FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA CIVILE

DIPARTIMENTO DI COSTRUZIONI IDRAULICHE

TESI DI LAUREA IN COSTRUZIONI IDRAULICHE E PROTEZIONE IDRAULICA DEL TERRITORIO LS

DIFESA IDRAULICA DELLE AREE DI PIANURA DALLE PIENE AL LIMITE DELLA PREVEDIBILITÀ: ASTA MEDIO INFERIORE DEL FIUME PO

CANDIDATA
Desirée D'Andrea

RELATORE Chiar.mo Prof. A. Brath

CORRELATORI

Dott. Ing. A. Castellarin Dott. Ing. A. Domeneghetti

Anno Accademico 2008/2009

Sessione III

Alla mia nonnina, che ci ha sempre creduto.

SOMMARIO

1	_Introduzione	. 7
1.1	_Premessa	. 8
2	_Dati e strumenti	16
2.1	_Il Fiume Po	16
2.1.1_	_Regime fluviale	19
2.1.2_	_Autorità sul Fiume	19
2.2	_Strumenti di analisi di dati georeferenziati: il GIS.	22
2.2.1_	_Informazione topografica disponibile	24
2.3	_Modelli numerico-idraulici	24
2.3.1_	_Modello numerico del corso medio inferiore del Fiume Po	25
3	_Evento di piena al limite della prevedibilità: identificazione delle solecitazioni di progetto	32
3.1	_Idrogrammi TR500 attesi nelle sezioni strumentate	32
3.1.1_	_Elaborazioni statistiche	34
3.1.2_	_Curve di riduzione dei colmi di piena	35
3.1.3_	_Posizione del picco	36
3.1.4_	_Costruzione dell'idrogramma sintetico	36
3.2	_Calibrazione degli idrogrammi sintetici degli affluenti	37
4	_Evento di piena al limite della prevedibilità: simulazione idraulica	48
4.1	_Caratterizzazione geometrica dei comparti idraulici del Fiume Po	
4.2	_Schematizzazione del comportamento idraulico delle aree di allagamento	61
4.3	_Modellazione dei fenomeni di rotta arginale	70
4.4	_Risultati	74
	_Evento di piena al limite della prevedibilità: simulazione idraulica con argini tracimabili (inerodibili)	87

5.1	_Risultati	
6	_Confronto dei risultati101	
7	_Conclusioni107	
8	_Bibliografia 110	
A1	_Fasce fluviali: definizione	
A2	_Tabelle quota invaso - volume - superficie e curve di riempimento dei comparti idraulici	
A3	_Schematizzazione degli argini maestri 125	
A3.1	_Lateral Structure125	
A3.2_	_Lateral Structure con Culvert	
A3.3_	_Storage Area Connection139	
A4	Schematizzazione delle brecce nel modello numerico del Po	

1 INTRODUZIONE

La presente dissertazione illustra lo studio, svolto ambito di Tesi di Laurea Specialistica, della difesa delle aree di pianura prospicienti il tratto medio inferiore del dalle cosiddette piene al limite prevedibilità, ovvero quelle al di sopra delle quali le stime statistiche perdono di senso a causa della mancanza di eventi di entità confrontabile o superiore (Majone, Tomirotti, 2006). Il lavoro si inserisce nei più recenti orientamenti nell'ambito degli interventi per la mitigazione rischio alluvionale е in particolare nelle progettuali strategiche formulate dall' Autorità di Bacino (AdB-Po), descritte nel Fiume Ро successivo sottoparagrafo (v. ad es. Brath et al., 2010).

Il lavoro, partendo dal presupposto che l'attuale sistema di arginature maestre di Po non possa garantire un livello di idraulica assoluto dei territori di sicurezza prospicienti il corso d'acqua nei confronti di qualsiasi scenario di piena, si concentra su un evento con tempo di a 500 anni e, avvalendosi dei pari sperimentali ottenuti attraverso modello un idraulico matematico di tipo quasi-bidimensionale, muove i primi passi nella direzione del controllo e gestione delle piene al limite della prevedibilità al fine di minimizzare il rischio idraulico, dato, secondo la definizione riconosciuta in sede internazionale e ripresa nel Piano Stralcio per l'Assetto Idrogeologico (PAI) dall'AdB-Po, dall'espressione:

 $R=E\cdot H\cdot V$

dove:

• R = rischio idraulico inteso come il valore atteso del danno che mediamente può subire l'elemento stesso in un prefissato periodo di tempo.

¹ Landslide Hazard Zonation: a review of principles and practise" - UNESCO 1984 che riprende quanto proposto dall'UNDRO, Office of United Nations Disaster Relief Coordinator.

- E = entità degli elementi a rischio, cioè le persone e i beni che possono subire danni quando si verifica un evento, misurata in modo diverso a seconda della loro natura.
- H = pericolosità (Hazard), cioè probabilità di accadimento di un determinato fenomeno potenziale in uno specifico periodo di tempo e in una data area; il valore di H è strettamente connesso al tempo di ritorno di un evento TR, che esprime l'intervallo di tempo nel quale l'evento si verifica in media una volta. Vale infatti la relazione H = 1-(1 -1/TR)t, dove t indica il periodo tempo preso a riferimento, in genere la vita utile del manufatto.
- V = vulnerabilità, definita come attitudine dell'elemento a rischio a subire danni per effetto dell'evento stesso (aliquota dell'elemento a rischio che viene danneggiata); è compresa tra 0 e 1.

Da tale definizione si evince come un termine su cui si possa efficacemente intervenire per ridurre il rischio sia prodotto E·V. Questa linea strategica di intervento traduce praticamente individuando sul territorio aree poco "sensibili", in virtù del minor valore o dell'inferiore vulnerabilità dei beni in esse presenti, e dunque adatte ad accogliere i volumi di piena esondabili in occasione di quegli eventi di piena incompatibili con i presidi idraulici sopra richiamate piene preesistenti, le al limite prevedibilità. L'esondazione controllata dei volumi di piena in tali aree avrebbe infatti il fine di tutelare le aree di maggior pregio, interessate da centri abitati, infrastrutture e beni di vario tipo, e di permettere migliori e più tempestivi interventi.

1.1 Premessa

La definizione delle strategie di intervento per la difesa idraulica dei territori potenzialmente allagabili dal fiume Po, specie lungo il suo tratto medio inferiore, costituisce un problema complesso, di grande interesse tecnico e scientifico. Nel corso degli ultimi due secoli si è assistito ad un progressivo sviluppo dei sistemi arginali, sia in senso verticale (altezza dei rilevati) che in senso longitudinale (lunghezza dei rilevati), con successivi interventi a seguito

delle principali piene, fra i quali particolarmente significativi sono quelli eseguiti a seguito dell'evento catastrofico del 1951 e di quelli eccezionali del novembre 1994 e dell'ottobre 2000 (Brath et al., 2010). Il progressivo innalzamento della quota di coronamento arginale ha portato al raggiungimento, su gran parte dell'asta inferiore del Po, di condizioni limite strutturali, al punto di rendere quote attuali non più significativamente aumentabili. prolungamento ed il consolidamento della cintura arginale lungo l'asta del Ро hanno progressivamente ridotto di possibilità espansione laterale dei corsi d'acqua, riducendo le aree di potenziale esondazione. Alla presenza di queste zone è riconducibile la capacità del corso d'acqua di laminare (ovvero di ridurre) i colmi di portata in occasione dei fenomeni di piena.

L'accumulo di volumi di piena nelle zone di espansione laterale, infatti, ritarda e diluisce nel tempo il fenomeno di propagazione dell'onda di piena che, spostandosi da monte verso valle, si allunga e riduce il valore di portata al colmo. Pertanto, alla minor frequenza degli allagamenti nelle zone di pianura, ottenuta attraverso il potenziamento del sistema di arginature maestre (v. Figura 1), da capacità contraltare una diminuzione della naturale di laminazione delle piene, con conseguente innalzamento dei livelli idrici durante tali eventi nei tratti vallivi del corso d'acqua (v. Figura 2).

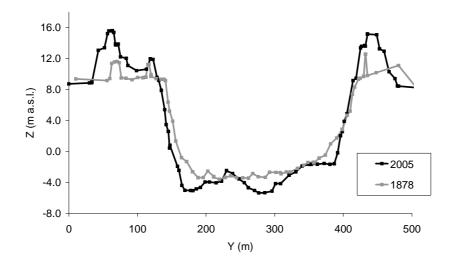


Figura 1 - Fiume Po a Pontelagoscuro (FE): sezione trasversale rilevata nel 1878 e nel 2005 (Fonte: AdB-Po, Parma; v. Di Baldassarre et al., 2009).

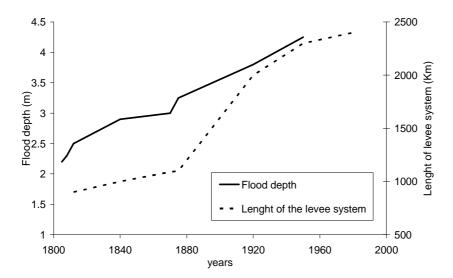


Figura 2 - Fiume Po a Pontelagoscuro (FE) :sviluppo longitudinale complessivo in km delle arginature maestre lungo il Fiume Po ed i suoi affluenti principali (Length of the levee system) e relativo incremento delle altezze idrometriche massime annuali registrate (Flood depth, H in m su zero idrometrico) (Fonte: AdB-Po, Parma; v. Di Baldassarre et al., 2009).

Tali circostanze hanno evidenziato la necessità di definire linee strategiche di intervento per la difesa idraulica del territorio alternative al continuo e sistematico rialzo delle quote di sommità degli argini. Detta esigenza è stata recentemente riconosciuta anche dalla Direttiva 2007/60/CE del Parlamento Europeo del 23 ottobre 2007, relativa alla valutazione e alla gestione dei rischi di alluvioni. Il primo tentativo di affrontare tale problema in maniera organica può essere fatto risalire allo studio (di sequito denominato SIMPO) commissionato il 14 luglio 1980 dal Magistrato per il Po alla SIMPO S.p.A. per la progettazione di massima delle sistemazioni idrauliche dell'asta principale del Po a difesa dal rischio alluvionale e per la gestione della risorsa idrica (Magistrato per il Po, 1982; 1984). Più recentemente, soprattutto a partire dall'anno 2005, l'Autorità di Bacino del Fiume Po ha intrapreso una sistematica attività di studio volta alla definizione di specifiche linee progettuali strategiche per il miglioramento delle condizioni dei territori di sicurezza pianura lungo l'asta inferiore del Po. Gli studi svolti dall'AdB-Po evidenziano la necessità di definire strategie per la mitigazione del rischio residuale, intendendosi come tale quella porzione di rischio che permane anche in presenza dell'opera di difesa. L'esistenza di un rischio residuale è relazionata in primo luogo alla possibilità di verificarsi di eventi di piena più intensi di quello assunto a riferimento per la progettazione del sistema di difesa arginale, e quindi non contenibili all'interno dello stesso, e, in secondo luogo, possibilità che, anche in un sistema arginale ben monitorato e mantenuto nel tempo quale è quello del Po, non possono essere esclusi eventi di rottura arginale.

Tale rischio, definito residuale in quanto connesso a scenari di mancata efficacia di un'opera idraulica, interessa un territorio potenzialmente assai ampio (diverse migliaia di chilometri quadrati) e fortemente antropizzato. Esso deve essere dunque preso attentamente in considerazione, valutato e gestito con opportuni interventi di mitigazione.

Nello specifico le linee strategiche di intervento previste dall'AdB-Po sono:

• il miglioramento della capacità di laminazione all'interno delle arginature maestre (Fascia B di Po, v. schema di

- Figura 3) degli eventi di piena di progetto (TR = 200 anni); (per un approfondimento v. Appendice A1);
- la valutazione e la gestione del rischio residuale in Fascia C (fascia di inondazione catastrofica, v. Figura 3, costituita dalla porzione di territorio al di fuori delle arginature maestre, che può essere interessata da inondazione al verificarsi di eventi sensibilmente più gravosi di quello duecentennale, ovvero le piene al limite della prevedibilità);
- lo studio delle possibilità di laminazione controllata all'esterno delle arginatura maestre (in Fascia C, Figura 3) delle suddette piene al limite della sostanzia nell'individuazione di prevedibilità, che si apposite porzioni della fascia C (comparti) in cui provocare la tracimazione controllata di una parte del deflusso di piena, in modo da sgravare l'asta a valle.

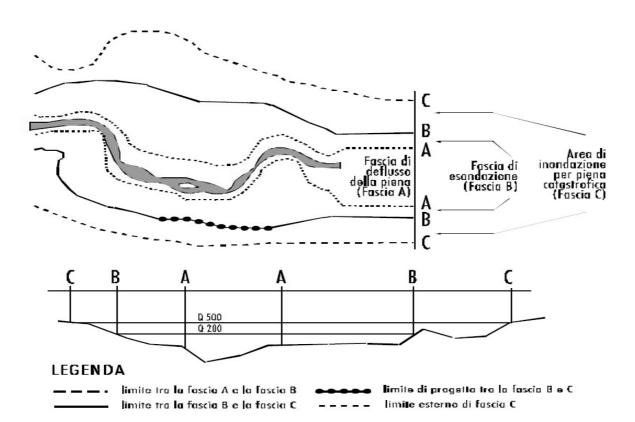


Figura 3 - Schema esemplificativo per la definizione delle fasce fluviali (Fonte: Autorità di Bacino del fiume Po, Parma; AdB-Po, 1999.

Secondo piano stralcio delle fasce fluviali).

Il lavoro descritto nella presente dissertazione si colloca all'interno di questa ultima linea strategica e si articola in quattro fasi, descritte in altrettanti capitoli che seguono quello corrente introduttivo.

La prima fase (cap.2) riguarda la raccolta e l'elaborazione preliminare delle informazioni necessarie a condurre lo studio. In particolare, lo svolgimento dell'analisi ha richiesto la raccolta e la digitalizzazione di numerose informazioni di carattere topografico, nonché lo studio del modello numerico quasi-bidimensionale precedentemente sviluppato per il corso medio inferiore del Fiume Po, qui considerato e calibrato con riferimento al recente evento di piena del 2000 (v. DISTART - AdB-Po, 2008).

Il modello citato è stato dapprima utilizzato come strumento per identificare attraverso un procedimento iterativo la sollecitazione idraulica corrispondente ad un evento di piena al limite della prevedibilità, per il quale il tempo di ritorno della portata al colmo di piena e dei volumi idrici associati all'idrogramma sia quantificabile in circa cinquecento anni (cap.3).

Lo stesso modello è stato poi considerevolmente modificato ed aggiornato nel corso del presente studio, divenendo applicabile anche alla simulazione di esondazioni all'esterno delle arginature maestre.

In questa fase sono stati caratterizzati geometricamente i comparti idraulici situati nella Fascia C del Po e sono stati individuati negli argini i punti critici nei quali appare più probabile il verificarsi di una breccia in seguito alla tracimazione dell'argine; tali informazioni sono state inserite nel modello ed è stata condotta una simulazione della propagazione della suddetta piena eccezionale con l'attuale configurazione arginale, schematizzando sia le tracimazioni che la formazione di brecce nel manufatto arginale, e giungendo all'individuazione delle aree esterne alle arginature maestre coinvolte dall'esondazione (cap.4).

Infine è stato preso a riferimento uno scenario ipotetico in cui la tracimazione dei rilevati arginali non producesse alcun innesco di fenomeni di rottura del manufatto stesso (c.d. rivestimento e consolidamento del lato campagna dei rilevati arginali nei tratti esondabili). Lo scenario ipotetico ha permesso di dedurre, attraverso un'ulteriore

simulazione (cap.5), la mappa delle porzioni di territorio interessate da allagamento in questa ipotesi di laminazione della piena cinquecentennale all'esterno delle arginature maestre. I risultati delle due simulazioni illustrate nei capp. 4 e 5 sono stati messi a confronto (cap.6) e si è potuta evincere l'auspicabilità di tale intervento e l'interesse del lavoro, che, confrontato con l'Atlante dei Rischi Idraulici ed Idrogeologici redatto dall'AdB-Po, rappresenta un punto di partenza per ulteriori studi volti all'individuazione di apposite aree in cui provocare una tracimazione controllata.

