipitation of the properitectic trialuminide Al�Zr, which 

exhibits a peritectic phase equilibrium with the terminal α-Al solid solution [18]. 
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This solute-rich primary compounds is the first solid to form under equilibrium 

conditions and grows into coarse phase during conventional casting, leaving the 

remaining melt, and ultimately the solidified α-Al solid solution, substantially 

depleted in solute. 

This would decrease the amount of solute retained in solid solution and therefore 

would limit the potential for precipitation strengthening during ageing. 

Moreover the formation of this phase during solidification results in a progressive 

refinement of the as-cast grain structure and this would affect the creep resistance 

of the alloy. 

 

Zirconium is often employed in combination with other alloying elements to 

improve the performances: for example in addition to nickel (read “Nickel” 

subchapter above) or with titanium and vanadium. 

There are discordant theories about the optimal percentages of zirconium, 

titanium and vanadium to utilize, in fact in literature 0.06-0.2%, 0.02-0.2% and 

0.1-0.2% (wt.) are reported [18,19,20]. 

Additions of zirconium, vanadium and titanium resulted in the formation of many 

Zr-V-Ti-rich phases, which are often observed in the form of agglomerates 

adjacent to each other, indicating that they could nucleate simultaneously during 

solidification process. 

After solution treatment they remain in the microstructure, because just partial 

dissolution of them occurs and so this indicates that some concentrations of Zr, V 

and Ti were available for the subsequent precipitation process (Ti and V additions 

increase the effective supersaturation of Zr), during which Al�(Zr, V, Ti) (as 

mixed or single-element aluminide) precipitate.  

These compounds exhibit reduced coarsening compared to the binary Al�Zr 

phase. This in return results in improved precipitates’ stability and consequently 

better ability to retain their coherency with the metal matrix at elevated 

temperatures [21]. 
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Figure 9  – Optical microscope image representing microstructure of as-cast Al–Si–Cu–Mg alloy 
modified with Ti, V and Zr. Several phases can be distinguished: α-Al dendrites (#1), Al-Si eutectic 
(#2), A - BC��D (#3), ��DCuSi ternary eutectic (#4), Q phase (#5), π-��E��FGH��I (#6), (����)H(VZr) 
(#7), (����)D(TiZr)Fe (#8),  (����)H(TiVZr) (#9) and (����)H(TiZr) (#10)

 
[21]

 

 

An exception was reported by S.K. Shaha et al., who added 0.21% Ti-0.30% V-

0.47% Zr (wt.) to Al–7Si–1Cu– 0.5Mg–0.1Ti cast alloy. 

This formulation led to the formation of (AlSi)J(TiVZr) phases with increased 

thermal stability during solidification, which are stable up to 700°C. Although the 

zirconium content in the investigated alloy was above the peritectic concentration 

of 0.15%, the properitectic primary Al�Zr phase did not form as a stand-alone 

structure due to dissolution of Al�Ti and Al�V in Al�Zr [21]. 

 

As reported before there are discordant ideas about the optimal amount for every 

alloying element and this substantial variability reported in literature makes 

necessary to go on searching for the ideal percentages. 

 

• Vanadium - Its presence inside the alloy improves mechanical properties and its 

beneficial effect can be further enhanced by heat treatment (the improvement is 

greater than that obtained for nickel-containing alloys). 

Nevertheless the reinforce mechanism hasn’t been still completely understood 

(maybe like other alligants it dissolves inside some intermetallics, increasing their 

ductility). 
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It’s reported its use in percentages between 0.02 - 0.2 % wt., often in combination 

with zirconium and titanium, resulting in the formation of thermally stable 

compounds (read subchapter about zirconium) 
[15, 16]. 

 

• Molybdenum – It’s characterised by low diffusivity and solid solubility (which 

are some of the features requested to alloying elements), modifies iron 

intermetallics morphology from a plate-like to a blocky phase and creates α-Al-

(Fe, Mo)-Si, a compound coherent with matrix which develop during solution 

treatment, thermally stable (they retain their strengthening effect at 300°C) and 

concentrate in inter-dendritic areas [22, 23]. 
 

 
Figure 10 – Images of α-Al-(Fe, Mo)-Si phase distribution in inter-dendritic regions of the alloy after 
solution treatment [22] 

 

Thanks to the fine phase created the dislocation motions are effectively hindered 

and consequently the modified alloy exhibits significant improvement in the 

creep properties and mechanical resistance at high temperature, reaching the best 

results at 0.3% wt.: at 300°C and 30 MPa the minimum creep rate decreases 

∼95% and the creep time-to-fracture increases from 50 min to 1500 min 

compared to the base alloy. 

Instead yield strength, ultimate tensile strength and elongation at 300°C of the 

Mo-containing alloy were increased by ∼25, 15 and 35% respectively compared 

to the base alloy [22]. 

Moreover in combination with Mn the results may even improve. In fact 

increasing Mn content up to 0.5% increases the number of dispersoids per unit 

area, while their average size decreases, resulting in an enhancement of creep 
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resistance (at 300°C and 30 MPa minimum creep rate decreases and creep time-

to-fracture increases to 180h) [23]. 

 

1.5  Aim of the research 

 

The aim of the research has consisted of the use of molybdenum (so far not much 

considered) as alloying element for A354 alloy, the definition of the optimal quantity, the 

study of its potentiality as such and the possible synergetic action in addition to other 

elements. 

Moreover great attention was set on the possibility of applying a heat treatment (trying 

also to improve process parameters) to enhance alloy performance. 
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Chapter 2 – Material and methods 
 

2.1 Material 

 

As previously reported the aluminium alloy analysed during this study was the A354, an 

Al-Si-Cu-Mg alloy whose specific composition is described in table 2.1: 
 

%Al %Si %Cu %Mg %Fe %Mn %Ti 

bal. 8.44-8.70 1.69-1.79 0.45-0.48 0.11-0.12 0.003-
0.004 

0.120-0.123 

 

Table 2.1 – Nominal chemical composition of A354 alloy (wt%.) 
 

Subsequently, in order to modify base alloy and reach the desired composition and 

microstructure, the addition of a modifier (strontium) and an alloying element 

(molybdenum) was provided through the use of master alloys (Tables 2.2 and 2.3). 

 

%Al %Sr %Si %Mg %Fe %Mn 

bal. 9.5 0.03 0.07 0.25 0.01 
 

 

Table 2.2 – Nominal chemical composition of strontium master alloy (wt%.) 

 

%Al %Mo %Si %Mg %Fe %Mn 

bal. 9.7 0.16 0.01 0.08 0.01 
 

Table 2.3 – Nominal chemical composition of molybdenum master alloy (wt%) 
 

In particular 300ppm of strontium and different amount of Mo (0.1, 0.3, 0.5 and 0.8 

wt%) were added in the alloy, in order to analyse and compare their effect on mechanical 

properties. 

 

2.2  Mould preparation 

 

The mould used for casting permitted to obtain 5 cylindrical rods at the same time 

(Fig.2.1): the external and central rods were approximately 12 cm in length and 1.5 cm in 

diameter, while the bigger ones (which were the sprues) respectively 12 and 5 cm. 
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Figure 2.1 – Mould employed for casting (a) and cast obtained (b) 

 

To limit its wear and avoid the migration of iron in the alloy (which is undesirable, 

because it would create brittle and needle-like intermetallics) a solution with graphite 

was sprayed on the internal surface of every semi-mould, also facilitating detach of 

material after casting. 

The mould was pre-heated at 200°,before every casting, in order to avoid the premature 

solidification of molten metal during casting, which would hinder mould filling. 

 

2.3  Casting 

 

The alloys were produced by gravity die casting using “Topcast Engineering TVCs” 

vacuum casting machine. 

Melting is achieved in protective atmosphere (Argon), while a vacuum pump is provided 

in order to boost the suction effect into the mould. 

 

Graphite melting pot consumption is greatly reduced thanks to the “gaswash” procedure, 

which removes the oxygen in few seconds from the charge loading operation. 

The machine is fully automatic making the operator’s job very easy and less dangerous.  

Moreover the presence of magnetic stirring permits a better mixing and the reduction of 

inhomogeneities (otherwise this would occur due to different density of aluminium and 

its alloying elements). 

 

The commercial A354 alloy has been provided in form of ingots, which were cut in small 

pieces and then melted in a resistance furnace, set at 800 °C, in a standard clay-graphite 

crucible and every cast was about 1 kg in weight. 

(a) (b) 



 

28 

 

In each cast the addition of strontium was provided, in order to get the modification of 

eutectic Si, which turns its acicular morphology into a spherical one, eliminating its 

embrittling effect. 

With respect to A354 alloy the optimal amount of Sr to get a completely modified 

microstructure has already been discussed in a previous study and was equal to 300 ppm 

(that is 3 g for 1 kg cast) [24, 25]. 

Moreover, before their addition, modifiers and alloying elements (in form of master 

alloy) were pre-heated for about ten seconds to eliminate the moisture. 

In fact, due to the high temperature, water would decompose in hydrogen and oxygen, 

creating a flammable mixture (that would be activated by high temperature itself). 

 

Subsequently, after its complete melting, aluminium was maintained at 800°C for 10 

minutes under magnetic stirring in Argon atmosphere, in order to get the whole cast 

homogeneity (casting sequence A). 

This particular aspect was considered after the identification of inhomogeneities and 

clusters of intermetallics in some preliminary castings containing 0.3%wt of 

molybdenum. 

 

 
 

Figure 2.2 - Optical micrographs of A354 containing molybdenum casted after keeping molten metal 
at 800°C for 10 min (casting sequence A) 

 

Despite this, inhomogeneities and molybdenum phase of great dimension (which 

appeared fairly identical to that present into the correspondent master alloy) were still 

observed inside casts. For this reason the melting sequence was modified: after complete 

melting at 800°C temperature was raised up to 900°C (at which molten metal was 

(a) (b) 
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maintained for 20 minutes), then was lowered to 800°C (maintained for 10 minutes) and 

finally casting was carried out (casting sequence B). 

 

 
Figure 2.3 - Optical micrographs of A354 containing molybdenum casted after keeping molten metal 
at 800°C for 10 min + 900°C for 20 min (casting sequence B) 

 

Higher temperature and longer time of process increased dissolution of molybdenum 

compounds and its diffusion, improving the homogeneity of cast. 

Then, after casting, the hot material was extracted from mould, to facilitate the 

procedure, and immediately quenched in water. 

Finally, after cast cooling, a band saw was used to separate each rod from the others, then 

the sidebars were machined to obtain specimens. 

 

2.4 Chemical analysis 

  

Chemical analysis of a cast sample was performed with Glow Discharge-Optical 

Emission Spectroscopy (GD-OES) technique to define its real composition. 

 

GD-OES is a fast, low-cost and easy-to-use analytical technique, which can provide rapid 

and simultaneous analysis of all elements of interest inside solids (metals, powders, 

polymers, glasses and ceramics). 

 

Two types of analyses can be performed: 

1. bulk analysis: global chemical analysis 

2. depth profiling analysis: signal from each chemical element as a function of 

erosion time 

 

(a) (b) 
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Bulk analysis can be performed in less than one minute. Moreover the technique has the 

added capability of direct depth profiling of the solid sample without the need for any 

prior preparation. 

An uninterrupted quantitative depth profile analysis by GD-OES takes only minutes and 

provides a complete detailed sample-composition map at depths ranging from less than 

10 nanometres to more than 100 micrometres. 

However the samples underwent only bulk analysis. 

 

On each sample (previously smoothed and polished) three valid measures were 

performed and the average values were calculated: the chemical compositions were 

coherent with the hypothesized ones for a Mo addition between 0.1 and 0.3%, while, for 

higher Mo addition, the percentage revealed by chemical analysis was different from the 

theoretical one. 

This may be due to cast inhomogeneity and presence of clusters of molybdenum-based 

intermetallics, which interfered with measurements. 

 

2.5  Heat treatment 

 

After casting the specimens were subjected to T6 heat treatment, in order to increase 

their mechanical properties. 

 

Three different heat treatments were considered: 

1. Solution treatment (495°C for 6h + 515°C for 2h) + quenching (water at 60°C) + 
ageing (180°C for 4h) 

2. Solution treatment (495°C for 6h + 540°C for 1h) + quenching (water at 60°C) + 
ageing (180°C for 4h) 

3. Solution treatment (495°C for 6h + 540°C for 10h) + quenching (water at 60°C) + 
ageing (180°C for 4h) 

 

The first one was optimized in a previous work developed at the School of Engineering 

of Bologna University, according also to results of [24, 25]; while the second and the 

third ones were reported in an article written by Farkoosh et al. [22]. 

Specifically the higher temperature of solubilisation (that is 540°C) is justified by the 

development of molybdenum dispersoids, thermostable nanometric compounds able to 

increase high temperature and creep resistance [22].  
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After every phase of heat treatment a sample coming from every alloy was taken out of 

the oven and employed for hardness measures, in order to evaluate the effects of heat 

treatment steps on hardness. 

 

After first analysis it was clear that alloys containing molybdenum subjected to 540°C 

solution treatment could reach higher performances compared to that undergone to the 

515°C one. 

Moreover, due to interesting results already obtained after solution treatment at 540°C 

and, in order to verify if it would be possible to avoid quench and ageing phases, 

obtaining technologic advantages and cost savings, it was established to analyse and 

compare the performances of alloys subjected to: 
 

1. Solution treatment (495°C for 6h + 540°C for 1h) + air cooling 

2. Solution treatment (495°C for 6h + 540°C for 1h) + quench (water at 60°C) 

3. Solution treatment (495°C for 6h + 540°C for 1h) + quench (water at 60°C) + 

ageing (180°C for 4h) 

4. Solution treatment (495°C for 6h + 540°C for 10h) + air cooling 

5. Solution treatment (495°C for 6h + 540°C for 10h) + quench (water at 60°C) 

6. Solution treatment (495°C for 6h + 540°C for 10h) + quench (water at 60°C) + 

ageing (180°C for 4h) 

 

After heat treatment a samples were subjected to high temperature exposure, in order to 

assess their mechanical behaviour after high temperature soaking (Table A.1 in 

Appendix) drawing hardness vs high exposure duration curves (degradation curves). 

 

Due to results of hardness obtained by alloys solubilised at 515°C, the study concentrated 

only on the ones treated at 540°C (see chapter “3.5.1”). 

In the specific, to define the optimal solubilisation time at 540°C and have a comparison 

term with a similar diagram reported by Farkoosh et al. [22], it was determined the 

hardness trend over solubilisation time. 

A set of samples containing 0.3% in Mo was submitted to the first phase of heat 

treatment (at 495°C for 6h), after that each one was solubilized at 540°C for a specific 

time, then a half was air cooled, while the other half was quenched in water at 60°C. 

Finally a series of hardness measures was carried out at specific intervals. 
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2.6  High temperature exposure 

 

Before machining samples of A354 alloy and all Mo-containing alloys were soaked at 

high temperatures, in order to simulate the over-aging of the material during high 

temperature exposure, obtaining hardness vs high exposure duration curves. 

 

As a consequence of the previous hardness results, it was established to evaluate 

performances of samples after air cooling, quench and quench + ageing. 

Specifically two different temperatures were chosen, in order to test the response of 

analysed materials:  

1. 245°C (average temperature in cars engines) 

2. 300°C (maximum reachable temperature in engines) 

 

In particular during tests the first one was prolonged up to 301h (for samples solubilised 

at 540°C for 1h) and 144h (for the ones solution treated at 540°C for 10h), in order to 

confirm the gap in hardness measurement observed by Farkoosh between base alloy and 

modified one after some weeks of degradation [22]; while the temperature of the second 

series of measures was increased to 300°C, so as to analyse exclusively the reinforcement 

inducted by molybdenum-containing phases, which can’t be modified at this temperature 

unlike copper precipitates, that above 250°C undergo Ostwald ripening and dissolution 

[22]. 

 

On each sample three valid hardness measures were performed and the average values 

were calculated, then they were utilised to draw over-ageing curves. 

 

2.7  Hardness measurement 

 

According to the technological concept the hardness is defined as the resistance opposed 

to penetration by a material surface. 

Even if the hardness value itself isn’t sufficient to judge a material, this technique is 

cheap, rapid, not destructive and gives interesting information. 

The tests work on the basic premise of measuring the critical dimensions of an 

indentation left by a specifically dimensioned and loaded indenter. 
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Hardness measuments have been carried according to standards HB�K and HVK.�  and the 

values respectively obtained using the following relationships: 

HB�K = 
�N

OP	(PQ	√PSQTS	)
                     HVK.� = 1.854 ∗

N

TS
 

 

On solubilized specimens 3 macro-hardness Brinell and 5 micro-hardness Vickers (just 

on α-phase) measures were performed, while on aged and degraded ones only Brinell 

measures were made. 