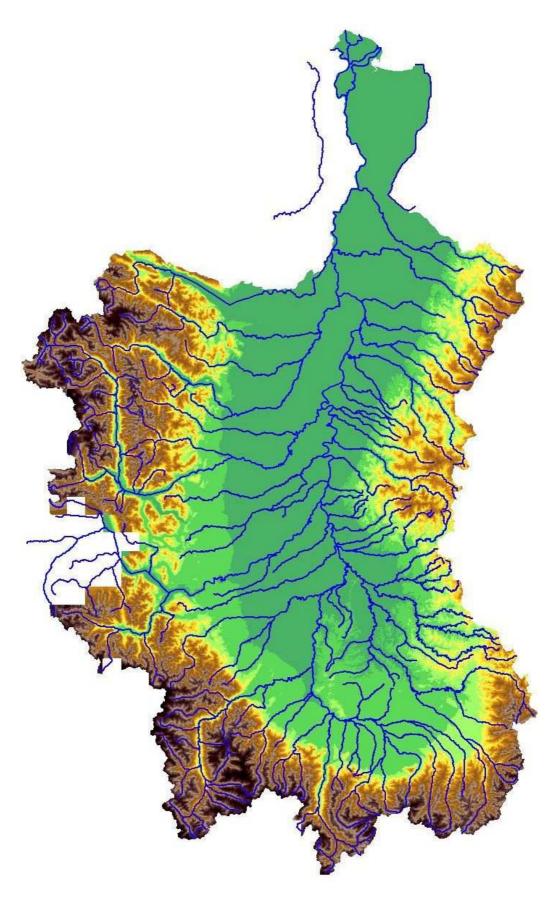


Figura 4 - Il bacino del Po

2 DATI E STRUMENTI

2.1 Il Fiume Po

Il Po è, per molte ragioni, il più importante fiume d'Italia. La sua lunghezza, pari a 652 km, lo rende il più lungo corso d'acqua interamente compreso nel territorio italiano; inoltre il bacino più esteso (circa 71000 km², Figura 4) e la massima portata alla foce (pari, in occasione della piena del 1951, a 10300 m³/s). Ha origine in Piemonte, attraversa da verso est gran parte dell'Italia settentrionale, percorrendo tutta la Pianura Padana e bagnando quattro Torino, di capoluoghi provincia (nell'ordine Cremona e Ferrara), e sfocia nel mare Adriatico in un vasto delta con cinque rami.

Fin dall'antichità è stato lo scenario di eventi storici, sociali ed economici; segno del riconoscimento della sua rilevanza è il nome ad esso attribuito dagli antichi Greci, Έριδανός, che in origine indicava un fiume mitico sfociava nell'Oceano e che contiene in sé l'antichissima radice "RDN" comune ad altri fiumi europei (Rodano, Reno, Danubio). Secondo Plinio gli Etruschi furono i primi tentare di regolamentare il fiume per favorire la navigazione e distribuire le acque durante le piene; lo sfruttamento del Po come via di comunicazione e la realizzazione di interventi volti a favorirlo si sono accresciuti in epoca romana, come testimoniato da numerosi scrittori (Polibio, Strabone), al punto che nel I secolo d.C. le fosse Augusta, Clodia, Filistina, Flavia, Messanicia e Neronia permettevano navigare da Ravenna ad Aquileia rimanendo all'interno di lagune e percorrendo canali artificiali e tratti di fiumi. Con la caduta dell'Impero Romano vennero meno i grossi lavori di manutenzione, ma il decadimento del sistema viario da essi creato rese ancora più importante come il di comunicazione il Po, cui alveo via continuamente navigato e reso oggetto di contese e accordi. Oggi sulle sue rive abitano circa sedici milioni di persone e sono concentrati il 55% del patrimonio zootecnico italiano, il 35% della produzione agricola e il 37% delle industrie, che sostiene il 46 per cento dei posti di lavoro (AdB-Po).

Ciò rende il Po e il suo bacino una zona nevralgica per l'intera economia italiana ed una delle aree europee con la più alta concentrazione di popolazione, industrie e attività commerciali.

La sua sorgente si trova a quota 2100 m s.l.m. in Località Pian del Re ai piedi del Monviso, sulle Alpi Cozie in provincia di Cuneo, sotto un grosso masso riportante la targa che ne indica l'origine. Arricchendosi notevolmente dell'apporto di altre innumerevoli sorgenti, prende a scorrere impetuoso nell'omonima valle.

qui sbocca in pianura dopo appena di una ventina chilometri, lambendo i territori della città di Saluzzo. questo tratto vari affluenti arricchiscono la portata del che entra in breve nella provincia di Fiume, attraversandone lo stesso capoluogo. A Torino il Fiume, nonostante abbia percorso solo un centinaio di chilometri dalle sorgenti, è già un corso d'acqua notevole, con un letto ampio 200 m e una portata media già prossima ai 100 m³/s.

Con andamento verso est, costeggia poi le estreme propaggini del Monferrato giungendo nella piana Vercellese, dove si arricchisce dell'apporto di importanti affluenti come la Dora Baltea e il Sesia. Piegando verso sud, continua poi a lambire in sponda destra il Monferrato in provincia di Alessandria, bagnando le città di Casale Monferrato e Valenza. Qui funge anche da confine regionale tra Piemonte e Lombardia, cominciando ad assumere dimensioni maestose.

Presso Bassignana, il Fiume punta definitivamente verso est grazie anche della forte spinta del Tanaro, suo principale tributario di destra, е assume una prevalentemente artificiale a causa delle opere di difesa e di sistemazione realizzate sulla sua asta e su quelle dei suoi affluenti. Dopo questa confluenza il Po, ormai possente nella portata (mediamente oltre 500 m³/s), entra in territorio lombardo, scorrendo in provincia di Pavia. Pochi chilometri a sud del capoluogo pavese il Fiume riceve il contributo essenziale del Ticino, suo principale tributario per volume trasforma d'acqua, che ne il regime da torrentizio fluviale, compensando gli stati di magra e di riducendo la pendenza e rendendolo così navigabile anche da grosse imbarcazioni sino alla foce.

Dopo questa confluenza il Fiume prende a scorrere parecchi chilometri nella zona di confine tra Lombardia e Emilia Romagna con andamento dapprima sub-rettilineo, poi caratterizzato da meandri e infine sinuoso, bagnando città importanti come Piacenza e Cremona e ricevendo contributi notevoli dagli affluenti alpini e appenninici. Nel primo tratto l'alveo si presenta moderatamente pluricursale e da origine a diverse isole fluviali, la più grande delle quali (escludendo quelle presenti alla foce) è l'Isola Serafini, situata poco più a monte della foce dell'Adda; le arginature sono inizialmente discontinue е distanziate (mediamente 1.7 km, con un massimo di 4 km), per farsi poi più continue e ravvicinate (1.4 km) dopo la confluenza del Trebbia. Nel secondo tratto, a valle della confluenza con l'Adda, le arginature diventano continue e distanziate (circa 2.6 km) e creano una grande area per la laminazione delle piene, che perciò presentano di solito la loro portata al colmo in corrispondenza di Piacenza o Cremona e vengono poi modulate; a causa delle opere longitudinali volte a favorirne la navigazione l'alveo diventa monocursale, caratteristica che mantiene fino alla foce.

Procedendo verso valle il Po riceve i contributi dell'Oglio, del Mincio e del Secchia e presenta argini ravvicinati (mediamente 900 m, con punte minime di 500 m) e alveo spesso canalizzato, soprattutto dopo la confluenza dell'ultimo fiume, il Panaro.

Giunto infine nella zona di Ferrara il Po scorre pensile sul confine tra Veneto (provincia di Rovigo) ed Emilia Romagna, nella regione storica del Polesine.

Qui il Fiume inizia il suo ampio delta (380 km²), dividendosi in 5 rami principali (Po di Maestra, Po della Pila, Po delle Tolle, Po di Gnocca e Po di Goro) e quattordici bocche; un ulteriore ramo secondario (il Po di Volano), che attraversa la città di Ferrara, è ora inattivo. Il grande Fiume sfocia quindi nel Mare Adriatico, attraversando territori appartenenti al Comune di Porto Tolle e Porto Viro.

Il delta del Po, per la sua grande valenza ambientale, è stato dichiarato patrimonio dell'umanità dall'UNESCO.

2.1.1 Regime fluviale

Il bacino idrografico del Po copre gran parte del versante meridionale delle Alpi e quello settentrionale dell'Appennino emiliano-romagnolo, cosicché il regime del Fiume è misto di tipo alpino (piene tardo-primaverili ed estive e secche invernali) ed appenninico (piene primaverili ed autunnali e secche estive); prevale però il regime appenninico, come provano il concentrarsi dei periodi di magra nel corso dell'estate (solitamente in agosto) e delle piene in autunno. Queste ultime sono abbastanza frequenti е devastanti, come avvenuto svariate volte nel secolo scorso, con valori massimi assoluti di portata del Po, raggiunti durante gli eventi alluvionali del 1951 e del 2000, di oltre 10300 m³/s nel medio e basso corso.

Determinanti nella loro formazione soprattutto sono tributari piemontesi del Po (Dora Baltea, Sesia e Tanaro in particolare) e lombardi (Ticino). Per fare alcuni esempi, durante la piena del novembre 1994 il Fiume mostrò già in Piemonte, dopo la confluenza del Tanaro, una portata di colmo $11000 \text{ m}^3/\text{s}$, quasi paragonabile a quella poi transitata molto più a valle nel Polesine. Lo stesso avvenne nell'ottobre del 2000, sempre in Piemonte, dove la portata massima del Fiume superò già a partire dal comune di Valenza i 10000 m³/s a causa soprattutto dei contributi pesantissimi di Dora Baltea e Sesia.

2.1.2 Autorità sul Fiume

La necessità di un organo che si occupasse della gestione del Fiume Po è stata avvertita per la prima volta molto tempo fa: già nel 1806 Eugenio Napoleone, Viceré d'Italia, aveva istituito un "Magistrato civile per lavori generali che riguardano il grande sistema del Po", mentre a Parma aveva sede l'Ufficio di Ispezione superiore del Genio Civile per il Po.

Dopo l'Unità d'Italia, in occasione delle prime grandi piene del secolo, quelle del 1907 e 1917, si sentì l'esigenza di individuare una struttura unica alla quale affidare il coordinamento unitario dell'attività idraulica di tutto il complesso bacino del Po.

Nel 1924 fu quindi istituito il Circolo di Ispezione del Genio Civile per il Po, con sede a Parma, al quale vennero affidati i compiti di vigilanza sui progetti e sulla esecuzione delle opere riguardanti la sistemazione e la regolarizzazione degli alvei, e sulla polizia idraulica in tutto il corso del Po e dei suoi affluenti.

seguito alla catastrofica alluvione del istituito con la legge 735/56 il Magistrato per il Po, alla cui autorità erano soggetti il Po e i suoi affluenti e il cui coordinare le competenze dei compito era vari preposti; le leggi 240/58 e 1484/62 lo trasformarono poi in un organo di amministrazione attiva con pieni poteri materia di programmazione, esecuzione e gestione delle opere di difesa dell'intero bacino.

Tale ente, già organo decentrato interregionale del Ministero dei Lavori Pubblici, poi organo decentrato interregionale del Ministero delle Infrastrutture e dei Trasporti e del Ministero dell'Ambiente e del Territorio, dal gennaio 2003 è diventato l'Agenzia Interregionale per il fiume Po (A.I.PO), in attuazione dell'art. 89 del D.L. 112/1998. Le regioni interessate, ovvero Piemonte, Lombardia, Emilia Romagna e Veneto, hanno quindi recepito tale decreto attraverso leggi regionali (rispettivamente L.R. 38/2001, L.R. 5/2002, L.R. 42/2001 e L.R. 4/2002).

Parallelamente all'Agenzia opera l'Autorità di bacino del fiume Po, la cui attività principale, per effetto delle nuove norme sulla difesa del suolo (Legge 183/89), consiste nello studio e nella predisposizione del Piano di Bacino e nella programmazione, nel coordinamento e nel controllo dei relativi Piani Stralcio a livello di sottobacino.

Le principali attività dell'A.I.PO consistono invece nella progettazione ed esecuzione degli interventi sulle opere idrauliche di prima, seconda e terza categoria (Testo Unico n. 523/1904) sull'intero bacino del Po, nonché nei compiti di Polizia Idraulica e Servizio di Piena sulle opere idrauliche di prima, seconda (R.D. 2669/1937) e terza categoria arginata (art. 4 comma 10ter Legge 677/1996). Dette attività sono espletate dal personale idraulico lungo tutti i tratti arginati, che ammontano a 3564 km, suddivisi in 94 tronchi di custodia (Ufficiali Idraulici) e 220 tronchi di guardia (Sorveglianti Idraulici).

Le problematiche connesse con la stabilità arginale e la tutela delle opere idrauliche erano già note in tempi remoti qli interventi е i servizi di tutela, pur esistenti, vennero sistematizzati su tutta l'asta praticamente dall'unità d'Italia con l'istituzione degli uffici provinciali del Genio Civile, ed in sequito con l'emanazione del R.D. 25 luglio 1904 n.523: "Testo Unico delle disposizioni di legge intorno alle opere idrauliche delle diverse categorie", e del R.D. 9 dicembre 1937 n.2669: "Regolamento sulla tutela delle opere idrauliche di prima e seconda categoria е delle opere di bonifica". disposizioni di legge, tuttora vigenti seppure con qualche integrazione e modifica, hanno regolato e regolano tuttora l'attività di Polizia Idraulica e Servizio di Piena. particolare il R.D. 523/1904 all'art. 96 prende in esame e regolamenta tutte le attività che possono arrecare danni alle arginature.

Il corpo normativo relativo alle materie di cui si occupa, a vario titolo, l'Agenzia Interregionale per il Fiume Po si è via via arricchito nel corso degli anni; in particolare vale la pena di citare le più recenti: la L. 183/1989, "Norme per il riassetto organizzativo e funzionale della difesa del suolo", la L. 225/1992, "Istituzione del servizio nazionale della protezione civile", la L. 36/1994, "Disposizioni in materia di risorse idriche", e la L. 37/1994, "Norme per la tutela ambientale delle aree demaniali dei fiumi, torrenti , dei laghi e delle altre acque pubbliche". particolare rilievo risulta la prima, poiché da essa vennero istituite le Autorità di Bacino, la cui attività principale consiste nello studio e nella predisposizione del Piano di Bacino e nella programmazione, nel coordinamento e controllo dei relativi Piani Stralcio а livello sottobacino. Tra questi di primaria importanza è il "Piano Stralcio delle Fasce Fluviali" (P.S.F.F., 1995), in cui per la prima volta è stata introdotta, a livello di bacino, la suddivisione delle pertinenze fluviali in fasce diverso grado di interesse da parte dei fenomeni di deflusso: Fascia A o di deflusso della piena ordinaria, Fascia B o di esondazione per la piena di riferimento (TR=200 anni), Fascia inondazione per piena catastrofica (TR=500 Significativamente, all'interno di tali Fasce sono state

normate le attività ammesse e vietate, mettendo quindi definitivamente un freno alle pericolose intromissioni urbanistiche negli ambiti di pertinenza fluviale e alle attività antropiche che spesso, nel recente passato, hanno messo a rischio l'equilibrio dei corsi d'acqua.

Le attività iniziate col P.S.F.F. sono proseguite col "Piano per l'Assetto Idrogeologico" (P.A.I., 2001) che, inglobando i contenuti dei precedenti Piani Stralcio (fra cui il PS45 redatto in conseguenza degli eventi alluvionali del novembre ha preso organicamente in esame tutte le situazioni di criticità idrogeologica del bacino. Per quanto riquarda il reticolo idrografico relativo ai corsi d'acqua principali (interessati dalle fasce fluviali), il progetto di assetto idraulico per la messa in sicurezza, una volta analizzate le situazioni di dissesto in atto, è proseguito determinando dapprima la portata di riferimento (TR=200 anni), studiando quindi la risposta idraulica della rete fluviale ed ipotizzando l'assetto di progetto sulle principali del bacino.

2.2 Strumenti di analisi di dati georeferenziati: il GIS

Un GIS (Geographical Information System) è un sistema informativo computerizzato che permette l'acquisizione, la registrazione, l'analisi, la visualizzazione e la restituzione di informazioni derivanti da dati geografici (geo-referenziati).