 

Before Brinell hardness tests samples surfaces were smoothed with SiC grinding papers, 

used in decreasing grain size order (180-320-400-600-800 grit). 

Measurements were carried out using a GALILEO A200 durometer with 2.5 mm 

diameter indenter and applying 62.5 kg of load. Indentation were then photographed with 

a ®ZEISS AX10 optical microscope and after that the image analyser software ®IMAGE 

PRO-PLUS was used to measure their diameter (the measure was repeated twice for any 

diameter, in order to minimize the possible error induced by the not perfect circularity of 

the mark); the average values for each sample were calculated. 

 

Micro-hardness Vickers measures the samples were smoothed with grinding papers and 

subsequently polished with an automatical lapping machine, using 2 diamond powder 

suspensions of 9 and 3 µm. 

The measurements were performed with a GALILEO micro-durometer, with 0.098 kg 

load. 

The hardness was measured directly with the same instrument: the average value over 

five measurements for each sample was calculated 

Vickers measurements were performed for evaluating primary α-Al phase hardness: 

however the samples analysed were characterised by a fine microstructure and therefore 

it isn’t possible to guarantee that the values weren’t affected by the contribution of harder 

eutectic silicon and intermetallics. 

 

2.8  Metallographic analysis 

 

The metallographic analysis allows the observation and the study of alloys 

microstructure. 
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In order to perform microstructural characterisation, samples surfaces were smoothed 

with SiC grinding papers, used in decreasing grain size order (200-320-400-600-800-

1200-2000 grit) and then polished on 4 cotton clothes set on an automatic lapping 

machine, on which respectively 3 diamond powder suspensions of 9, 3 and 1 µm and a 

silica one of about 0.5 µm were spread. 

Every sample had to be washed with water after every step on sandpapers and clothes, so 

that it was possible to remove every residue (SiC from grinding papers, fibers from 

clothes, aluminum from samples themselves), which would contaminate the 

metallographic specimens. 

At the end of polishing phase instead the specimens were washed with water, then 

acetone and after that dried with cold air, so that rings (which would disturb the 

subsequent micrographic analysis) couldn’t appear. 

Then the samples were analysed through optical (®ZEISS AX10) and scanning electron 

microscopy (®ZEISS Evo 50), provided of Energy Dispersive Spectrometer (EDS). 

 

Thanks to the different magnifications it was possible to study the microstructure of the 

alloys and in particular the different compounds developed during solidification. 

The presence of intermetallics, in fact, is important, because they influence material 

properties such as mechanical and corrosion resistance. 

Their identification is possible thanks to their different morphology and colour (or 

brightness) and through Energy Dispersive Spectrometer (EDS). 

Unluckily, due to nanometric dimension of molybdenum dispersoids (generated during 

solution treatment at 540°C), it wasn’t possible to observe and analyse them by using 

SEM (and obviously neither by optical microscope). 

 

2.9 Secondary Dendrite Arm Spacing (SDAS) measurement 

 

The Secondary Dendrite Arm Spacing is the distance between the secondary arms of 

dendrites forming the alloy. 

Measures were carried out on low magnification micrographs (magnification 2.5X) and 

at least 7-8 SDAS values were measured, by using ®IMAGE PRO-PLUS software. 
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2.10 Thermal analysis 

 

The term “thermal analysis” stands for a group of techniques, in which a physical 

property of a material is measured as a function of temperature, while it’s subjected to a 

controlled temperature programme. 

DSC allows the study of transitions and transformations, which occur in materials, by 

measuring the difference in heat absorbed or released by sample (associated with 

material transitions) compared to inert reference as a function of temperature. 

The analysis was conducted on a sample of A354 + 0.3% Mo alloy with the purpose of 

determining the development of molybdenum dispersoids (as reported by Farkoosh) and 

other phases present in the alloys. 

Specifically the analysis was conducted in inert atmosphere (argon flux = 30 mL/min) 

with a set heating ramp from room temperature up to 700°C (over the reach of complete 

melt) with a rate of 20°C/min. 

 

2.11  Tension tests 

 

Mechanical testing plays an important role in evaluating fundamental properties of 

materials as well as in developing new materials and in controlling their quality.  

The most common test used to measure the mechanical properties of a material is the 

tension test. 

Both room and elevated temperature (250 °C) tensile tests were performed, using a 

servo-hydraulic testing machine according to ISO standards: the first ones were carried 

out in agreement with the standard ISO 6892-1:2009, while the second ones followed the 

standard ISO 6892-2:2011. 

Samples were obtained by side and central bars of casts (see fig.2.1) and were machined 

to obtain round dog-bone tensile specimens, characterised by gauge length=25 mm and 

gauge diameter=5 mm. 
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Figure 2.4 - Tensile test sample geometry 

 

Just a preliminary study was conducted and then only three samples were tested in each 

working condition to obtain an average value. Further tests will be carried out 

subsequently. 

The specimens employed for tension tests and corresponding heat treatment which 

underwent are reported in table 2.4. 

 

Samples 

designation 

Mo wt%  Treatment undergone Test conditions 

A T6 / Solution treatment (495°C 6h + 540°C 
1h) + quench + ageing (180°C 6h) 

Room 
temperature 

A OA / Solution treatment (495°C 6h + 540°C 
1h) + quench + ageing (180°C 6h) + 

over-ageing at 250°C for 100h 

250°C 

MoA T6 0.3 Solution treatment (495°C 6h + 540°C 1h) 
+ air cooling + ageing (180°C 6h) 

Room 
temperature 

MoA OA 0.3 Solution treatment (495°C 6h + 540°C 1h) 
+ air cooling + ageing (180°C 6h) + 

over-ageing at 250°C for 100h 

250°C 

MoT T6 0.3 Solution treatment (495°C 6h + 540°C 1h) 
+ quench + ageing (180°C 6h) 

Room 
temperature 

MoT OA 0.3 Solution treatment (495°C 6h + 540°C 1h) 
+ quench + ageing (180°C 6h) + over-

ageing at 250°C for 100h 

250°C 

 

Table 2.4 – Schematisation of tension samples, molybdenum content, corresponding treatment 
undergone before tests and test conditions 

 

No tests were carried out on A354 samples at room temperature, because the specific 

data were already available. 
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2.12 Fractography 

 

Fractography is the study of fracture surfaces of materials.  

The aim of the analysis is the evaluation of the failure mechanisms, by studying the 

morphology of a fractured surface. 

The fracture surface analysis was performed with a Scanning Electron Microscopy 

®ZEISS Evo 50, provided of Energy Dispersive Spectrometer (EDS).  

A fracture surface was observed to analyse breaking mechanism and identify the 

composition of different phases (recognised with EDS). 
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Chapter 3 - Results 
 

3.1 Thermal analysis 
 

 

 

   
 

Figure 3.1 – DSC analysis diagram of an A354+0.3%Mo sample. (a) reports the complete  analysis 
and (b) a detail in which transitions (highlighted by the arrows) take place 
 

In graphs resulting from analysis it’s possible to distinguish 3 different transitions: the 

first one related to melting of Cu-based intermetallics at about 512°C, the second one 

associated to that of Si-containing phases (at about 540°C), while the last one 

corresponding to complete melting of tested material (∼589°C) and to which is 

associated the greatest enthalpy. 

During the analysis it wasn’t possible to determine any transition related to molybdenum 

dispersoids formation, which would have been developed at about 540°C. 

It can be supposed that corresponding peak wasn’t characterised by high transformation 

enthalpy and then was partially hidden by second transition. 

 
3.2 Heat treatment 
 

The data are reported considering “as cast” at time = 0, solution treatment at 495°C the 

range t =0-6h. 

Therefore, for example, samples solubilized for 1h at 540°C correspond to data reported 

at 7h into the curves. 

As a result of hardness measures carried out on air cooled and quenched samples, it was 

possible to build ageing curves (the corresponding data are reported in “Tables A.2 and 

A.3” in section “Appendix”): 

(a) (b) 
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Figure 3.2 – Ageing curves at 540°C of quenched (red line) and air cooled (blue line) A354+0.3%Mo. 
Blue region corresponds to solution treatment at 495°C, while yellow one to ageing treatment at 
540°C 

The trend shows an increase resulting from the development of molybdenum dispersoids 

(which generated maintaining the alloy at high temperature) and reaches a maximum 

after about 1 hour of treatment both for air cooled and quenched samples. 