Per la rappresentazione di tali dati occorre formalizzare un modello rappresentativo flessibile che si adatti ai fenomeni questo viene realizzato attraverso nel GIS tipologie di informazioni: geometriche, ossia relative alla rappresentazione cartografica degli oggetti (quali la forma punto, linea, poligono -, la dimensione e la posizione geografica); topologiche, ovvero riferite alle relazioni reciproche tra qli oggetti (ad esempio connessione, adiacenza, inclusione etc.); informative, ovvero riguardanti i dati (numerici, testuali etc.) associati ad ogni oggetto. La gestione di tali informazioni avviene tramite un database relazionale, mentre la loro elaborazione è supportata da una vasta gamma di funzionalità. La loro codificazione avviene tipologie principali due di dati: attraverso vettoriali e i dati raster. I dati vettoriali sono costituiti elementi semplici quali punti, linee е poligoni, codificati e memorizzati sulla base delle loro coordinate, a ciascuno dei quali è associato un record del informativo che contiene tutti gli attributi dell'oggetto rappresentato. I dati raster schematizzano invece il mondo reale attraverso una matrice di celle dette pixel, a ciascuna delle quali sono associate le informazione relative all'elemento rappresentato; la dimensione del pixel (detta anche pixel size), generalmente espressa nell'unità di misura (metri, etc.), è della carta chilometri strettamente relazionata alla precisione del dato. I dati vettoriali e i dati raster si adattano ad usi diversi: i primi particolarmente adatti alla rappresentazione di dati che variano in modo discreto, i secondi alla rappresentazione di dati con variabilità continua.

Tali informazioni sono utilizzabili dall'utente con diversi approcci:

- Approccio del Geodatabase: un GIS è un database spaziale, ossia un database contenente dataset che comprendono l'informazione geografica. Tramite un modello di dati specializzato consente la gestione dei dati vettoriali e raster.
- Approccio della Geovisualizzazione: un GIS consente di costruire rappresentazioni geografiche complete e complesse (mappe) in cui vengono visualizzati gli elementi e le loro relazioni spaziali sulla superficie terrestre. Si possono costruire sia mappe di base che mappe "avanzate", utilizzando le informazioni geografiche associate ai dati. Tali mappe possono essere archiviate e riutilizzate per supportare l'interrogazione, l'analisi e l'editing dei dati.
- Approccio del Geoprocessing: un GIS è un insieme di strumenti operativi per l'analisi geografica l'elaborazione dell'informazione. funzioni Le di Geoprocessing, a partire da dataset geografici esistenti, consentono di applicare ad essi delle funzioni analitiche e memorizzare i risultati in nuovi dataset.

Tali approcci sono complementari e rappresentano uno strumento completo per tutte le applicazioni a carattere geografico.

2.2.1 Informazione topografica disponibile

I dati sul bacino del Po a disposizione per il lavoro sono:

- DEM (Digital Elevation Model): modello digitale del terreno in formato raster, in cui ad ogni pixel è associata la quota assoluta del punto del territorio rappresentato;
- CTR (Carte Tecniche Regionali) in scala 1:25000;
- Ortofoto: fotografie aeree georeferenziate e assoggettate a ortorettifica, un procedimento che, in base ai rilievi topografici, corregge gli effetti della distorsione della lente e dell'orientamento della macchina fotografica, rendendo le foto geometricamente corrette ed equiparabili a mappe e consentendo su di esse la misurazione di distanze reali;
- Idrografia: layer di ArcView contenente la planimetria dei corsi d'acqua del bacino e informazioni associate;
- Planimetria delle sezioni: layer di ArcView contenente le tracce in pianta delle sezioni Brioschi e di quelle, in parte ruotate e/o traslate per esigenze di modellazione, utilizzate in HEC-RAS;
- Livellazione degli argini: layer di ArcView contenente la planimetria degli argini fluviali e le informazioni relative alla loro altezza secondo il rilievo topografico del 2005;
- Planimetria delle Fasce Fluviali: informazione topografica sulla suddivisione delle aree prospicienti il Po in Fascia A, B o C secondo la definizione adottata dall'AdB-Po (v. Appendice A1).

2.3 Modelli numerico-idraulici

Tra i software disponibili per lo sviluppo e l'implementazione di modelli numerico-idraulici è stato selezionato il codice di calcolo HEC-RAS (River Analysis System), sviluppato dall'United States Army Corps of Engineering (USACE), Hydrological Engineering Center (HEC);

tale scelta è stata dettata dalla sua estrema affidabilità e duttilità. attestata dalle numerosissime applicazioni effettuate in tutto il mondo, e dalla larga disponibilità del nell'ambito dei tecnici operanti nel settore dell'Ingegneria Idraulica, essenzialmente dovuta alla sua natura freeware, in quanto garanzia di riproducibilità e, dunque, verificabilità delle elaborazioni presentate, con evidenti vantaggi in termini non solo di trasparenza, anche di confronto е approfondimento dei risultati conseguiti.

HEC-RAS permette la simulazione del moto dell'acqua all'interno di canali naturali o artificiali tramite modelli quasi-bidimensionali; infatti, sebbene le equazioni descrivono il moto utilizzino la linea di fondo dell'alveo come unica variabile spaziale, sussiste la possibilità di delle golene rendendo collegare laterali, schematizzabile una realtà bidimensionale. programma Ιl consente il calcolo del profilo idrico in moto permanente e vario; questa ultima applicazione, di interesse per presente lavoro, si avvale di uno schema implicito alle differenze finite per la risoluzione delle equazioni complete di De Saint Venant.

Le caratteristiche geometriche vengono salvate in un file del tipo geometry, le condizioni al contorno del moto in un file del tipo steady o unsteady flow. Un plan è dato dall'associazione di due di questi file, che possono anche essere condivisi da più plan; in tal modo HEC-RAS permette un agevole confronto tra diversi scenari.

2.3.1 Modello numerico del corso medio inferiore del Fiume Po

Il punto di partenza del presente lavoro è costituito dal preesistente modello numerico del corso medio inferiore del Po (L. Galletti, 2007, e sviluppi successivi DISTART - AdB-Po, 2008) realizzato con il software HEC-RAS.

La geometria del modello (informazioni planimetriche e relative alle sezioni trasversali, v. Figura 5) è stata creata importando i dati del DTM da ArcView ad HEC-RAS tramite l'estensione Hec-Geo-Ras; è stata poi definita la stream centerline (adottata dal software come ascissa

curvilinea e utilizzata per successive applicazioni) come schematizzazione della linea di fondo del fiume e sono stati definiti i limiti dell'alveo inciso (bank station lines), per separare il flusso all'interno del main channel da quello nelle espansioni golenali (overbanks) e attribuire differenti condizioni di scabrezza. Sono state poi inserite le sezioni trasversali (cross sections) sulla base dei dati dall'AdB-Po e sono state apportate loro alcune modifiche, ove necessario, eliminando le intersezioni е traslandole, ruotandole e modificandone la lunghezza al fine di rendere i dati omogenei. Sono state infine schematizzate nel modello le golene chiuse tramite lo strumento storage area (utilizzato anche nel presente lavoro) e sono state opportunamente collegate al corso d'acqua ed eventualmente tra di loro.

Figura 5 - Geometry file del modello in HEC-RAS

Il modello, una volta completato, è stato calibrato per riprodurre l'evento di piena verificatosi nell'ottobre del 2000, corrispondente a un tempo di ritorno di 200 anni e scelto in quanto ultimo evento significativo e temporalmente vicino poter considerare ininfluenti abbastanza da cambiamenti morfologici occorsi nel fiume da allora a oggi. La fase di taratura è stata finalizzata all'identificazione coefficienti distribuiti di resistenza caratteristici delle diverse sezioni trasversali impiegate dal modello idraulico. In particolare, per quanto concerne la rappresentazione delle condizioni di scabrezza del Fiume Po, si è deciso di differenziare il coefficiente di scabrezza del canale principale da quello delle espansioni laterali. Ogni sezione trasversale è stata pertanto divisa in tre porzioni, una rappresentativa dell'alveo inciso, caratterizzata da un ben preciso valore del coefficiente di scabrezza, e due rappresentative delle espansioni laterali che partecipano attivamente al deflusso idrico (porzioni aperte

arginate lato fiume - delle espansioni golenali), caratterizzate da un diverso valore del coefficiente di scabrezza. I due valori di scabrezza caratteristici della generica sezione trasversale sono stati mantenuti costanti all'interno di tratti fluviali omogenei dal punto di vista delle condizioni di scabrezza al fondo, identificati proprio attraverso la fase di taratura del modello. Detta fase è stata condotta con l'obiettivo di pervenire attraverso il modello ad una corretta riproduzione del comportamento idraulico dell'asta medio inferiore del Fiume Po per l'evento di piena di riferimento. Il comportamento idraulico dell'asta è stato sintetizzato mediante le seguenti grandezze di riferimento:

- osservazioni idrometriche (idrogrammi di piena osservati in corrispondenza delle stazioni idrometriche disponibili e tracce di piena identificate a valle dell'evento);
- dinamica di invaso delle golene chiuse (istanti di inizio invaso e tiranti idrici massimi);
- valori di portata al colmo (valori di portata al colmo in corrispondenza delle sezioni idrometriche di riferimento, desunti dalle scale di deflusso).

IL Grafico 1 e il Grafico 2 illustrano invece le condizioni al contorno di monte e di valle utilizzate in simulazione. Il Grafico 1 riporta la condizione al contorno di monte adottata in corrispondenza della sezione Brioschi 00B1, ovvero l'idrogramma di piena in termini di portata desunto per la sezione idrometrica di Isola Sant'Antonio. Il Grafico 2 riporta la condizione al contorno di valle utilizzata in corrispondenza della sezione di Pontelagoscuro, coincidente con l'idrogramma di piena in termini di livello.

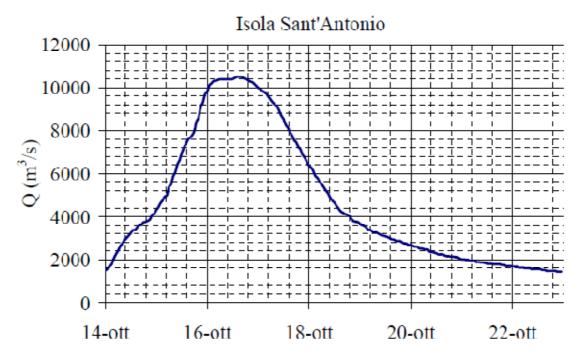


Grafico 1 - Condizione al contorno di monte, idrogramma di piena (portata) per la sezione di Isola S. Antonio (sez. Brioschi 00B1) (Fonte:

AdB-Po - DISTART, 2008)

Pontelagoscuro

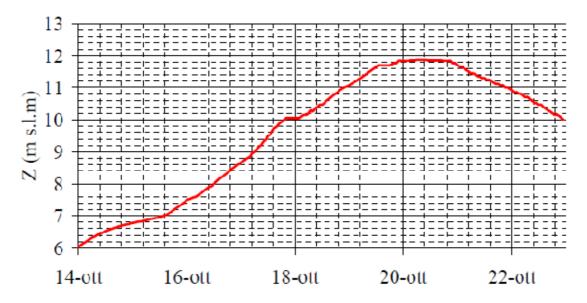


Grafico 2 - Condizione al contorno di valle, idrogramma di piena (livello) osservato alla sezione diPontelagoscuro (sez. Brioschi 65) (Fonte: AdB-Po - DISTART, 2008)

Informazioni sugli apporti idrici dei principali affluenti sono illustrate nel Grafico 3. Partendo dai dati riportati nel Grafico 3 si è cercato di pervenire ad una realistica quantificazione dei volumi idrici effettivamente immessi in Po durante l'evento di piena dell'ottobre 2000. A tal fine, i volumi di piena relativi alla stazione idrometrica di Isola Sant'Antonio sono stati confrontati con quelli relativi alla sezione di Cremona. Le due sezioni idrometriche sono state scelte in virtù della buona attendibilità delle scale di deflusso per esse costruite. I volumi di piena per le due sono stati calcolati in un'opportuna finestra temporale, differenziata tra le due sezioni in maniera da tener conto del tempo di trasferimento tra Isola S. Antonio e Cremona:

- Onda di piena a Isola S. Antonio in termini di portata, integrata tra il 14 ottobre 2000 alle ore 00:00 e il 18 ottobre alle ore 20:00. Volume: 2845 Mm³ (v. Grafico 4);
- Onda di piena a Cremona in termini di portata, integrata tra il 14 ottobre alle ore 13:00 e il 20 ottobre alle ore 07:00: Volume: 3739 Mm³ (v. Grafico 4).

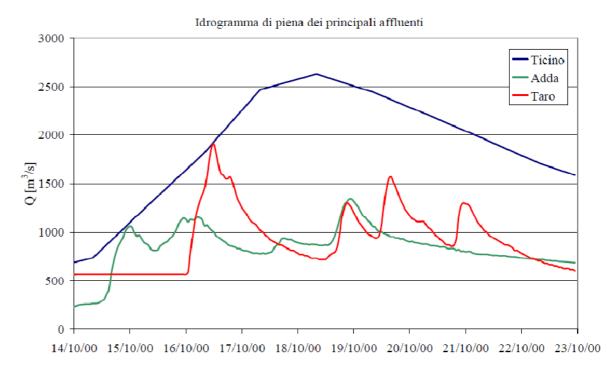


Grafico 3 - Portate dei principali affluenti durante l'evento (Fonte: AdB-Po - DISTART, 2008)

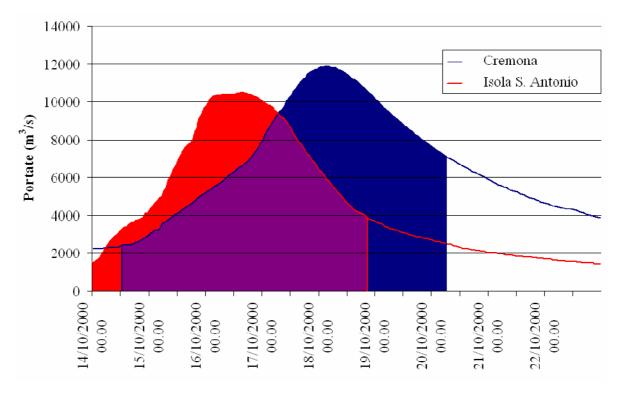


Grafico 4 - Valutazione degli apporti idrici tra Isola Sant'Antonio e Cremona durante l'evento di piena dell'Ottobre 2000 (Fonte: AdB-Po - DISTART, 2008)

La differenza tra i volumi transitati a Cremona e a Isola Sant'Antonio (circa 894 Mm³) fornisce una indicazione dei volumi idrici apportati dagli affluenti in Po nel tratto considerato durante il transito dell'onda di piena. Sulla indicazione sono di state quantificate questa condizioni al contorno necessarie per la simulazione nel tratto considerato. Gli apporti idrici laterali sono stati distribuiti in tre diverse sezioni trasversali, scelte per coincidenti sezioni comodità con le localizzate corrispondenza di foce Ticino, foce Trebbia e foce Adda. Complessivamente, la somma dei volumi idrici immessi corrispondenza delle tre sezioni nell'arco temporale preso a riferimento per i calcoli sopra descritti coincide con la precedentemente indicata. differenza Nonostante la schematizzazione modellistica adottata non consenta di rappresentare con elevata precisione le dinamiche di scambio l'asta principale di idrici tra Ро affluenti, si ritiene che essa fornisca una rappresentazione approssimata, ma sufficientemente realistica, degli scambi di volumi idrici tra affluenti e asta di Po in occasione dell'evento esaminato e per il tratto d'asta tra Isola Sant'Antonio e Cremona.

Nel tratto di asta di Po a valle di Cremona anche gli apporti idrici del Taro sono stati schematizzati come una immissione laterale concentrata in corrispondenza della foce del corso d'acqua. Gli apporti degli affluenti a valle di foce Taro sono invece stati trascurati, assumendo che, transito del colmo di piena, fosse marginale il loro apporto idrico a causa dei fenomeni di rigurgito. Le scelte adottate nella schematizzazione degli apporti idrici degli affluenti dimostrate in grado di fornire una corretta riproduzione dei valori idrometrici sperimentali (tiranti massimi e valori di portata al colmo di piena) anche nel tratto di asta fluviale a valle della sezione di Cremona, sebbene non consentano una corretta riproduzione degli scambi di volumi idrici tra affluenti e asta principale durante il passaggio dell'onda di piena nell'asta principale stessa, e particolare dei fenomeni di rigurgito indotti dell'onda passaggio di piena in corrispondenza delle confluenze, per i quali sarebbe necessario utilizzare un modello numerico a "rete", schematizzante la geometria degli affluenti oltre che quella dell'alveo principale di Po. (Fonte: AdB-Po - DISTART, 2008)

3 EVENTO DI PIENA AL LIMITE DELLA PREVEDIBILITÀ: IDENTIFICAZIONE DELLE SOLECITAZIONI DI PROGETTO

Il modello numerico del Fiume Po descritto nel sottoparagrafo è stato ricalibrato per simulare correttamente tempo propagazione di una piena con di ritorno cinquecentennale; tale procedimento iterativo è constato determinazione di sintetici idrogrammi per affluenti del Po considerati nel modello (lateral tali che, come risultato delle simulazioni, dessero nelle sezioni strumentate del Po di Piacenza, Cremona, Boretto, Pontelagoscuro degli idrogrammi Borgoforte e quanto possibile а quelli sintetici TR500 messi disposizione dall'AdB-Po (v. paragrafo 3.1).