Instead the subsequent decline in macrohardness after prolonged solution treatment is 

attributed to the coarsening of the dispersoids. 

Moreover a further and substantial increase in hardness values was generated by quench 

itself. In fact a gap of fairly 10 HB between the two curves was recorded. This aspect 

was not considered in the study and could be related to the different strengthening 

precipitates (both Cu, Mg or Mo-based) that forms during quenching and air cooling. 

 

3.3 Metallographic analysis 
 

3.3.1  Optical microscopy 
 

3.3.1.1 A354 alloy 

 
 

Figure 3.3 - Optical micrographs of A354 alloy without strontium (a) and the same alloy with Sr (b) 

 

(a) (b) 

π 

Q 
ϑϑϑϑ 

ϑϑϑϑ 
Q 
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The microstructure is characterized by white α-phase dendrites (that is primary 

aluminum), which are surrounded by Al-Si eutectic structure (fig. 3.3). 

In Fig. 3.3a the eutectic silicon showed an acicular (or needle-like) morphology, which 

can induce stress intensification in its own apices, reducing the ductility of alloy.  

In Fig.3.3b instead the addition of 300 ppm of Sr to the alloy lead to a well modified Si. 

The Sr was introduced in melted metal by means of an Al-Sr (10%) master alloy. 

Moreover it was possible to distinguish in the interdendritic regions other phases: block-

like θ-Al 2Cu phases, π (a light grey compound with an irregular and network-like shape, 

known as “chinese-script morphology”) and Q (the compact and grey one) particles. 

Finally the dark spots observable inside the dendrites are only attributable to the final 

stage of polish, not to the presence of other particles inside them. 

 

3.3.1.2 A354 + 0.1%Mo (casting sequence A) 
 

 

 

 
 

Figure 3.4 - Optical micrographs of A354 + 0.1% Mo: (a,b) as-cast alloy and (c,d) material 
microstructure after solution treatment 
 

No substantial microstructural differences were observed respect to the alloy without Mo 

except for the presence of molybdenum intermetallics characterised by big dimension 

and orange colour (fig.3.4c). The analysis confirmed the presence of a well modified 

(a) 

(d) (c) 

(b) 

Al-(Fe,Mo)-Si 

π 

ϑϑϑϑ
ϑϑϑϑ

Q Al-(Fe,Mo)-Si 
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eutectic silicon and of ϑ (the round and orange compound), Q (the compact and grey one) 

and π (the light grey compound with “chinese-script morphology” reported in fig.3.4b).  

In the specific the image on the top right showed the presence of π-phase, whose 

formation instead should be suppressed by molybdenum [22], as well as partially 

unmodified eutectic silicon, which should have been modified by strontium during 

casting. 

No acicular β-phase was instead observed and probably, as suggested by Farkoosh [22], 

the presence of Mo induces the formation of Al-(Fe,Mo)-Si phase, therefore preventing 

the nucleation of Al5FeSi particles. 

As shown in fig.3.4c and d, after complete solution treatment ϑ and Q phases were fairly 

completely dissolved, unmodified eutectic silicon wasn’t observed and molybdenum 

intermetallics didn’t show differences and seemed to be unmodified and not solubilized 

by the treatment (see orange phase in fig.3.4d). 

 

3.3.1.3 A354 + 0.3%Mo (casting sequence A) 
 

 

 

 
Figure 3.5 - Optical micrographs of A354 + 0.3% Mo:  (a,b) as-cast alloy and (c,d) solution treated alloy 
 

(a) (b) 

(c) (d) Al-(Fe,Mo)-Si 

ϑ 

Q 

ϑ 
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In fig.3.5a and 3.5b ϑ and Q phase could be distinguished, while after solution treatment 

(as shown in fig.3.5c and 3.5d) they were fairly completely dissolved and appeared really 

reduced in size. 

Conversely fig.3.5d showed the presence of clusters made of molybdenum intermetallics, 

which weren’t affected by heat treatment. 

Finally π phase wasn’t found, probably as a consequence of higher content in 

molybdenum, which should hinder its formation [22]. 

 

3.3.1.4 A354 + 0.3%Mo (casting sequence B) 

 

 

 
Figure 3.6 - Optical micrographs of A354 + 0.3% Mo (a, b, c) as-cast and (d) solution treated alloy 
(small shrinkage cavities highlighted by arrows) 

 

Firstly, compared to samples casted according casting sequence A, alloy microstructure 

exhibited differences. 

The images 3.6a, b and c presented a not modified eutectic structure regardless the 

addition of Sr. Only after heat treatment a partial silicon spheroidisation is appreciated 

(fig.3.6d). Moreover in figure 3.6d showed the presence of small shrinkage cavities.  

(c) 

(b) 

(d) 
Al-Mo-Si 

ϑϑϑϑ 

Q 

(a) 
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Fig.3.6c shows how the casting parameters modification has generated differences in Al-

Si-Mo phase: instead of being polygonal and orange, it appears light grey-coloured and 

exhibits a shape similar to a cross. 

Probably, due to higher molybdenum diffusion during casting (as a result of 900°C 

stage), the formation of a different phase was induced. 

Furthermore, as for previous samples, figures 3.6a and b recorded the presence of ϑ (with 

a spherical shape) and Q phases. 

Solubilized samples showed the substantial disappearance of intermetallics as a natural 

consequence of heat treatment. 

Only a few ϑ and Q phases were still detected, but obviously characterised by lower 

dimensions. 

 

3.3.1.4 A354 + 0.5%Mo (casting sequence A) 
 

 

 

 
 

Figure 3.7 - Optical micrographs of A354 + 0.5% Mo: (a), (b) and (c) represent as-cast alloy, while 
(c) shows microstructure after solution treatment 
 

The images 3.7a, 3.7b and 3.7c showed a not modified eutectic structure regardless the 

addition of Sr. Only after heat treatment a partial silicon modification was appreciated  

(as shown in fig.3.7d). 

(c) 

(b) 
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Consequently it could be hypothesised that molybdenum in wt.% higher than 0.3 could 

interfere with strontium, but through mechanisms that were not investigated. 

Moreover the as-cast alloy presented ϑ and Q phases (fig.3.7a and b), as well as 

molybdenum clusters (which didn’t get modified or partially dissolved) (fig.3.7d). 

 

3.3.1.5 A354 + 0.8%Mo (casting sequence A) 
 

 

 
Figure 3.8 - Optical micrographs of A354 + 0.8% Mo: (a) and (b) represent as-cast alloy, while (c) 
and (d) show microstructure after solution treatment 

 

Fig. 3.8a, b and c showed a microstructure similar to that observed for the alloy with 

0.5%Mo, confirming that high content in molybdenum interferes with silicon 

modification and with the formation of π intermetallic. Moreover, as expected, there was 

an increase of the number and dimension of clusters of molybdenum intermetallics. 
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3.3.2 Scanning electron microscopy 
 

3.3.2.1 Aluminium-molybdenum master alloy 
 

 
 

Figures 3.9 – SEM micrographs of aluminium-molybdenum master alloy. In the specific (a) 
represents a general overview and (b) a detail of Mo-rich phases 

 

Molybdenum master alloy was characterised by needle-like shaped phases rich in Mo of 

relevant dimensions. 

This could explain the difficulties in dissolving it during casting and obtaining a uniform 

distribution of the alloying element, especially of its intermetallics. 

 

3.3.2.2 A354 + 0.1% Mo (casting sequence A) 
 

SEM microstructural and EDS analysis highlight only small differences between as cast 

and heat treated alloy. 

In figure 3.10 Mo-based compounds constituted by Al, Si, Mo, Ti can be observed. These 

could be associated to the phases reported by Farkoosh et al. [22], but characterised by a 

different composition. In fact they didn’t contain iron, but low percentages in titanium, 

which was detected also in other molybdenum compounds. Moreover the composition 

and morphology of these intermetallics weren’t modified by solution treatment. 

In figure 3.11 instead the Al-(Fe, Mo)-Si phase, also observed by Farkoosh [22], was 

instead reported. 

Q-phase (Al, Si, Cu and Mg) was present both in as cast and heat treated material, but 

while in as cast sample Q-phase had a well-defined morphology (fig.3.12) in heat treated 

ones the Q-phase appeared to be fairly completely dissolved (fig.3.13). 

(a) (b) 
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 As expected, instead ϑ-phase was dissolved during solution treatment and consequently 

these compounds were present mainly in as cast material, often associated with Q-phase 

(fig.3.12).  