3.1 Idrogrammi TR500 attesi nelle sezioni strumentate

La costruzione degli idrogrammi sintetici TR500 nelle sezioni strumentate di Piacenza, Cremona, Boretto, Borgoforte Pontelagoscuro è il frutto di un lavoro svolto su commissione dell'AdB-Po dal Dipartimento di Ingegneria Idraulica, Ambientale e del Rilevamento (D.I.I.A.R.) del Politecnico di Milano nell'ottobre del 2001; sono stati ricavati tramite elaborazioni statistiche effettuate su un campione di onde di piena storiche, i cui dati sono stati recuperati registrazioni effettuate a partire dal 1951. Le registrazioni idrometriche delle sezioni di Cremona, Boretto, Borgoforte e Pontelagoscuro sono state recuperate presso la sezione di Parma dell'Ufficio Idrografico del Po; per la stazione di Piacenza non è stato possibile recuperare le registrazioni idrometriche e le onde sono state ricostruite a partire dalle letture giornaliere dei livelli idrometrici pubblicate sulla Parte II degli Annali Idrologici.

La lettura degli idrogrammi di piena è stata condotta individuando, anno per anno, gli eventi utili all'analisi statistica; in particolare sono state digitalizzate le onde

contenenti i valori massimi annui della portata al colmo e dei volumi di assegnata durata. Per alcuni anni è stato sufficiente prendere in considerazione un solo evento, in altri casi è stato necessario considerare due o tre eventi per anno. Oltre alle registrazioni idrometriche, è stato necessario recuperare per ogni evento la scala di deflusso valevole per il periodo corrispondente, necessaria per il passaggio dai livelli alle portate.

Per ricavare l'informazione necessaria all'individuazione di un idrogramma di progetto di assegnato tempo di ritorno a partire dall'analisi delle onde di piena storiche si è scelto di procedere fissando una serie di valori di durata e analizzando, mediante un'analisi a finestra mobile, il valore massimo del volume (o della portata media) compreso in dette durate.

Tale approccio si basa sull'elaborazione statistica delle massime portate medie in assegnata durata D:

$$\overline{Q_{D}} = \max \left(\frac{1}{D} \cdot \int_{t-D}^{t} Q(\tau) d\tau \right)$$

dove il massimo è calcolato rispetto a tutte le possibili finestre temporali (t-D, t) di ampiezza D contenute nel generico idrogramma di piena. Per ciascun idrogramma di piena è stato calcolato il valore massimo assunto dalla portata media per n durate prefissate, ottenendo così n serie di portate composte ciascuna da un numero di dati pari al numero di eventi. La scelta di tali finestre temporali D è stata fatta in base ad un'analisi preliminare della durata della porzione più significativa degli idrogrammi registrati. Per ciascuna durata è stata anche calcolata la posizione r assunta dal picco (r = 0÷1, v. Figura 6), rapporto tra la frazione della definita come temporale che precede il picco (D_b) e l'intera durata considerata (D). Questo parametro, come si vedrà, fondamentale importanza nella determinazione della forma dell'onda sintetica.

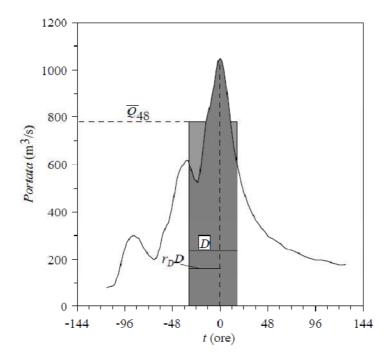


Figura 6 - Posizione del picco r

Per ogni evento e per ciascuna durata sono state estratte quindi due informazioni: la massima portata media e la posizione del picco r. Complessivamente sono stati estratti n(eventi)×n(durate) valori di portata e lo stesso numero di posizioni del picco r.

3.1.1 Elaborazioni statistiche

La portata Q relativa ad una sezione fluviale è variabile nel tempo, sicché può essere descritta come un processo stocastico continuo indicato con Q(t), dove t indica appunto il parametro temporale del processo. La portata media in un intervallo temporale D relativamente alla stessa sezione si ottiene integrando il processo stocastico Q(t):

$$Q(t;D) = \frac{1}{D} \cdot \int_{t-D}^{t} Q(\tau) d\tau$$

Dal momento che entrambi i processi risultano continui e che la continuità è l'unica proprietà utilizzata, è risultato

conveniente indicare i due processi, puntuale e mediato, con l'unica notazione Q(t;D) ponendo Q(t;0)=Q(t).

Poiché l'interesse si è concentrato sui valori estremi del processo Q(t;D), si è studiata la probabilità che il valore massimo di Q(t;D) non superi il valore q in un intervallo Dt:

$$P_{\overline{Q_{1}}}(q) = Prob[\max Q(t;D) \leq q, t \in (0,\Delta t)]$$

Assumendo il periodo omogeneo di riferimento Dt = 1 anno. Dunque la stima della legge $q_D = q_D(T)$ è stata condotta a partire dalla serie dei massimi annuali (Annual Flood Series, AFS), vale a dire la serie dei valori massimi assunti dalla variabile in ciascuno degli anni di osservazione.

3.1.2 Curve di riduzione dei colmi di piena

Lo scopo delle elaborazioni statistiche consisteva nella determinazione della legge $\overline{q}_D = \overline{q}_D(T)$, che esprime l'equazione della curva di riduzione dei colmi di piena, dalla quale sono stati poi ricavati gli idrogrammi di riferimento in corrispondenza dei tempi di ritorno di interesse. Tale curva rappresenta la relazione che lega la portata media \overline{Q}_D alla corrispondente durata D, fissato il generico valore del tempo di ritorno T.

Essendo risultati i coefficienti di variazione dei campioni poco variabili con la durata, è stato possibile considerare ciascun elemento – una volta normalizzato rispetto alla media del campione di appartenenza – estratto dalla popolazione dell'unica variabile casuale $Q^* = \overline{Q_D} / \mu(\overline{Q_D})$ (avendo trascurato l'influenza dei momenti di ordine superiore al secondo).

Le serie corrispondenti alle diverse durate sono state dunque normalizzate rispetto al valor medio e raggruppate a formare un unico campione della variabile Q* di numerosità pari al prodotto del numero di durate considerate nell'analisi e della numerosità di ciascuna serie storica.

In tal modo la curva di riduzione dei colmi di piena è stata ricavata adattando all'unico campione della variabile adimensionale Q* una funzione di probabilità, stimando la quantità $q^*(T)$ e moltiplicando tale valore per la media $\mu(\overline{Q_D})$ (stimata in base ai valori medi campionari delle serie storiche relative alle diverse durate):

$$(3.4) \qquad \overline{q}_{D}(T) = q^{*}(T) \cdot \mu(\overline{Q}_{D})$$

Per l'elaborazione statistica dei campioni della variabile Q* è stata adottata la distribuzione di Gumbel; indicando con u e α i due parametri di tale distruzione, la curva di riduzione dei colmi di piena ha quindi equazione:

$$(3.5) \qquad \overline{q}_{D}(T) = \left\{ u - \alpha \cdot ln \left[-ln \left(1 - \frac{1}{T} \right) \right] \right\} \cdot \mu(\overline{Q}_{D})$$

3.1.3 Posizione del picco

Per come è stato definito, il valore della posizione del picco r può variare tra 0 e 1. In particolare assume il valore 0 se il picco cade all'inizio della finestra temporale considerata, mentre assume valore 1 se il picco cade alla fine della finestra temporale. Si hanno così a disposizione tante serie temporali di posizioni del picco quante sono le durate analizzate. Ai fini della ricostruzione dell'onda di piena è stato calcolato il valore medio di ogni serie. Inoltre, per rendere la forma dell'onda sintetica il più regolare possibile, i punti (D, r), ottenuti con la procedura sopra descritta, sono stati interpolati, per tutte le stazioni, con una curva polinomiale del sesto ordine.

3.1.4 Costruzione dell'idrogramma sintetico

Ottenuta la curva di riduzione dei colmi di piena, la costruzione dell'idrogramma sintetico è stata effettuata imponendo che la massima portata media in ciascuna durata coincidesse con quella prevista dalla curva di riduzione; la forma dell'idrogramma è stata determinata dal coefficiente esprimente la posizione del picco r. L'idrogramma sintetico è stato dunque definito dalle condizioni:

$$\begin{cases} \int_{-r_{D},D}^{0} Q(\tau;T)d\tau = r_{D} \cdot \overline{Q_{D}}(T) \cdot D \\ \int_{(1-r_{D})\cdot D}^{(1-r_{D})\cdot D} Q(\tau;T)d\tau = (1-r_{D}) \cdot \overline{Q_{D}}(T) \cdot D \end{cases}$$

le espressioni dei due rami dell'idrogramma Q(t;T) prima e dopo il colmo sono state ottenute differenziando le Eq.ni sopra rispetto alla durata D:

$$Q(\tau;T) = \frac{\frac{d}{dD} \left(r_{D} \cdot \overline{Q}_{D} (T) \cdot D \right) \Big|_{D=D(t)}}{\frac{d}{dD} \left(r_{D} \cdot D \right) \Big|_{D=D(t)}}; \quad t = -r_{D} \cdot D \quad \left(-r_{D_{f}} \cdot D_{f} \le t \le 0 \right)$$

$$(3.8) \quad Q(\tau;T) = \frac{\frac{d}{dD}(r_{D} \cdot D)\Big|_{D=D(t)}}{\frac{d}{dD}((1-r_{D}) \cdot \overline{Q_{D}}(T) \cdot D)\Big|_{D=D(t)}}; \quad t = (1-r_{D}) \cdot D \quad \left(0 \le t \le (1-r_{D_{f}}) \cdot D_{f}\right)$$

3.2 Calibrazione degli idrogrammi sintetici degli affluenti

Il procedimento di calibrazione delle *lateral inflow* è stato svolto in maniera iterativa, procedendo ad ogni step ad una simulazione in HEC-RAS, al confronto degli idrogrammi risultanti con quelli sintetici TR500 di cui al paragrafo 3.1 e al successivo calcolo della correzione da apportare agli idrogrammi in ingresso; tale iter è stato ripetuto fino al raggiungimento di una precisione soddisfacente.

Per calcolare gli andamenti di primo tentativo sono stati presi a riferimento gli idrogrammi sintetici degli affluenti TR200 calibrati per il modello preesistente e sono stati amplificati tramite un coefficiente ricavato dalle portate di picco degli idrogrammi sintetici TR200 e TR500 nelle sezioni di Boretto, Borgoforte e Pontelagoscuro, così definito:

$$(3.9) k_{Q} = \frac{\frac{Q_{500}^{\text{max}} \left(\text{Boretto}\right)}{Q_{200}^{\text{max}} \left(\text{Boretto}\right)} + \frac{Q_{500}^{\text{max}} \left(\text{Borgoforte}\right)}{Q_{200}^{\text{max}} \left(\text{Borgoforte}\right)} + \frac{Q_{500}^{\text{max}} \left(\text{Pontelagoscuro}\right)}{Q_{200}^{\text{max}} \left(\text{Pontelagoscuro}\right)}$$

dove $Q_{500}^{\text{max}}(\text{Boretto})$, $Q_{500}^{\text{max}}(\text{Borgoforte})$ e $Q_{500}^{\text{max}}(\text{Pontelagoscuro})$ sono le portate di picco degli idrogrammi sintetici TR500 nelle corrispondenti sezioni, e $Q_{200}^{\text{max}}(\text{Boretto})$, $Q_{200}^{\text{max}}(\text{Borgoforte})$ e $Q_{200}^{\text{max}}(\text{Pontelagoscuro})$ quelle relative agli idrogrammi sintetici TR200.

stata eseguita una serie di Successivamente è simulazioni, in ognuna delle quali si è presa riferimento una diversa sezione strumentata del Po, partendo da monte con Piacenza e poi procedendo verso valle con Cremona, Boretto, Borgoforte e Pontelagoscuro, e di volta in volta si è calcolata la differenza istante per istante tra le portate attese e quelle calcolate da HEC-RAS in quella sezione, ottenendo un idrogramma di correzione da applicare all'affluente compreso la sezione strumentata tra questione e quella immediatamente a monte e utilizzando la configurazione aggiornata per la successiva simulazione; nei erano presenti più affluenti interessati cui dall'aggiustamento l'idrogramma correttivo è stato ripartito tra di essi in maniera proporzionale alle $\mathbf{Q}_{200}^{\text{max}}$ dei rispettivi idrogrammi sintetici.

Essendo il risultato non ancora soddisfacente e l'andamento delle lateral inflow così ottenute piuttosto artificioso e poco realistico, si è proceduto ad un ulteriore aggiustamento manuale, guidato dal criterio del mantenimento dei volumi individuati e dalla sensibilità dell'autrice. Si è così giunti alla configurazione definitiva degli idrogrammi degli affluenti laterali in ingresso nel Po (v. Grafico 5, Grafico 6, Grafico 7, Grafico 8, Grafico 9, Grafico 10, Grafico 11 e Grafico 12), la cui bontà è stata valutata confrontando, oltre agli idrogrammi attesi e simulati nelle cinque stazioni del Po (Grafico 13, Grafico 15, Grafico 17, Grafico 19 e Grafico 21), anche le curve di laminazione (V,Q) da essi ricavabili(Grafico 14, Grafico 16, Grafico 18, Grafico 20 e Grafico 22).

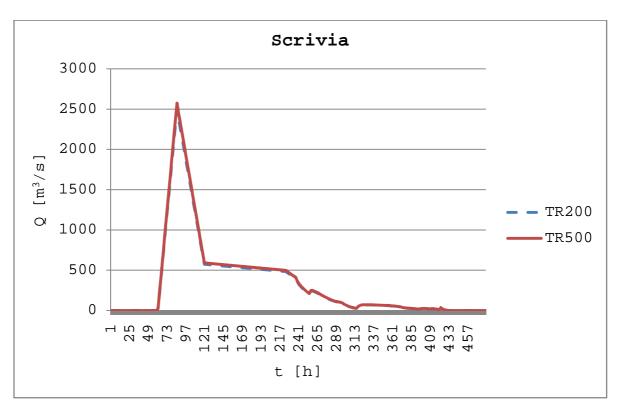


Grafico 5 - Idrogrammi sintetici TR200 e TR500 dello Scrivia

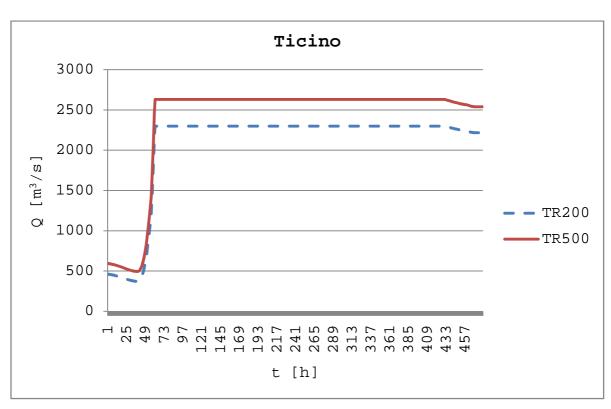


Grafico 6 - Idrogrammi sintetici TR200 e TR500 del Ticino

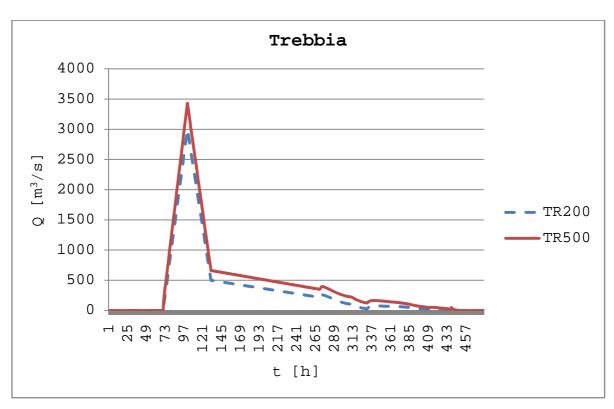


Grafico 7 - Idrogrammi sintetici TR200 e TR500 del Trebbia

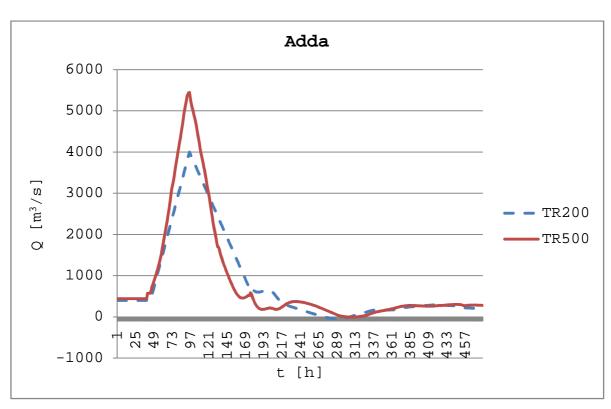


Grafico 8 - Idrogrammi sintetici TR200 e TR500 dell'Adda

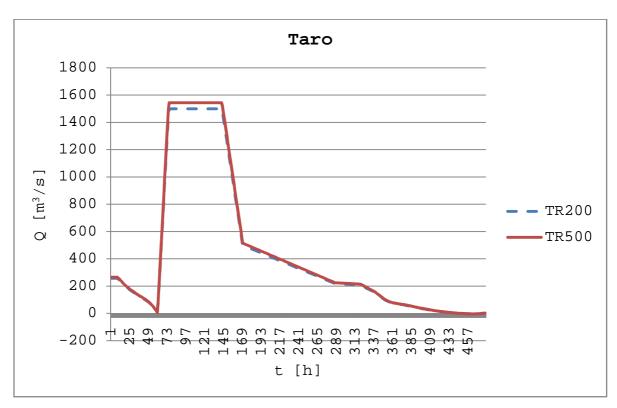


Grafico 9 - Idrogrammi sintetici TR200 e TR500 del Taro

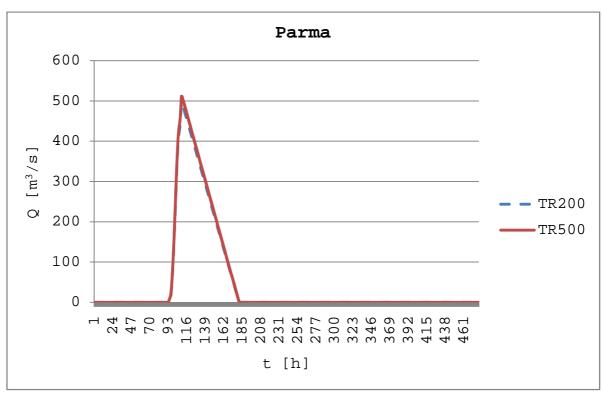


Grafico 10 - Idrogrammi sintetici TR200 e TR500 del Parma

Grafico 11 - Idrogrammi sintetici TR200 e TR500 dell'Enza

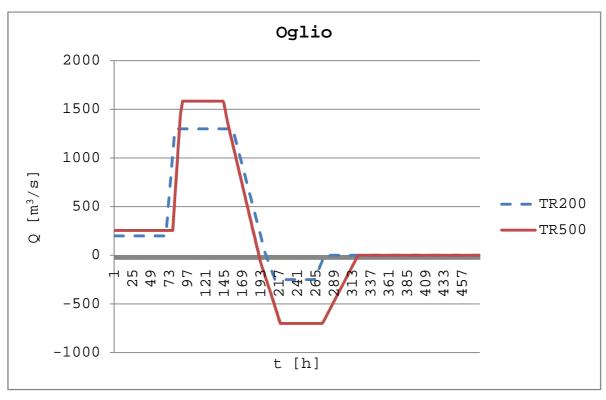


Grafico 12 - Idrogrammi sintetici TR200 e TR500 dell'Oglio

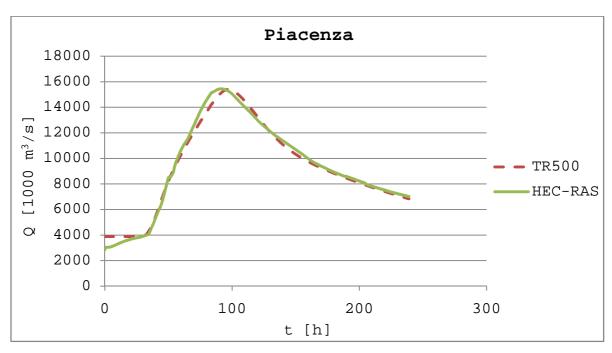


Grafico 13 - Idrogramma TR500 e idrogramma simulato dal modello nel Po a Piacenza

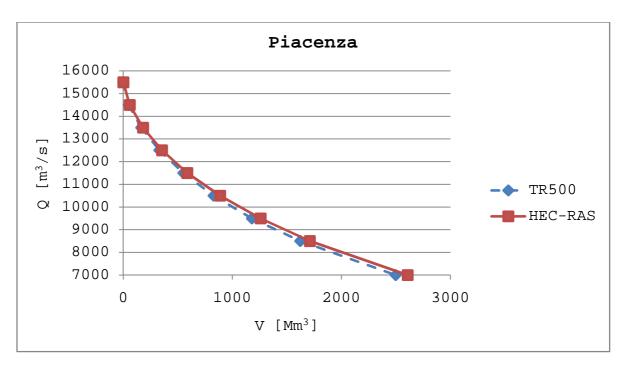


Grafico 14 - Andamento dei volumi di laminazione ricavati dall'idrogramma TR500 e dall'idrogramma simulato dal modello nel Po a Piacenza

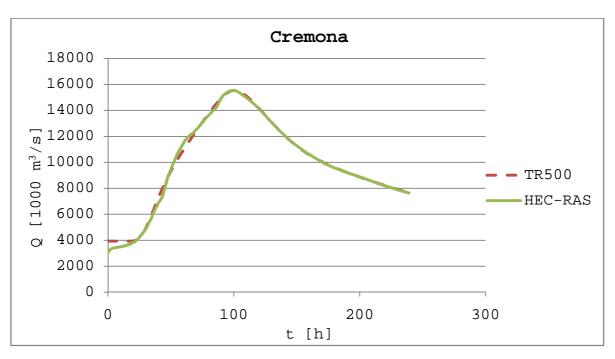


Grafico 15 - Idrogramma TR500 e idrogramma simulato dal modello nel Po a $\mbox{\it Cremona}$

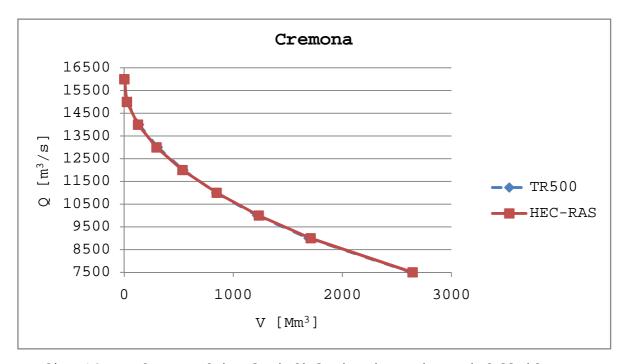


Grafico 16 - Andamento dei volumi di laminazione ricavati dall'idrogramma TR500 e dall'idrogramma simulato dal modello nel Po a Cremona

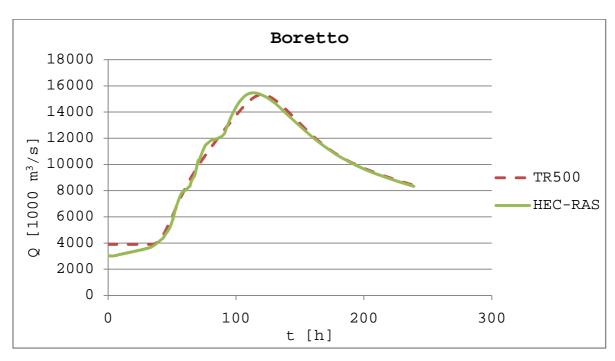


Grafico 17 - Idrogramma TR500 e idrogramma simulato dal modello nel Po a Boretto

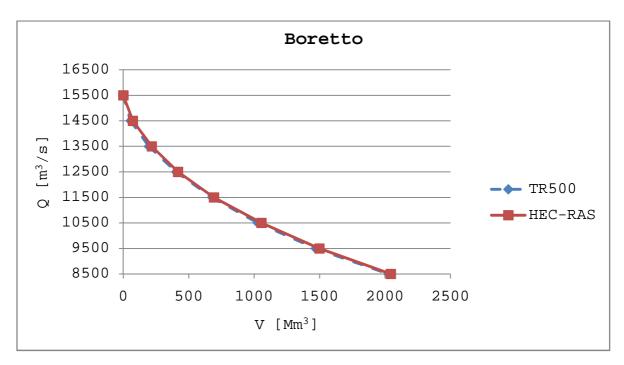


Grafico 18 - Andamento dei volumi di laminazione ricavati dall'idrogramma TR500 e dall'idrogramma simulato dal modello nel Po a Boretto

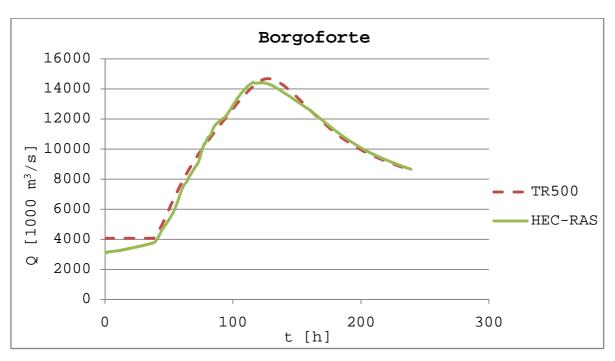


Grafico 19 - Idrogramma TR500 e idrogramma simulato dal modello nel Po a Borgoforte

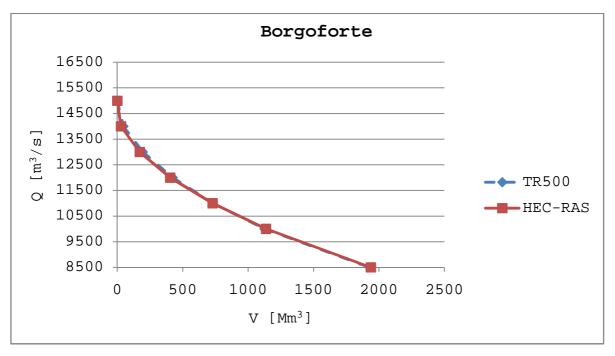


Grafico 20 - Andamento dei volumi di laminazione ricavati dall'idrogramma TR500 e dall'idrogramma simulato dal modello nel Po a Borgoforte

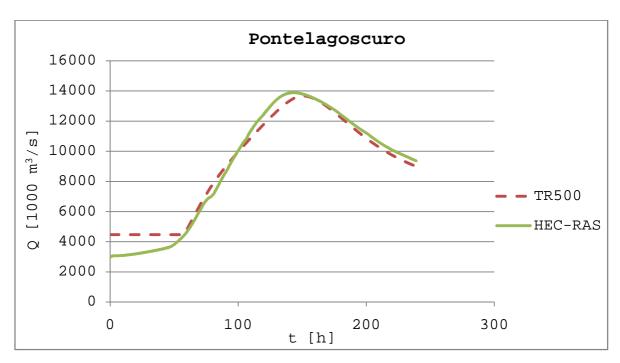


Grafico 21 - Idrogramma TR500 e idrogramma simulato dal modello nel Po a Pontelagoscuro

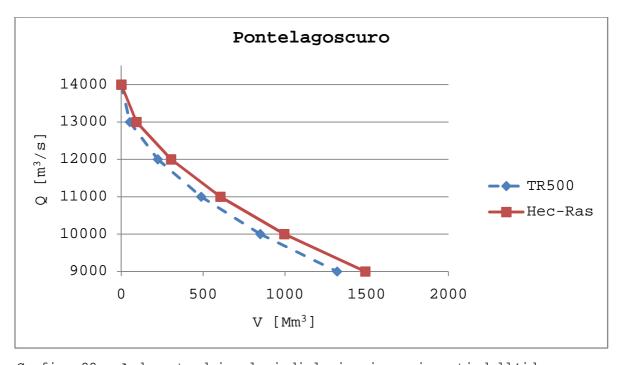


Grafico 22 - Andamento dei volumi di laminazione ricavati dall'idrogramma TR500 e dall'idrogramma simulato dal modello nel Po a Pontelagoscuro

4 EVENTO DI PIENA AL LIMITE DELLA PREVEDIBILITÀ: SIMULAZIONE IDRAULICA

Per poter simulare correttamente la propagazione di un evento di piena con tempo di ritorno cinquecentennale nell'attuale configurazione arginale e le conseguenti esondazioni, modello, la cui calibrazione è stata descritta nel cap.3, è stato completato con l'inserimento dei dati riguardanti i circostanti comparti idraulici situati in Fascia C (paragrafi state condotte delle е sono simulazioni preliminari per individuare preventivamente i punti in cui è più verosimile che l'evento di piena ciquecentennale produca e, dunque, prime tracimazioni degli argini maestri inneschi la formazione di brecce (paragrafo 4.3). In seguito alla tracimazione degli argini maestri, infatti, è verosimile che si producano delle rotte in quanto il manufatto arginale è generalmente progettato e realizzato per contenere portate fluviali entro l'alveo, ma non per resistere a tracimazione. Questo è sicuramente il caso per gli argini maestri del Fiume Po, che non sono rivestito lato campagna. Una recente indagine storica (Govi e Turitto, 2000) ha messo chiaramente in luce come ai fenomeni di tracimazione delle arginature maestre di Ро sia generalmente seguita formazione di brecce nel corpo del manufatto. Una volta individuata la configurazione delle rotte arginali (c. numero e posizione) è stata quindi condotta la suddetta simulazione, i cui risultati sono illustrati nel paragrafo 4.4.

4.1 Caratterizzazione geometrica dei comparti idraulici del Fiume Po

Il software HEC-RAS, come accennato precedentemente, consente la schematizzazione delle aree laterali di accumulo come storage areas, ovvero serbatoi descritti attraverso le loro curve di riempimento e quota di fondo. Detti serbatoi sono collegati all'alveo o ad altre storage area attraverso degli sfioratori laterali.

Per questo motivo, le aree di inondazione catastrofica situate in Fascia C (secondo la definizione dell'AdB-Po, v. Appendice Al) sono state suddivise in comparti idraulici delimitati dalle arginature maestre di due affluenti principali del Fiume Po contigui (Figura 7). Successivamente, per ogni area è stato determinato per punti il volume invasabile al variare del tirante idrico espresso in quota assoluta.

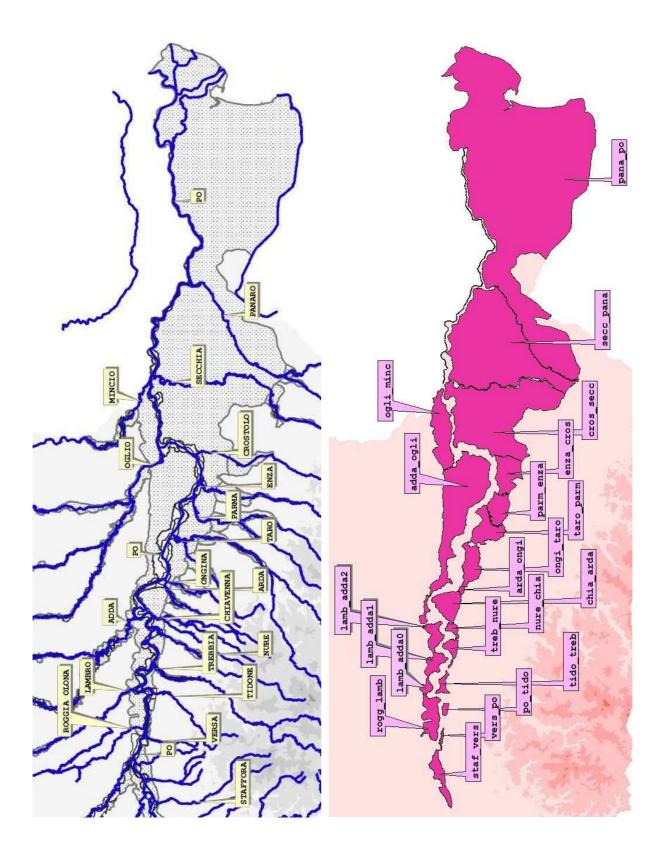


Figura 7 - Affluenti del Po e comparti idraulici

Si è proceduto innanzitutto alla catalogazione dei comparti presenti e alla loro denominazione standard del "xxxx" "xxxx_yyyy", dove е "уууу" rappresentano rispettivamente le prime quattro lettere del dell'affluente di monte e di valle che lo delimitano. In due casi, essendo la Fascia C non continua tra un affluente e l'altro, uno dei due confini è costituito dallo stesso Po; inoltre il comparto lamb_adda, a causa della sua forma caratterizzata da due restringimenti, è stato suddiviso in tre parti. Sono stati così classificati ventuno comparti idraulici, di seguito elencati (Tabella 1):

	Comparto	Affluente di	luente di Affluente di		
	Comparto	monte	valle	Area [m ²]	
	staf_vers	Staffora	Versa	5.54E+07	
	vers_po	Versa	Ро	3.50E+06	
	po_tido	Ро	Tidone 8.08E+0		
	tido_treb	Tidone	Trebbia	bbia 1.73E+07	
	treb_nure	Trebbia	Nure	2.57E+07	
	nure_chia	Nure	Chiavenna	1.42E+07	
destra	chia_arda	Chiavenna	Arda	7.66E+07	
idraulica	arda_ongi	Arda	Ongina	4.79E+06	
Idraulica	ongi_taro	Ongina	Taro	7.70E+07	
	taro_parm	Taro	Parma	8.92E+07	
	parm_enza	Parma	Enza	7.07E+07	
	enza_cros	Enza	Crostolo	9.98E+07	
	cros_secc	Crostolo	Secchia	7.26E+08	
	secc_pana	Secchia	Panaro	9.06E+08	
	pana_po	Panaro	Ро	3.15E+09	
	rogg_lamb	Roggia Olona	Lambro	7.75E+07	
	lamb_adda0			4.40E+07	
sinistra	lamb_adda1	Lambro	Adda	3.93E+07	
idraulica	lamb_adda2			1.60E+07	
	adda_ogli	Adda	Oglio	4.44E+08	
	ogli_minc	Oglio	Mincio	1.50E+08	

Tabella 1 - Comparti idraulici

Successivamente, per ognuno di essi è stato seguito in ArcView il procedimento di seguito illustrato, a titolo di esempio, per il comparto adda_ogli.