 

 

Figures 3.10 – SEM micrographs of a cluster of Mo-rich phases found inside A354+0.1%Mo as cast 
and corresponding EDS spectrum and chemical composition 

 

Figures 3.11 – SEM micrograph of Al-(Fe,Mo)-Si phase inside heat treated A354+0.1%Mo alloy and 
corresponding EDS spectrum and chemical composition 

 

 ϑϑϑϑ 
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Figure 3.12 – SEM micrographs of ϑϑϑϑ and Q phases in A354+0.1%Mo as cast and corresponding EDS 
spectra and chemical compositions 

 

Figure 3.13 – SEM micrographs of Q phase in A354+0.1%Mo after complete solution treatment and 
corresponding EDS spectrum and chemical compositions 
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3.3.2.3 A354 + 0.3% Mo (casting sequence A) 
 

Through SEM observations it was verified that, even changing molybdenum quantity, 

alloy microstructure substantially didn’t change and moreover no appreciable differences 

were observed between water quenched and air cooled samples. 

In fig. 3.14 molybdenum-rich intermetallics with block-like morphology were reported. 

Inside them areas with different brightness are observable: thanks to EDS analysis it was 

verified that higher is molybdenum quantity, lighter they appear. 

Moreover it was interesting to verify that also in this compound the content of iron is low 

and that titanium and vanadium were present, even if they weren’t inside molybdenum 

master alloy. 

Therefore it can be supposed that molybdenum interacted with other elements during the 

formation of these intermetallics through mechanisms that were not investigated. 

Unexpectedly alloy microstructure exhibited, even if seldom, two different needle-like 

phases: little β-Al5FeSi particles (fig.3.15), whose formation should be theoretically 

suppressed by molybdenum and Mo-based ones, which are identified as acicular 

molybdenum-rich phases from master alloy (fig.3.16) not completely dissolved during 

casting. 

The presence of the latter made rethink casting stage and modify its process parameters, 

adding 900°C stage in order to homogenize molybdenum inside alloy. 

Finally figure 3.17 showed the presence of ϑ-CuAl� (the lighter phase) and Q (the 

darker one) intermetallics, whose formations are often associated. 

  

 
  
 

 

  

 

 

 

 

Figure 3.14 - SEM micrograph of a Mo-rich phase inside A354+0.3%Mo as cast and corresponding 
EDS spectrum and chemical composition 

Element Weight% Atomic% 
Al 13.40 19.50 
Si 39.88 55.75 
Ti 10.79 8.84 
V 2.76 2.13 
Fe 0.45 0.32 
Cu 0.39 0.24 
Mo 32.33 13.23 
Totals 100.00   
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Figure 3.15 - SEM micrograph of β-Al 5FeSi phase inside A354+0.3%Mo as cast and corresponding 
EDS spectrum and chemical composition 

Figure 3.16 – SEM micrographs of Mo-rich phase found inside A354+0.3%Mo as cast and 
corresponding EDS spectrum and chemical composition 
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Figure 3.17 - SEM micrograph of ϑϑϑϑ and Q phases found inside A354+0.3%Mo as cast and 
corresponding EDS spectra and chemical compositions 

 

3.3.2.4 A354 + 0.3% Mo (casting sequence B) 
 
 
As shown previously by optical micrographs (fig 3.6), casting sequence B (which 

guarantees higher molybdenum diffusion) didn’t modify morphology of Mg and Cu-

based particles, while induces changes in Mo phases. 

The microstructure of solutioned alloy was characterized by the presence of Mo-based 

intermetallics, since Cu and Mg-based phases were fairly completely dissolved during 

heat treatment. 

Two different morphologies of Mo-containing compounds were found, which 

substantially differed according to iron content: block-like particles, constituted of Al, Si, 

Fe and Mo, were mostly observed in interdendritic regions, also in association with other 

ϑϑϑϑ 
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intermetallics (in particular ϑ phase), as shown in fig. 3.19; while cross-like ones, 

containing only Al, Mo and Si, were usually located within the α-Al region (fig. 3.20). 

In figure 3.19 it was possible to distinguish a series of compounds, whose formation 

seemed to be associated: compact molybdenum compound (which is different from that 

reported below with cross-shaped morphology), ϑ phase and π intermetallic (which had 

polygonal morphology, instead of classic chinese-script one). 

Compared to alloy casted according casting sequence A, no β particles were observed. 

Probably the higher molybdenum diffusion let interact and react with iron, preventing 

from the nucleation of β-Al 5FeSi particles. 

Figure 3.18 - SEM micrograph of ϑϑϑϑ phase inside A354+0.3%Mo as cast and corresponding EDS 
spectrum and chemical composition 

 
Figure 3.19 - SEM micrograph of ϑϑϑϑ, Q, π and Al-(Fe, Mo)-Si phases inside A354+0.3%Mo as cast and 
corresponding EDS spectra and chemical compositions 

 

 

Al-(Fe,Mo)-Si 

θ π 

Q 

 

Element Weight% Atomic% 

Mg  1.25 1.79 
Al  56.33 72.33 
Si  4.01 4.95 
Cu  38.40 20.94 
Totals 100.00   
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Figure 3.20 - SEM micrograph of phases found inside A354+0.3%Mo as cast and corresponding EDS 

spectrum and chemical compositions 

 

3.4  Secondary Dendrite Arm Spacing (SDAS) measurement 

 

The average SDAS values are reported in table 2.5. 
 

Mo %wt  Mould 

temperature (°C) 

SDAS 

(µm) 

0.1 300 39 ± 13 

0.3 200 26 ± 5 

0.5 200 31 ± 3 

0.8 200 32 ± 6 
 

Table 2.5 - Average SDAS values of A354 alloy with different percentages in molybdenum 

 
The alloys containing Mo wt% between 0.3 and 0.8 showed similar SDAS values 

ranging between 26 and 32 µm, while the alloy with 0.1wt% of Mo has higher SDAS. 

This difference is however a consequence of the higher die temperature and not of the 

low Mo amount. Mo, in fact, doesn’t seem have influence on SDAS [24, 25]. 

 

3.5 Hardness measurements 
 

Hardness measures were carried out on specimens casted according to casting sequence A. 

 

 

 

Al-Mo-Si 

 Element Weight% Atomic% 
Al  68.38 83.35 
Si  7.01 8.21 
Mo  24.61 8.44 
Totals 100.00   

Al-Mo-Si 

θ 
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3.5.1 Macrohardness measurements 

The values obtained as a result of several series of measures are reported as follows in 

diagrams below. 

Macrohardness values are recorded in tables “A.2, A.3, A.4, A.5, A.6” of “Appendix” 

section. 

 

 

 

 
 

Figure 3.21 – Macrohardness values of A354 base alloy and A354 modified with (a) 0.1, (b) 0.3, (c) 
0.5 and (d) 0.8% in Mo at different heat treatment stages (from as cast to complete solution 
treatment). In particular, where not specified, the samples were quenched after solubilisation 
 

Despite of different content in molybdenum, the hardness showed a similar trend: as cast 

alloys presented values of about 80 HB�K, then, as a consequence of first phase of 

(a) (b) 

(d) (c) 

(e) 
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solution treatment at 495°C, these decreased and finally an increase after solubilisation at 

higher temperature was recorded. 

In particular, if solution treatment was conducted at 540°C, better performances were 

registered in molybdenum-containing alloys. 

This indicated, as reported by [22], that compared to 515°C, soaking at 540°C induced 

higher mobility to the Mo solutes, enabling the precipitation of the dispersoids. 

The only difference were observed in A354 base alloy and A354+0.1%Mo, in which 

after heat treatment phase at 540°C hardness values didn’t have a relevant increase. 

This confirm that the enhancement of hardness values of the alloy with Mo after 

complete solution treatment could be due to the development of dispersoids, which in the 

A354 alloy isn’t present, while in the A354+0.1%Mo  the Mo percentage is too low for 

appreciating its effect. 

 

3.5.2 Microhardness measurements 
 

The values obtained as a result of several series of measures are reported as follows in 

diagrams below. 

Microhardness values are recorded in tables “A.7, A.8, A.9, A.10” of “Appendix” 

section. 
 

 

 
 

Figure 3.22 - Microhardness values of A354 alloy modified with (a) 0.1, (b) 0.3, (c) 0.5 and (d) 0.8% 
in Mo at different heat treatment stages (from as cast to complete solution treatment). In particular, 
where not specified, the samples were quenched after solubilisation 
 

(a) (b) 

(c) (d) 
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The microhardness trends were similar to those observed for macrohardness. 