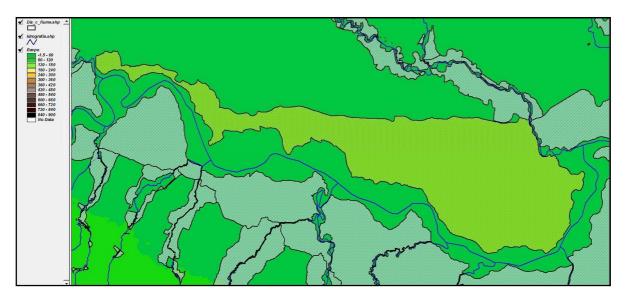


Figura 8 - Comparto adda_ogli

Sono stati innanzitutto caricati i file contenenti il DEM del bacino del Po (BacPo, del tipo grid) e la planimetria della Fascia C ($Dis_c_fiume.shp$, del tipo shapefile).

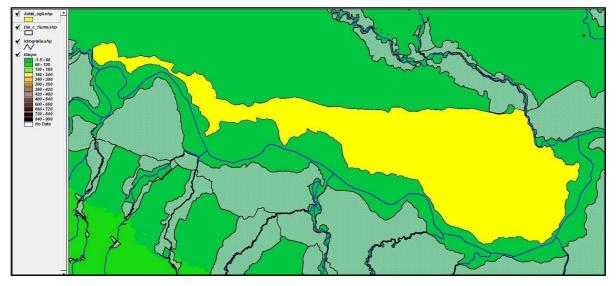


Figura 9 - adda_ogli.shp

Dopo aver attivato il layer $Dis_c_fiume.shp$ è stato selezionato il comparto adda_ogli (Figura 8) ed è stato

convertito nello shapefile $adda_ogli.shp$ (Menu Theme, comando Convert to Shapefile; v. Figura 9) in modo da isolarlo dagli altri; il file è stato poi editato (Menu Theme, comando Table, Start Editing) sostituendo un campo (si è optato per il $Taglio_c_$) con un valore unitario (Figura 10), da utilizzare in seguito come valore di partenza per i piani con cui intersecare localmente il DEM (v. oltre).

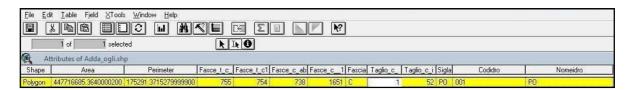


Figura 10 - Editing di adda_ogli.shp

Così modificato il file è stato converito in grid (Menu Theme, comando Convert to Grid), denominato Grid1, avendo l'accortezza di selezionare, nella finestra Conversion Field che si apre di conseguenza, il campo Taglio_c_ precedentemente editato, in modo da ottenere un grid con quota pari ad uno ovunque (Figura 11).

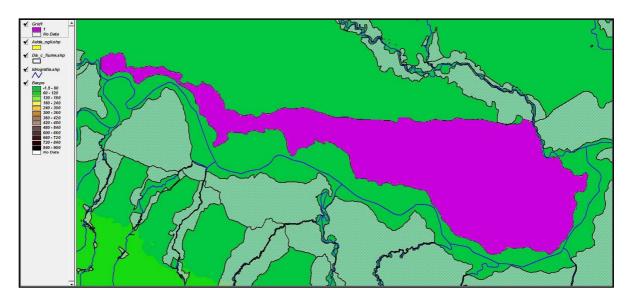


Figura 11 - Grid1 con h=1

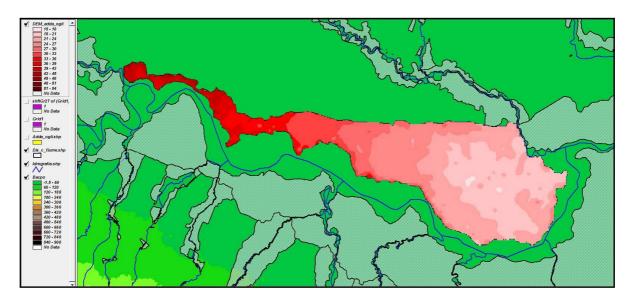


Figura 12 - DEM_adda_ogli

Tale grid è stato utilizzato per ritagliare sulla sua misura il DEM del Po ed ottenerne quindi uno di dimensioni più ridotte e più facile da gestire (Menu Grid Plus, comando Clip Grid(s) with Another Grid; v. Figura 12); dal DEM sono state quindi ricavate le quote assolute minime e massime del ovvero 19 e 46 m s.l.m., che rappresentano comparto, l'intervallo di altezze per il quale è necessario determinare la curva di riempimento. Tale range è stato quindi suddiviso in intervalli di 1 m (o 2 m per le fasce di quota in cui il comparto presentava pendenze più dolci e quindi cambiamenti meno repentini, cfr. Figura 14 - Figura 25), e per la quota di ciascuno step è stato creato un nuovo grid, di altezza corrispondente, a partire dal Grid1; a tal fine ci si è avvalsi di un'apposita funzione di ArcView (Menu Analysis, comando Map Calculator; v. Figura 13).

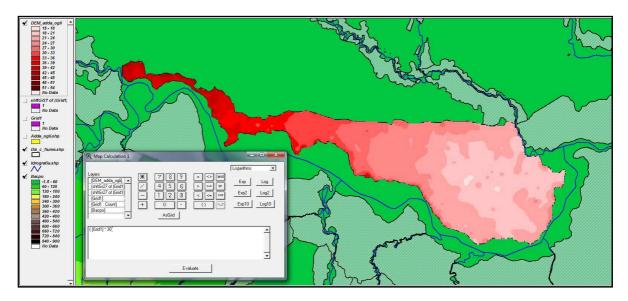


Figura 13 - Map Calculator

Una volta definiti questi grid, il programma ha consentito di intersecarli uno alla volta con il DEM e calcolare quotaparte di questo ultimo che ricade al di sotto e al di sopra della quota del grid intersecante (Menu Surface, comando Cut Fill), sia in termini di area che di volume; l'operazione è stata ripetuta per i 20 step in cui è stato l'intervallo 19÷46 suddiviso m е sono stati ottenuti altrettanti Cut Fill, nei quali sono indicate in blu le aree che risultano al di sotto della relativa quota (Figura 14, Figura 15, Figura 16, Figura 17, Figura 18, Figura 19, Figura 20, Figura 21, Figura 22, Figura 23, Figura 24 e Figura 25). I Cut Fill, inoltre, possono essere interrogati e riportano l'estensione della suddetta area e il corrispondente volume individuato (Tabella 2); tali informazioni permettono di tracciare per punti la curva di invaso(Grafico 23).

Tale procedimento è stato ripetuto per gli altri venti comparti, portando alla creazione di altrettante tabelle quota invaso-volume-superficie e altrettanti diagrammi; il tutto è stato riportato in Appendice A2 per non appesantire la trattazione.

adda_ogli			
z [m]	V [1000 m³]	A [m ²]	
19	0.000	0	
20	14609.7788	14469768	
21	72465.4411	64298971	
22	200870.6898	135427833	
23	381210.6193	186557015	
24	610336.3673	230106318	
25	856887.6178	249426009	
26	1128002.0000	273955617	
27	1431010.0000	305365114	
28	1753446.0000	323574823	
29	2090504.0000	338224588	
30	2436588.0000	347854434	
32	3157453.8268	367784115	
34	3926183.0000	390313755	
36	4731103.0000	406493496	
38	5559325.0000	417293323	
40	6409976.4251	430653109	
42	7285251.4342	440552951	
44	8170056.0000	443432905	
46	9058177.0000	444352890	

Tabella 2 - Andamento del volume e dell'area al variare della quota nel comparto adda_ogli

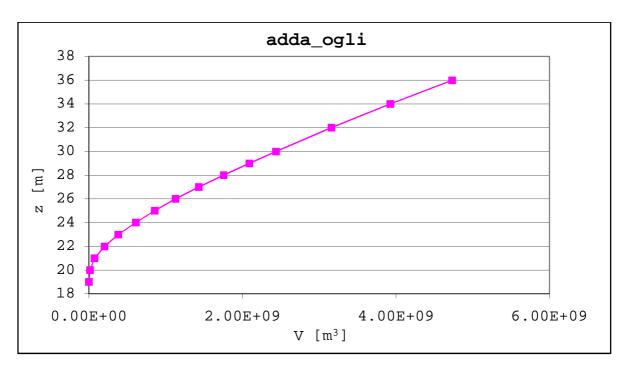


Grafico 23 - Curva di invaso del comparto adda_ogli

Figura 14 - Cut Fill del comparto adda_ogli a quota 19 m s.l.m.

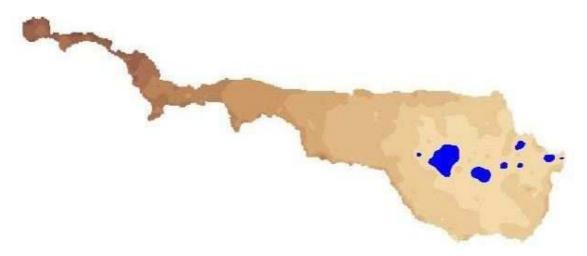


Figura 15 - Cut Fill del comparto adda_ogli a quota 20 m s.l.m.

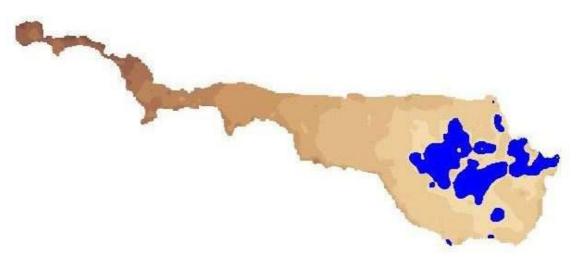


Figura 16 - Cut Fill del comparto adda_ogli a quota 21 m s.l.m.

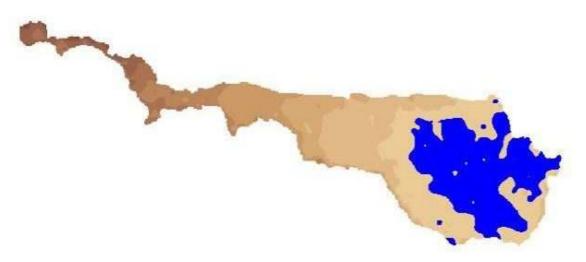


Figura 17 - Cut Fill del comparto adda_ogli a quota 22 m s.l.m.

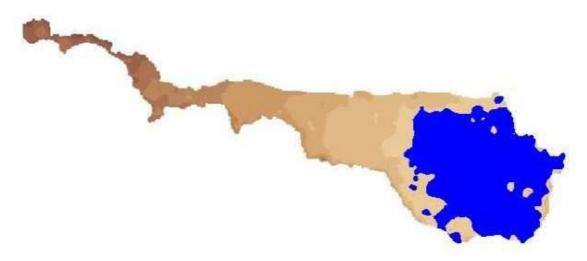


Figura 18 - Cut Fill del comparto adda_ogli a quota 23 m s.l.m.

Figura 19 - Cut Fill del comparto adda_ogli a quota 24 m s.l.m.

Figura 20 - Cut Fill del comparto adda_ogli a quota 25 m s.l.m.

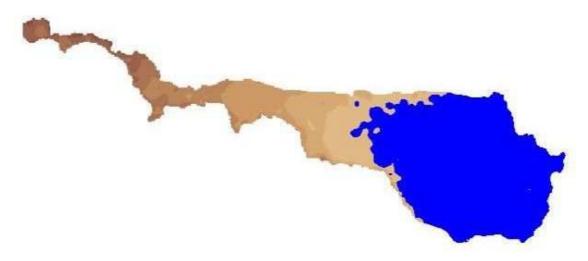


Figura 21 - Cut Fill del comparto adda_ogli a quota 26 m s.l.m.

Figura 22 - Cut Fill del comparto adda_ogli a quota 27 m s.l.m.

Figura 23 - Cut Fill del comparto adda_ogli a quota 28 m s.l.m.

Figura 24 - Cut Fill del comparto adda_ogli a quota 29 m s.l.m.

Figura 25 - Cut Fill del comparto adda_ogli a quota 30 m s.l.m.

4.2 Schematizzazione del comportamento idraulico delle aree di allagamento

I dati ricavati da ArcView con il procedimento esposto nel precedente paragrafo sono stati poi importati nel modello in HEC-RAS attraverso un Ras Gis Import File.

Per creare tale file in ArcView è stato innanzitutto necessario attivare l'estensione HEC-GeoRAS 3.1.1 (Menu File, comando Extensions); è stato poi creato il file storage_areas.shp (Menu preRAS, comando Create Storage Areas; v. Figura 26), è stato editato inserendovi i nomi dei comparti idraulici (Figura 27) ed è stato settato come tema per le storage areas (Menu PreRAS, comando Theme Setup;

v.Figura 28). A questo punto, per creare il file di interscambio storage_areas.RASimport.sdf, è stato sufficiente eseguire il comando Storage Area Export dal menu PreRAS.

Figura 26 - storage_areas.shp

Shape	Usermax	Mineley	Manaley	Sa_io
Polygon	1.0	1.0	40.0	adda_ogli
Polygon	1.0	1.0	40.0	lamb_adda
Polygon	1.0	1.0	40.0	rogg_lamb
Polygon	1.0	1.0	40.0	staf_vers
Polygon	1.0	1.0	40.0	ogli_minc
Polygon	1.0	1.0	40.0	chia_arda
Polygon	1.0	1.0	40.0	tido_treb
Polygon	1.0	1.0	40.0	vers_po
Polygon	1.0	1.0	40.0	po_tido
Polygon	1.0	1.0	40.0	treb_nure
Polygon	1.0	1.0	40.0	cros_secc
Polygon	1.0	1.0	40.0	nure_chia
Polygon	1.0	1.0	40.0	arda_ongi
Polygon	1.0	1.0	40.0	ongi_taro
Polygon	1.0	1.0	40.0	taro_parm
Polygon	1.0	1.0	40.0	parm_enza
Polygon	1.0	1.0	40.0	enza_cros
Polygon	1.0	1.0	40.0	pana_po
Polygon	1.0	1.0	40.0	secc_pana

Figura 27 - Editing di storage_areas.shp

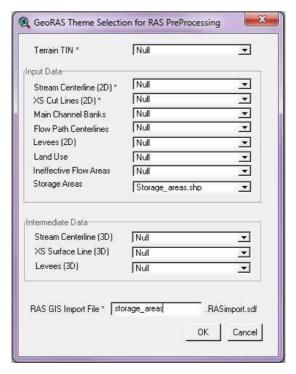


Figura 28 - Theme selection

Tale file è stato quindi importato nel modello in HEC-RAS aprendone la geometria ed eseguendo il comando Import $Geometry\ Data
ightarrow\ GIS\ Format\ dal\ menu\ File\ (Figura\ 29).$

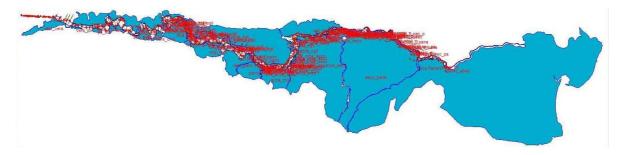


Figura 29 - Geometry file del modello in HEC-RAS aggiornato con le storage area

Una volta acquisita la geometria, tali informazioni sono state completate im HEC-RAS inserendo le curve di riempimento dei comparti nello *Storage Area Editor* (Figura 30) e le loro quote di fondo nell'*Unsteady Flow Data Editor* (Figura 31).

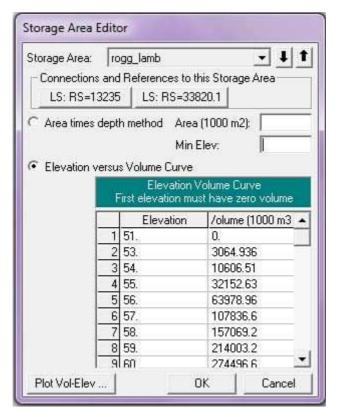


Figura 30 - Inserimento della curva di riempimento (z,V) nello StorageArea Editor

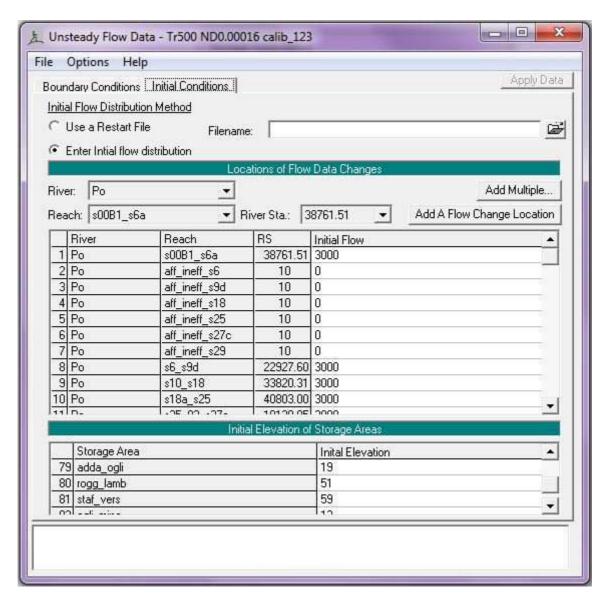


Figura 31 - Inserimento delle quote di fondo dei comparti nell'*Unsteady*flow data editor

Le Storage Area sono state infine collegate alle golene già presenti e al corso d'acqua attraverso, rispettivamente, delle Storage Area Connection (Figura 32) e delle Lateral Structure (Figura 34), le cui tabelle sono riportate in Appendice A3. Sebbene entrambi gli elementi schematizzino gli argini maestri, sono rilevabili delle differenze; una Storage Area Connection viene semplicemente identificata dalle Storage Area che collega e dall'andamento, descritto per punti, della sommità arginale (Figura 33).

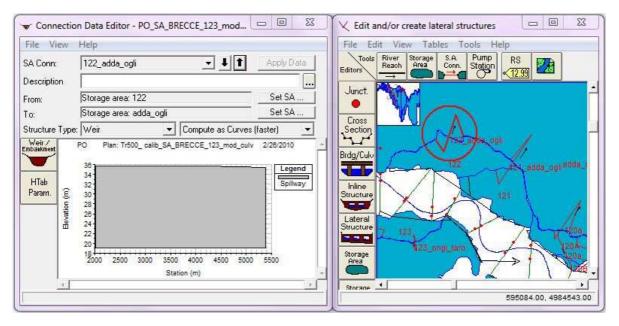


Figura 32 - Creazione di una Storage Area Connection

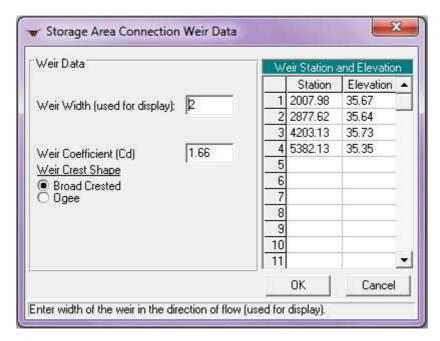


Figura 33 - Inserimento per punti della sommità arginale della *Storage*Area Connection

Viceversa, una Lateral Structure è un elemento longitudinale che viene caratterizzato attraverso diversi parametri; vanno innanzitutto indicate la Storage Area di riferimento, la sua collocazione in destra o sinistra idraulica e la sua River

Station² (Figura 34). Nell'editor della sommità arginale si può specificare la distanza dalla Cross Section di monte (Figura 35) e sussiste la possibilità di inserire al suo interno una Culvert, ovvero un canale dotabile di una valvola non ritorno (Figura 36). Tale escamotage è stato utilizzato per modellare più realisticamente le tre Lateral dalle quali le simulazioni evidenziavano la fuoriuscita di volumi idrici tracimati nella Storage Area da altre Lateral Structure ad essa connesse (Tabella 3); l'espediente si è reso necessario per porre rimedio ad un limite intrinseco del programma, schematizza, come detto, i comparti idraulici come vasche di accumulo, e quindi simula un trasferimento istantaneo delle masse d'acqua da un punto all'altro non corrispondente alla loro reale propagazione. In tutti e tre i casi la sommità arginale è stata spostata ben al di sopra del massimo tirante idrico previsto e la Culvert è stata definita in modo da riprodurre l'andamento dell'argine reale (Figura 37); è stato possibile inoltre definire per ognuno la perdita di carico e il coefficiente di Manning.

Comparto	Lateral Structure con Culvert		
	LS	Reach	
rogg_lamb	33820.1	s10_s18	
lamb_adda1	36364	s18a_s25	
lamb_adda2	10029	s18a_s25	

Tabella 3 - Lateral Structure in cui è stata inserita una Culvert

Il fenomeno precedentemente descritto coinvolge anche delle *Storage Area Connection;* purtroppo il differente e più semplice editor non ha consentito di porvi rimedio.

67

_

² La *River station* è il numero identificativo di ciascun elemento posto lungo il fiume; il programma impone che esso, all'interno di ciascun ramo in cui il corso d'acqua è suddiviso, sia decrescente da monte a valle, in modo che l'ordine sia univocamente definito.

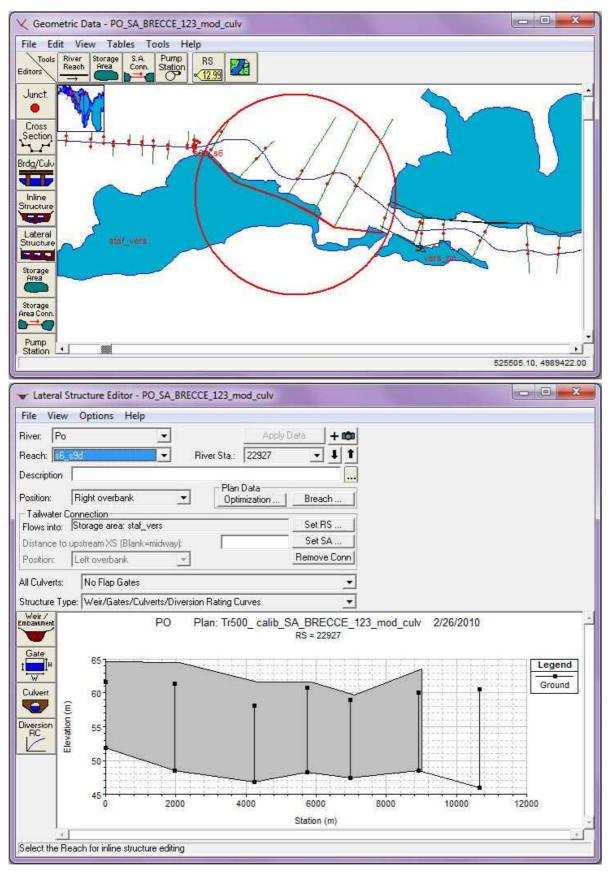


Figura 34 - Creazione di una Lateral Structure

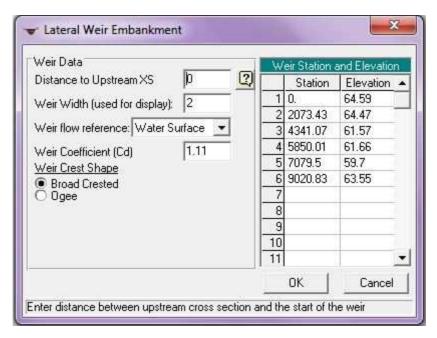


Figura 35 - Inserimento della sommità arginale per punti e della distanza dalla sezione di monte della Lateral Structure

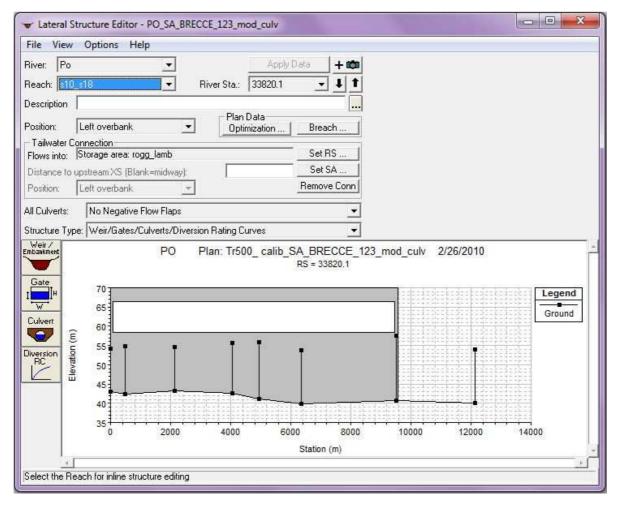


Figura 36 - Lateral Structure con Culvert

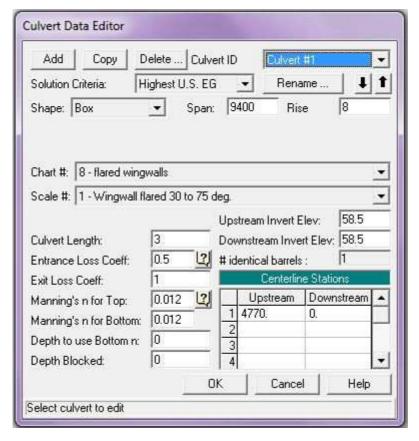


Figura 37 - Culvert Data Editor

4.3 Modellazione dei fenomeni di rotta arginale

localizzazione delle rotte arginali attese stata realizzata attraverso un processo iterativo. Dopo aver individuato tra le Lateral Structure la prima in ordine temporale soggetta a tracimazione, è stata inserita in essa una breccia ed è stata condotta una nuova simulazione con la configurazione arginale modificata, grazie alla quale è stata individuata con lo stesso criterio la successiva Lateral Structure in cui simulare una rotta. Tale processo è stato ripetuto fino al raggiungimento di una configurazione in cui in tutti gli argini interessati da tracimazione fosse stata inserita una breccia. Per quanto riguarda qli aspetti modellistici (Figura 38), è stato imposto che la formazione di ogni breccia avesse inizio al raggiungimento di un tirante

idrico pari all'altezza del relativo argine (rotta per tracimazione) e avesse una durata pari a tre ore; tale supportata da studi la scarsa scelta, che evidenziano influenza sui risultati della simulazione della variazione del tempo di formazione della breccia tra zero e sei ore (Brath e Di Baldassarre, 2006), è finalizzata a massimizzare la stabilità del modello. Per la larghezza finale della breccia si è optato per un valore di 400 m in seguito all'analisi della casistica storica delle rotte verificatesi nel Po (Grafico 24) effettuata dall'AdB-Po sulla base dei dati riportati da Govi e Turitto (Govi e Turitto, 2000), mentre per la quota di fondo si è assunta la maggiore tra quella del piano golenale e del piano campagna prospicienti l'argine maestro.

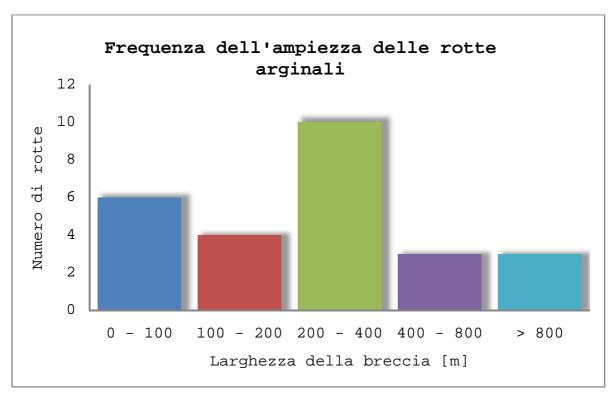


Grafico 24 - Frequenza dell'ampiezza delle rotte arginali nel Po (Fonte : AdB-Po - DISTART, 2008)

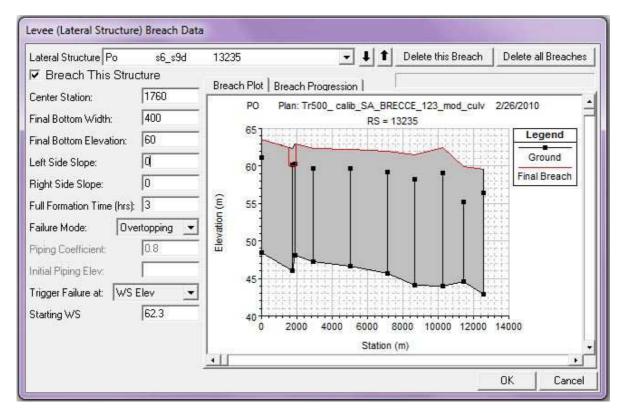


Figura 38 - Inserimento dei dati relativi ad una breccia

La configurazione finale delle brecce inserite è illustrata in Figura 39 e riassunta in Tabella 4; è riportata per esteso in Appendice A4.

Comparto		Breccia
Comparco	LS	Reach
nure_chia	23793	s18a_s25
chia_arda	13794	s25_02_s27c
	9645	s25_02_s27c
parm_enza	8000	s33c_s36a
enza_cros	32590	s37_s41a
rogg_lamb	13235	s6_s9d
lamb_adda0	22212	s10_s18
lamb_adda1	12735	s10_s18
lamb_adda2	34529	s18a_s25
adda_ogli	19138	s25_02_s27c

Tabella 4 - Configurazione finale delle brecce

Figura 39 - Collocazione delle brecce

Quattro di queste brecce (Tabella 5) sono fittizie, ovvero servono a simulare la rotta arginale attesa in realtà in altrettante Storage Area Connection a loro adiacenti, nelle quali però il differente editor non ne permetteva la modellazione. In questi casi è stato indicato per l'inizio della rotta il tirante idrico riscontrato in quella sezione nell'istante di inizio tracimazione nella corrispondente Storage Area Connection.

Comparto		Breccia
Compar co	LS	Storage Area Connection
chia_arda	13794	42_chia_arda
CIIIa_arda	9645	130_chia_arda
lamb_adda2	34529	s18a_s25_2_lam
adda_ogli	19138	43_adda_ogli

Tabella 5 - Brecce fittizie e corrispondenti Storage Area Connection

4.4 Risultati

simulazione condotta con la configurazione attuale ha evidenziato che, in caso di evento di piena con ritorno cinquecentennale, undici dei comparti di Fascia C verrebbero interessati da esondazione (Tabella 6, Figura 40, Figura 41, Grafico 25, Grafico 26, Grafico 27, Grafico 28, Grafico 29, Grafico 30, Grafico 31, Grafico 32, Grafico 33, Grafico 34, Grafico 35, Grafico 36, Grafico 37, Grafico 38, Grafico 39, Grafico 40, Grafico 41, Grafico 42, Grafico 43, Grafico 44 e Grafico 45), con tiranti massimi anche dell'ordine di diversi metri e con ingenti volumi d'acqua coinvolti. I risultati riportati in Tabella 7 ovviamente della schematizzazione concettuale adottata per il comportamento idraulico dei comparti, poiché essa concentra immediatamente nelle zone più depresse i volumi esondati in reltà occupano inizialmente che avvallamenti locali, impiegando un tempo finito per trasferimento dal punto di tracimazione a quello di accumulo finale.