However it is important to notice that, while microhardness measures were carried out 

locally in the α-phase and could be influenced by harder compounds (present around or 

under the α one), Brinell ones determined an average value of all the microstructural 

constituents of the alloy. 

Consequently, despite of several measures performed on the samples, standard deviation 

values of microhardness were higher than those of macrohardness tests. 

 

3.6 Ageing curves 
 

In figure 3.23 aging curves obtained at 180°C for the alloys solution treated both at 515 

and 540°C are reported. 

 

 

 

Figure 3.23- Ageing curves of A354 alloy with different molybdenum content after solution 
treatments at 515°C for 2h and 540°C for 1h. In the specific (a) 0.1%, (b) 0.3%, (c) 0.5%, (d) 0.8% in 
Mo 

The diagrams highlighted the greater effectiveness of 540°C solution treatment, which 

allowed to reach in the alloys, after aging, higher hardness (about 10-20 HB) compared 

to alloys subjected to solution at 515°C. 

(b) 
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(a) 
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Only A354 with 0.1% in Mo showed a smaller gap between the two curves, probably due 

to the lower content in molybdenum and consequently lower influence on the heat 

treatment results. 

Moreover it could be noticed that the highest results for molybdenum-containing alloys 

were obtained already after 4 h, instead of 7, as reported for A354 without Mo [24, 25]. 

 

3.7 High temperature exposure 

 

The diagrams were obtained as a result of a series of measures made at specific time 

intervals, analysing samples containing the same percentage of molybdenum and 

subjected to different treatment after solubilisation (air cooling, quench, quench + 

ageing) and comparing the results. 

 

3.7.1 Solution treatment 495°C for 6h + 540°C for 1h + soaking 245°C for  301h: 

 

A354 samples underwent T6 heat treatment with the following parameters: solution 

treatment for 6h at 495°C + for 2h at 515°C + quench (water at 60°C) + ageing for 7h at 

180°C (the heat treatment developed from [24, 25]). This data was used only as a 

comparison term, whose results were already known and available. 

 

No substantial differences were recorded between A354 alloy with or without 

molybdenum, with the residual hardness stabilised at 65-70 HB10. Only the alloy 

containing 0.1% in Mo showed a residual hardness lower than 60HB10. 

The heat treatment (air cooling, quench or quench + ageing) influenced the hardness 

curves only in the first phase of the high temperature exposition, while it doesn’t 

appreciably affects the residual hardness after 300h. 

In particular ageing effects seemed to fade after some days at high temperature. 

Moreover it appeared that higher content in molybdenum induced a smaller gap between 

aged and non-aged samples. 

High temperature exposure acted as over-ageing for T6 treated samples and, probably, as 

rapid aging (that can’t be appreciated, because first hardness measurements were carried 

out after 301h) + over-ageing for solubilised and quenched or air cooled ones. This led to 

the evolution of the strengthening precipitates from coherent to incoherent morphology, 

their coarsening and consequent reduction in hardness value. 
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Figure 3.24 – Over-ageing curves (245°C for 301h) of A354 alloy with different molybdenum 
contents subjected to air cooling, quench and quench + ageing after complete solution treatment. In 
the specific (a) A354 without Mo, (b) 0.1%, (c) 0.3%, (d) 0.5% and (e) 0.8% in Mo 

 

Arranging instead the data according to the treatment undergone after solubilisation, the 

resulting diagrams showed the following outcome: 
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Figure 3.25 – Over-ageing curves (245°C for 301h) of A354 alloy with different molybdenum 
contents subjected to (a) air cooling, (b) quench and (c) quench + ageing after complete solution 
treatment. Every image compares the results of A354 alloy with different percentages in Mo 
undergone to different treatment after solubilisation 

 

The diagrams showed that, despite the same alloys were subjected to three different 

treatment after solubilisation (air cooling, quench and quench + ageing), they reached the 

same residual hardness after high temperature exposition. 

These results made suppose that heat treatment limited to air cooling could be sufficient 

to have good performances over time and this would mean a notable advantage both 

economically (the heat treatment would be composed by less phases) both in terms of 

fatigue behaviour (the quench phase is often critical and generates residual stresses, 

which are negative for the application of materials). 

 
3.7.2 Solution treatment 495°C for  6h + 540°C for 1h + soaking 245°C for  120h + 

300°C for  42h: 
 

Copper and magnesium intermetallics (remained in small part after solution treatment) 

and precipitates can only be effective for strength and creep resistance below 250°C, 

because above this temperature they start to become unstable, coarsen rapidly (due to 

Ostwald ripening) and then dissolve [12]. 

As previously viewed, despite of higher degradation temperature, A354 seemed to reach 

similar performances, both with both without molybdenum. 

(a) 

(c) 

(b) 



 

59 

 

 

 

 

 
 

Figure 3.26 – Over-ageing curves (245°C for 120h + 300°C for 42h) of A354 alloy with different 
molybdenum contents subjected to air cooling, quench and quench + ageing after complete solution 
treatment (495°C for 6h + 540°C for 1h). In the specific (a) A354 without Mo, (b) 0.1%, (c) 0.3%, (d) 
0.5% and (e) 0.8% in Mo. Blue region corresponds to over-ageing at 245°C, while yellow one to 
treatment at 300°C 

 

 

In fig. 3.27 the results are summarised according to the treatment undergone after 

solubilisation. 

As previously viewed for degradation at 245°C, the data demonstrated that alloys 

reached the same performances over a long period of time, making suppose that air 

cooling after solution treatment would be sufficient for application in temperature. 

In fact the only persistent reinforcement phases would be the molybdenum ones (that is 

intermetallics and dispersoids) [22]. 
 

(e) 

(e) 

(b) 

(d) 

(a) 

(c) 
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Figure 3.27 – Over-ageing curves (245°C for 120h + 300°C for 42h) of A354 alloy with different 
molybdenum contents subjected to (a) air cooling, (b) quench and (c) quench + ageing after complete 
solution treatment (495°C for 6h + 540°C for 1h). Every image compares the results of A354 alloy 
with different percentages in Mo undergone to different treatment after solubilisation 

 

 
3.7.3 Solution treatment 495°C for 6h + 540°C for 10h + soaking 245°C for  144h: 

 

Finally, in order to compare performances induced by different time of solution 

treatment, A354 and A354+0.3%Mo alloys underwent degradation after solubilisation of 

6 hours at 495°C and 10 hours at 540°C. The results are reported in Fig.3.28. 
 

 

 

 
 

Figure 3.28 – Over-ageing curves (245°C for 144h) of A354 alloy with different molybdenum 
contents subjected to air cooling, quench and quench + ageing after complete solution treatment 
(495°C for 6h + 540°C for 10h). In the specific (a) A354 without Mo and (b) 0.3% in Mo 

(a) (b) 

(c) 

(b) (a) 
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After different heat treatment the samples reached performances lower than the previous 

ones with a gap of about 5-10 HB10. 

Then it could be asserted that longer solution treatment had a negative influence on 

material and this might be attributed to the coarsening of the molybdenum dispersoids, 

which would have reduced high temperature resistance of the alloy. 

In fig. 3.29 data are reported according to the treatment undergone after solubilisation. 

 

 
Figure 3.29 – Over-ageing curves (245°C for 144h) of A354 alloy without Mo and with 0.3% in Mo 
subjected to (a) air cooling, (b) quench and (c) quench + ageing after complete solution treatment. 
Every image compares the results of A354 and A354 + 0.3%Mo undergone to different treatment 
after solubilisation 

 

As shown by previous graphs no great differences were recorded between alloys air 

cooled, quenched or aged, making suppose an employment of the material without the 

usual complete heat treatment with relevant cost savings. 

 

3.8 Tension tests 
 

As a consequence of metallographic analysis, DSC, hardness and degradation data, as 

well as information from literature, it was established to concentrate the study on A354 

modified with 0.3% in molybdenum, in order to compare it with base alloy. 

Therefore tension tests were carried out on samples of A354 base alloy and 

A354+0.3%Mo, which were tested in different condition (see table 2.4) after complete 

solution treatment.  

The results are presented in table 3.30. 
 

(a) (b) 

(c) 
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Samples 

designation 

Treatment 

undergone 

Test 

conditions 

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

Elongation 

measured 

(E%) 

A T6 Solution treatment (495°C 
6h + 540°C 1h) + quench + 

ageing (180°C 6h) 

Room 
temperature 

285 ± 14 380 ± 19 2.6 ± 0.1 

A OA Solution treatment (495°C 
6h + 540°C 1h) + quench + 
ageing (180°C 6h) + over-
ageing at 250°C for 100h 

250°C 93 ± 5 117 ± 6 12.3 ± 6.1 

MoA Solution treatment (495°C 
6h + 540°C 1h) + air cooling 

+ ageing (180°C 6h) 

Room 
temperature 

187 ± 9 281 ± 14 6.4 ± 0.3 

MoA OA Solution treatment (495°C 
6h + 540°C 1h) + air 

cooling + ageing (180°C 
6h) + over-ageing at 250°C 

for 100h 

250°C 89 ± 4 129 ± 6 19.4 ± 1.0 

MoT Solution treatment (495°C 
6h + 540°C 1h) + quench + 

ageing (180°C 6h) 

Room 
temperature 

322 ± 16 367 ± 18 3.5 ± 0.2 

MoT OA Solution treatment (495°C 
6h + 540°C 1h) + quench + 
ageing (180°C 6h) + over-
ageing at 250°C for 100h 

250°C 103 ± 5 130 ± 6 16.7 ± 0.8 

 

Table 3.30 - Tensile properties of A354 alloy (A), A354+0.3%Mo alloy solubilised, air cooled and 
aged (MoA), A354+0.3%Mo alloy solubilised, quenched and aged (MoT) 

 

 

Figure 3.30 – Tensile properties (YS=yield strength; UTS=ultimate tensile strength) of A354 alloy 
(A), A354+0.3%Mo alloy solubilised, air cooled and aged (MoA), A354+0.3%Mo alloy solubilised, 
quenched and aged (MoT). In particular “RT” means that tests were carried out at room 
temperature, while “OA” identifies samples exposed at high temperature (100h at 250°C) and tested 
at 250°C 
 

As shown by fig.3.30 the presence of molybdenum at room temperature induced an 

increase of the YS of about the 10% while its influence on UTS was negligible; at 250°C, 

(b) (a) 
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instead, both YS and UTS of samples with Mo were higher (about 10%) respect to 

samples without Mo. 

 

The enhancement in mechanical properties was attributed to the presence of Mo 

dispersoids, which hinder dislocation movements. This effect was particularly interesting 

for high temperature tests, in which the contribution of ϑ and Q phases was weak, due to 

their coarsening and dissolution. 

Moreover the increase of elongation to failure, both at room and high temperature, was a 

further benefit of Mo addition and was a consequence of the absence of brittle β-

Al5FeSi, which often acts as a crack nucleation site. 

 

Air cooled samples exhibited lower values of YS and UTS at room temperature 

compared to the quenched ones, but reached similar performances after high temperature 

exposure. 

These data supported the hypothesis of employing the alloy for high temperature 

application only after solution treatment, followed by air cooling, in order to avoid 

critical aspects linked to quench (see chapter 3.7.1). 

 

3.9 Fractography 
 

Representative SEM micrographs of tensile fracture surfaces of samples with and 

without Mo, tested at room and 250°C, are reported in figs. 3.31 and 3.32, which 

highlight that fracture surfaces may be described by the same fracture mechanisms, 

involving cracking of eutectic Si and intermetallic particles, microcracks forming by 

joining adjacent cracked particles, subsequent linkage of cracks, leading to propagation 

and final fracture. 

Fracture surfaces of samples tested at 250°C, however, showed higher ductility with 

dimples and tear ridges fig. 3.32. 

Some shrinkage porosities were also observed (fig. 3.31d) and those could justify the 

lower UTS value of MoT samples, compared to A-T6 ones. In fact, while YS is slightly 

affected by casting defects, UTS is strongly influenced by microstructural defects, such 

as pores [3, 5]. 

(d) (c) 
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Figure 3.31 – SEM micrographs of fracture surface of (a,b) A354 and (c,d) A354+0.3%Mo alloys tested at room 

temperature. A large defect in (a) and macroporosity in (b) are highlighted by arrows 

 

 

  
 

Figure 3.32 - SEM micrograph of fracture surface of A354+0.3%Mo alloy tested at high temperature (MoA sample) 

 

 

 

 

(a) (b) 

(c) (d) 
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Chapter 4 - Conclusions 

 

The results of this study highlight that the addition of Mo to Al-Si-Cu-Mg casting alloys 

could be effective in improving high temperature behaviour. In particular it was possible 

to define:   

• Casting parameters able to guarantee an homogeneous distribution of Mo in casts 

 

• Minimum Mo content  

Optimal Mo percentage alloy was identified as 0.3%wt. Higher quantities don’t 

induce further properties enhancement and lead to cluster formation of Mo 

intermetallics  

 

• Aging curves and heat treatment parameters for the modified alloys, in order to 

obtain an increase of mechanical properties after high temperature exposition.  

Solution treatment at 540°C had positive effects on following ageing stage and on 

mechanical properties of solubilised alloys, probably as a consequence of 

molybdenum dispersoids formation.  

Modified alloy heat treated according to new parameters highlighted an increase 

of strength both at room and 250°C of about 10% respect to traditional A354 

 

• The effects of Mo addition on microstructure in particular on: eutectic silicon 

morphology and iron based intermetallics amount. 

In Mo-containing alloy the eutectic silicon was not completely modified, but no 

β-Al_5 FeSi particles were observed. These compounds reduce material 

performances due to their needle-like morphology, and their absence could 

explain the higher elongation to failure of the modified alloy respect to the 

traditional one 

 

The research activity will be focused on the study of Mo based dispersoids precipitation 

sequence, by means of transmission electron microscopy (TEM), in order to further 

optimize the heat treatment parameters. 
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Appendix 
 

Chapter 2 – Material and methods 
 

2.5 Heat treatment 
 

Acronym Alloy Heat treatment 

A515T A354 Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) 

A515I A354 Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A540A A354 Solution treatment (495°C for 6h + 540°C for 

1h) + air cooling 

A540T A354 Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) 

A540I A354 Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A540-10A A354 Solution treatment (495°C for 6h + 540°C for 

10h) + air cooling 

A540-10T A354 Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) 

A540-10I A354 Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) + ageing 

(180°C for 4h) 

A01-515T A354 + 0.1%Mo Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) 

A01-515I A354 + 0.1%Mo Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A01-540A A354 + 0.1%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + air cooling 
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A01-540T A354 + 0.1%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) 

A01-540I A354 + 0.1%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A01-540-10A A354 + 0.1%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + air cooling 

A01-540-10T A354 + 0.1%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) 

A01-540-10I A354 + 0.1%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) + ageing 

(180°C for 4h) 

A03-515T A354 + 0.3%Mo Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) 

A03-515I A354 + 0.3%Mo Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A03-540A A354 + 0.3%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + air cooling 

A03-540T A354 + 0.3%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) 

A03-540I A354 + 0.3%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A03-540-10A A354 + 0.3%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + air cooling 

A03-540-10T A354 + 0.3%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) 

A03-540-10I A354 + 0.3%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) + ageing 

(180°C for 4h) 

A05-515T A354 + 0.5%Mo Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) 



 

68 

 

A05-515I A354 + 0.5%Mo Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A05-540A A354 + 0.5%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + air cooling 

A05-540T A354 + 0.5%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) 

A05-540I A354 + 0.5%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A05-540-10A A354 + 0.5%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + air cooling 

A05-540-10T A354 + 0.5%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) 

A05-540-10I A354 + 0.5%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) + ageing 

(180°C for 4h) 

A08-515T A354 + 0.8%Mo Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) 

A08-515I A354 + 0.8%Mo Solution treatment (495°C for 6h + 515°C for 

2h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A08-540A A354 + 0.8%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + air cooling 

A08-540T A354 + 0.8%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) 

A08-540I A354 + 0.8%Mo Solution treatment (495°C for 6h + 540°C for 

1h) + quench (water at 60°C) + ageing (180°C 

for 4h) 

A08-540-10A A354 + 0.8%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + air cooling 

A08-540-10T A354 + 0.8%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) 
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A08-540-10I A354 + 0.8%Mo Solution treatment (495°C for 6h + 540°C for 

10h) + quench (water at 60°C) + ageing 

(180°C for 4h) 
 

Table A.1 – Schematization of heat treatment to which A354 alloy with different percentages of molybdenum were 

subjected and correspondent recognition acronym 

 

Chapter 3 - Results 
 

3.2 Heat treatment 
 

• A354+0.3%Mo air cooled: 

 

Heat treatment Time (h) Hardness (HB10) 

A354+0.3%Mo AC 0 78 ± 3 

A354+0.3%Mo solub.495°C 

6h + air cooling 

6 74 ± 1 

A354+0.3%Mo solub.495°C 

6h+540°C 0.5h + air cooling 

6,5 75 ± 4 

A354+0.3%Mo solub.495°C 

6h+540°C 1h + air cooling 

7 75 ± 4 

A354+0.3%Mo solub.495°C 

6h+540°C 3h + air cooling 

9 75 ± 4 

A354+0.3%Mo solub.495°C 

6h+540°C 5h + air cooling 

11 74 ± 3 

A354+0.3%Mo solub.495°C 

6h+540°C 7h + air cooling 

13 73 ± 1 

A354+0.3%Mo solub.495°C 

6h+540°C 15h + air cooling 

23 72 ± 1 

A354+0.3%Mo solub.495°C 

6h+540°C 24h + air cooling 

30 71 ± 1 

 

Table A.2 - Hardness trend over solution treatment time of air cooled A354+0.3%Mo 
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• A354+0.3%Mo quenched: 
 

Heat treatment Time (h) Hardness (HB10) 

A354+0.3%Mo AC 0 78 ± 3 

A354+0.3%Mo solub.495°C 

6h + quench 

6 76 ± 2 

A354+0.3%Mo solub.495°C 

6h+540°C 0.5h + quench 

6,5 81 ± 2 

A354+0.3%Mo solub.495°C 

6h+540°C 1h + quench 

7 84 ± 3 

A354+0.3%Mo solub.495°C 

6h+540°C 3h + quench 

9 83 ± 3 

A354+0.3%Mo solub.495°C 

6h+540°C 5h + quench 

11 82 ± 1 

A354+0.3%Mo solub.495°C 

6h+540°C 7h + quench 

13 80 ± 3 

A354+0.3%Mo solub.495°C 

6h+540°C 15h + quench 

23 78 ± 2 

A354+0.3%Mo solub.495°C 

6h+540°C 24h + quench 

30 81 ± 1 

 

Table A.3 - Hardness trend over solution treatment time of quenched A354+0.3%Mo 

 

 

3.5 Hardness measurement 
 

3.5.1 Macrohardness measurements 
 

• A354: 
 

Tipo di lega Durezza (HB10) 

A354 Sr AC 86 ± 3 

A354 sol.495°C 6h + air cooling 64 ± 1 

A354 sol.495°C 6h + quench 64.3 ± 0.5 
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A354 solub. 495°C 6h + 540°C 1h + air 
cooling 

82 ± 4 

A354 solub. 495°C 6h + 540°C 1h + quench 
(water at 60°C) 

83 ± 1 

 

Table A.4 – Macrohardness values of A354 after every stage of heat treatment 

 

• A354 + 0.1%Mo: 
 

Tipo di lega Durezza (HB10) 

A354 Sr AC 79.0 ± 0.5 

A354 + 0.1% Mo AC 79 ± 2 

A354 + 0.1% Mo solub.495°C 6h+ quench 

(water at 60°C) 

64 ± 2  

A354 + 0.1% Mo solub.495°C 6h + 515°C 2h 

+ quench (water at 60°C) 

69 ± 2 

A354 + 0.1% Mo solub.495°C 6h + 540°C 1h 

+ quench (water at 60°C) 

78 ± 1 

 

Table A.5 – Macrohardness values of A354+0.1%Mo after every stage of heat treatment 

 

• A354 + 0.3%Mo: 
 

Tipo di lega Durezza (HB10) 

A354 Sr AC 79.0 ± 0.5 

A354 + 0.3% Mo AC 85 ± 3 

A354 + 0.3% Mo solub.495°C 6h+ quench 

(water at 60°C) 

69.7 ± 0.4  

A354 + 0.3% Mo solub.495°C 6h + 515°C 2h 

+ quench (water at 60°C) 

73 ± 1 
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A354 + 0.3% Mo solub.495°C 6h + 540°C 1h 

+ quench (water at 60°C) 

99 ± 2 

 

Table A.6 – Macrohardness values of A354+0.3%Mo after every stage of heat treatment 

 

• A354 + 0.5%Mo: 
 

Tipo di lega Durezza (HB10) 

A354 Sr AC 79.0 ± 0.5 

A354 + 0.5% Mo AC 90 ± 4 

A354 + 0.5% Mo solub.495°C 6h+ quench 

(water at 60°C) 

71 ± 1 

A354 + 0.5% Mo solub.495°C 6h + 515°C 2h 

+ quench (water at 60°C) 

77 ± 1 

A354 + 0.5% Mo solub.495°C 6h + 540°C 1h 

+ quench (water at 60°C) 

86 ± 1 

 

Table A.7 – Macrohardness values of A354+0.5%Mo after every stage of heat treatment 

 

 

• A354 + 0.8%Mo: 
 

Tipo di lega Durezza (HB10) 

A354 Sr AC 79.0 ± 0.5 

A354 + 0.8% Mo AC 82 ± 2 

A354 + 0.8% Mo solub.495°C 6h+ quench 

(water at 60°C) 

76 ± 1 

A354 + 0.8% Mo solub.495°C 6h + 515°C 2h 

+ quench (water at 60°C) 

73 ± 1 

A354 + 0.8% Mo solub.495°C 6h + 540°C 1h 79 ± 1 
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+ air cooling 

A354 + 0.8% Mo solub.495°C 6h + 540°C 1h 

+ quench (water at 60°C) 

93 ± 1 

 

Table A.8 – Macrohardness values of A354+0.1%Mo after every stage of heat treatment 

 

3.5.2 Microhardness measurements 
 

• A354 + 0.1%Mo: 
 

Tipo di lega Durezza (HB10) 

A354 + 0.1% Mo AC 83 ± 11 

A354 + 0.1% Mo solub.495°C 6h+ quench 

(water at 60°C) 

68 ± 8  

A354 + 0.1% Mo solub.495°C 6h + 515°C 2h 

+ quench (water at 60°C) 

75 ± 6 

A354 + 0.1% Mo solub.495°C 6h + 540°C 1h 

+ quench (water at 60°C) 

86 ± 5 

 

Table A.9 – Microhardness values of A354+0.1%Mo after every stage of heat treatment 

 

 

• A354 + 0.3%Mo: 
 

Tipo di lega Durezza (HB10) 

A354 + 0.3% Mo AC 78 ± 10 

A354 + 0.3% Mo solub.495°C 6h+ quench 

(water at 60°C) 

80 ± 7 

A354 + 0.3% Mo solub.495°C 6h + 515°C 2h 

+ quench (water at 60°C) 

80 ± 6 

A354 + 0.3% Mo solub.495°C 6h + 540°C 1h 81 ± 9 
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+ quench (water at 60°C) 

 

Table A.10 – Microhardness values of A354+0.3%Mo after every stage of heat treatment 

 

• A354 + 0.5%Mo: 
 

Tipo di lega Durezza (HB10) 

A354 + 0.5% Mo AC 70 ± 10 

A354 + 0.5% Mo solub.495°C 6h+ quench 

(water at 60°C) 

74 ± 4 

A354 + 0.5% Mo solub.495°C 6h + 515°C 2h 

+ quench (water at 60°C) 

71 ± 8 

A354 + 0.5% Mo solub.495°C 6h + 540°C 1h 

+ quench (water at 60°C) 

79 ± 6 

 

Table A.11 – Microhardness values of A354+0.5%Mo after every stage of heat treatment 

 

 

• A354 + 0.8%Mo: 
 

Tipo di lega Durezza (HB10) 

A354 + 0.8% Mo AC 59 ± 11 

A354 + 0.8% Mo solub.495°C 6h+ quench 

(water at 60°C) 

68 ± 6 

A354 + 0.8% Mo solub.495°C 6h + 515°C 2h 

+ quench (water at 60°C) 

57 ± 1 

A354 + 0.8% Mo solub.495°C 6h + 540°C 1h 

+ air cooling 

71 ± 4 

A354 + 0.8% Mo solub.495°C 6h + 540°C 1h 

+ quench (water at 60°C) 

77 ± 7 

 

Table A.12 – Microhardness values of A354+0.8%Mo after every stage of heat treatment 
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