Posizione	Comparto	Data inizio	Ora inizio
destra	staf_vers	2-Dec	21:30
destra	vers_po	3-Dec	01:30
destra	chia_arda	3-Dec	13:00
sinistra	adda_ogli	3-Dec	22:30
sinistra	lamb_adda2	3-Dec	23:30
sinistra	lamb_adda0	4-Dec	01:30
sinistra	rogg_lamb	4-Dec	02:00
sinistra	lamb_adda1	4-Dec	03:00
destra	parm_enza	4-Dec	04:30
destra	nure_chia	4-Dec	05:00
destra	enza_cros	4-Dec	09:00

Tabella 6 - Comparti idraulici interessati da esondazione nella configurazione arginale attuale in ordine di allagamento

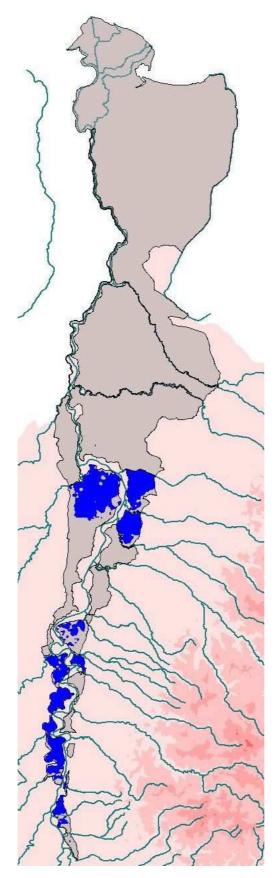


Figura 40 - Allagamento dei comparti nella configurazione arginale attuale



Figura 41 - Dettaglio dell'allagamento del comparto lamb_adda2 nell'attuale configurazione arginale

	Comparto	Tirante [m]	Volume [1000 m ³]
	staf_vers	4.19	142.6
	vers_po	4.19	56.1
destra	nure_chia	7.04	19677.55
idraulica	chia_arda	3.62	16577.99
	parm_enza	6.59	160349.96
	enza_cros	6.69	301204.99
	rogg_lamb	8.14	222478.28
sinistra idraulica	lamb_adda0	7.64	28996.14
	lamb_adda1	6.59	97468.41
	lamb_adda2	7.01	49132.81
	adda_ogli	3.34	262381.03

Tabella 7- Tiranti e volumi massimi nei comparti interessati da esondazione nell'attuale configurazione arginale

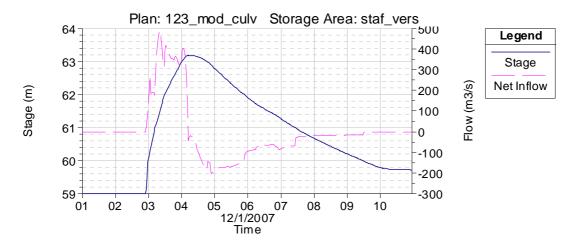


Grafico 25 - Andamento nel tempo di tirante e portata nel comparto staf_vers nell'attuale configurazione arginale

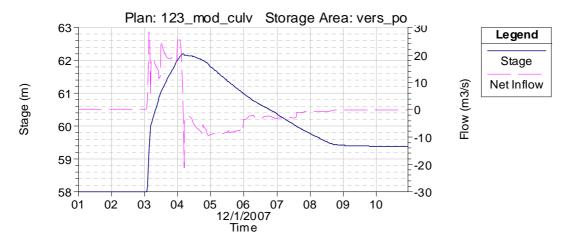


Grafico 26 - Andamento nel tempo di tirante e portata nel comparto vers_po nell'attuale configurazione arginale

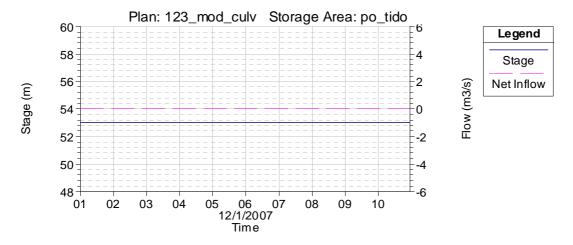


Grafico 27 - Andamento nel tempo di tirante e portata nel comparto po_tido nell'attuale configurazione arginale

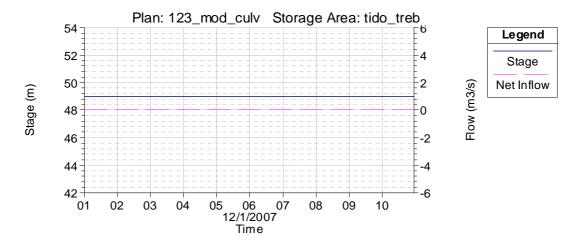


Grafico 28 - Andamento nel tempo di tirante e portata nel comparto tido_treb nell'attuale configurazione arginale

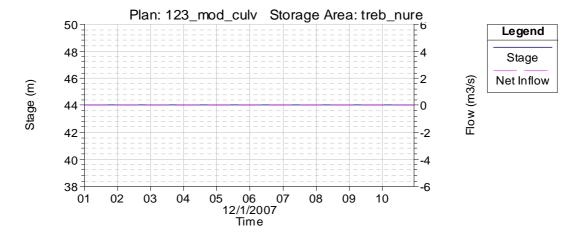


Grafico 29 - Andamento nel tempo di tirante e portata nel comparto treb_nure nell'attuale configurazione arginale

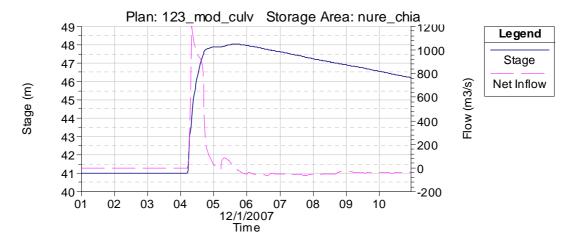


Grafico 30 - Andamento nel tempo di tirante e portata nel comparto nure_chia nell'attuale configurazione arginale

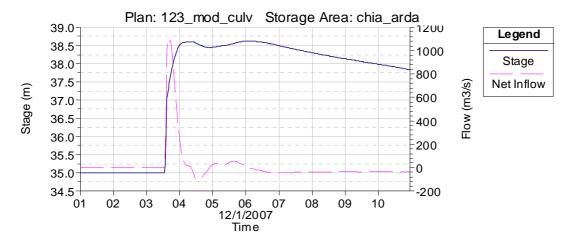


Grafico 31 - Andamento nel tempo di tirante e portata nel comparto chia_arda nell'attuale configurazione arginale

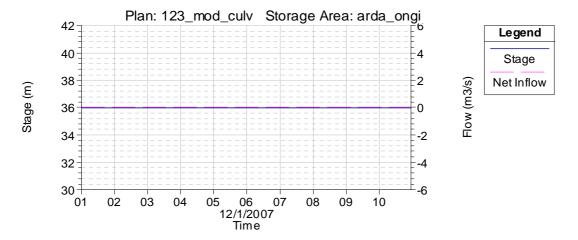
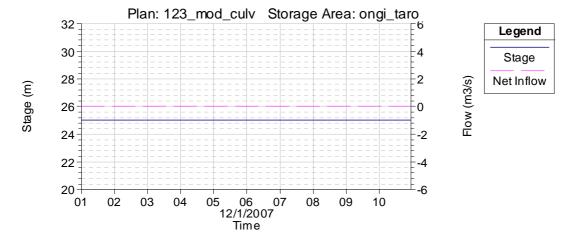



Grafico 32 - Andamento nel tempo di tirante e portata nel comparto arda_ongi nell'attuale configurazione arginale

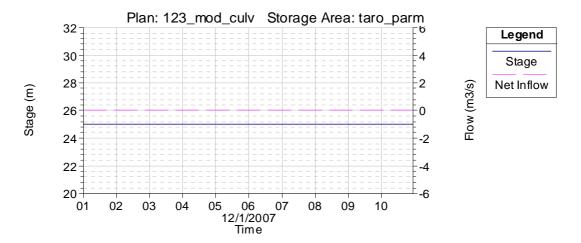


Grafico 34 - Andamento nel tempo di tirante e portata nel comparto taro_parm nell'attuale configurazione arginale

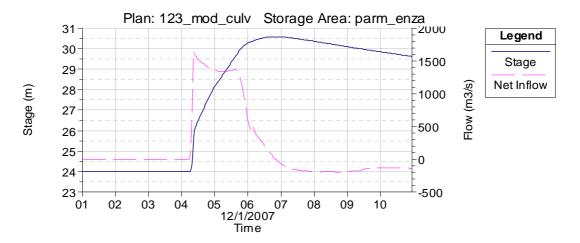


Grafico 35 - Andamento nel tempo di tirante e portata nel comparto parm_enza nell'attuale configurazione arginale

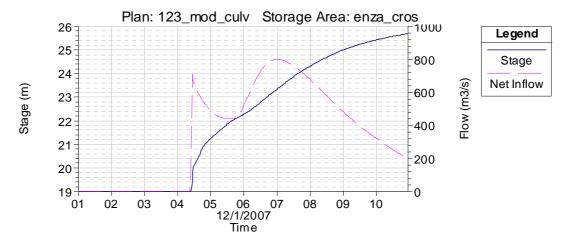


Grafico 36 - Andamento nel tempo di tirante e portata nel comparto enza_cros nell'attuale configurazione arginale

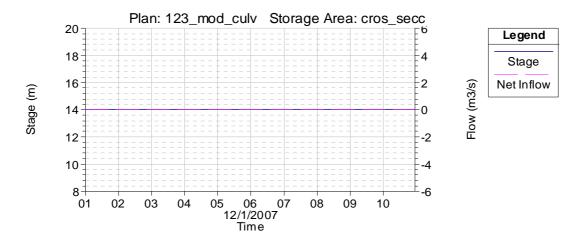


Grafico 37 - Andamento nel tempo di tirante e portata nel comparto cros_secc nell'attuale configurazione arginale

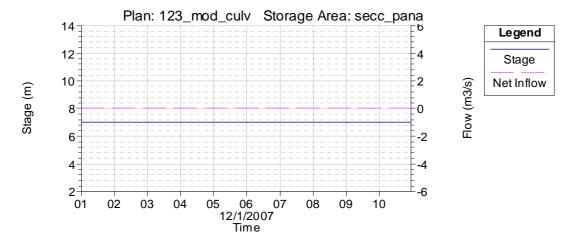


Grafico 38 - Andamento nel tempo di tirante e portata nel comparto secc_pana nell'attuale configurazione arginale

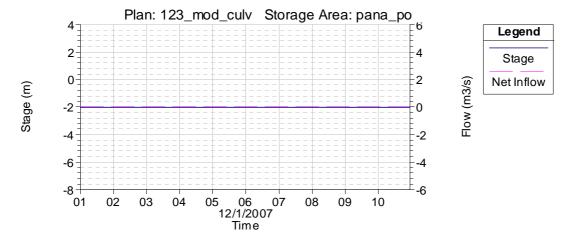


Grafico 39 - Andamento nel tempo di tirante e portata nel comparto pana_po nell'attuale configurazione arginale

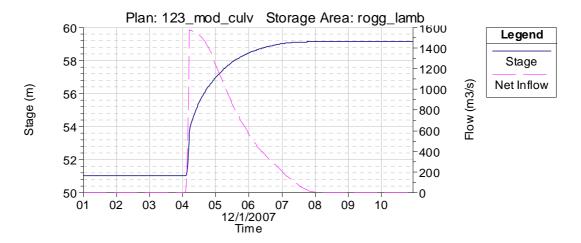


Grafico 40 - Andamento nel tempo di tirante e portata nel comparto rogg_lamb nell'attuale configurazione arginale

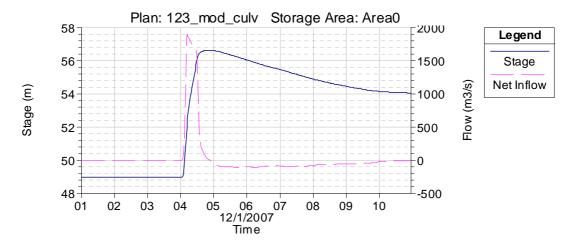


Grafico 41 - Andamento nel tempo di tirante e portata nel comparto lamb_adda0 nell'attuale configurazione arginale

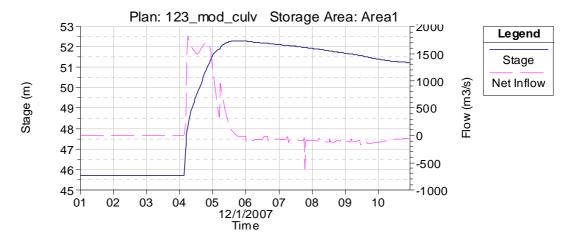


Grafico 42 - Andamento nel tempo di tirante e portata nel comparto lamb_adda1 nell'attuale configurazione arginale

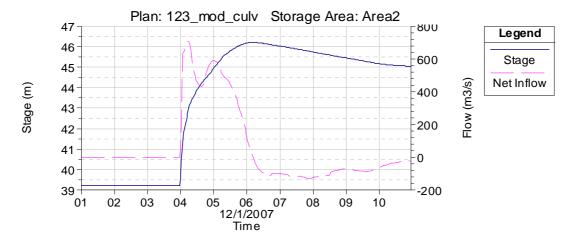


Grafico 43 - Andamento nel tempo di tirante e portata nel comparto lamb_adda2 nell'attuale configurazione arginale

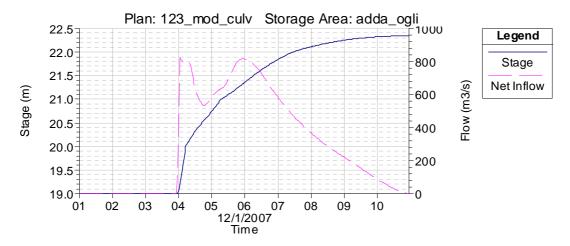


Grafico 44 - Andamento nel tempo di tirante e portata nel comparto adda_ogli nell'attuale configurazione arginale

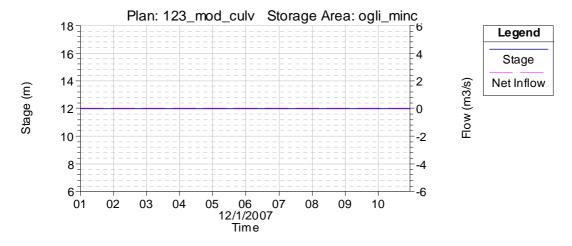


Grafico 45 - Andamento nel tempo di tirante e portata nel comparto ogli_minc nell'attuale configurazione arginale

I risultati in termini di portate (Tabella 8) evidenziano la presenza di flussi provenienti dai comparti in direzione del corso d'acqua; dati gli espedienti modellistici illustrati nel paragrafo 4.2, le portate negative presenti sono di tre tipologie (Tabella 9): quelle derivanti da Storage Area connesse al Fiume tramite un'unica Lateral Structure, per le quali il fenomeno risulta verosimile e non è stato preso alcun provvedimento; quelle provenienti da argini in cui è stata inserita una breccia, che impedisce qualunque controllo della direzione del flusso; quelle date dalle Storage Area Connection, che per i limiti dell'editor precedentemente discussi non consentono l'inserimento di valvole di non ritorno. In alcuni casi due delle suddette condizioni si sommano.

Comparto	Inflow [m ³ /s]	Outflow [m ³ /s]
staf_vers	488.43	202.45
vers_po	28.33	9.52
nure_chia	1198.64	65.52
chia_arda	1095.57	100.39
parm_enza	1645.26	197.99
enza_cros	801.41	0
rogg_lamb	1579.47	0
lamb_adda0	1901.85	109.2
lamb_adda1	1824.61	608.92
lamb_adda2	708.21	129.93
adda_ogli	820.56	0

Tabella 8 - Portate massime in ingresso e in uscita dalle Storage Area nell'attuale configurazione arginale

Comparto	Origine della portata negativa	Tipologia
staf_vers	LS 22927	unica LS
vers_po	LS 11401	unica LS

Comparto	Origine della portata negativa	Tipologia
nure_chia	LS 23793	unica LS con breccia
chia_arda	LS 13794 LS 9645	LS con breccia
	130_chia_arda	Storage Area Connection
	LS 8000	LS con breccia
parm_enza	115c_parm_enza 115f_parm_enza	Storage Area Connection
lamb_adda0	LS 22212	unica LS con breccia
lamb adda1	LS 12735	LS con breccia
lamb_adda1	s18a_s25_1_lam	Storage Area Connection
lamb add-0	LS 34529	LS con breccia
lamb_adda2	s18a_s25_2_lam	Storage Area Connection

Tabella 9 - Origine delle portate negative ottenute dalla simulazione nell'attuale configurazione arginale

5 EVENTO DI PIENA AL LIMITE DELLA PREVEDIBILITÀ: SIMULAZIONE IDRAULICA CON ARGINI TRACIMABILI (INERODIBILI)

Nell'ultima parte del lavoro è stato preso a riferimento uno scenario ipotetico di argini maestri inerodibili, corrisponderebbe in pratica ad un intervento di rivestimento e consolidamento del lato campagna di tutte le arginature maestre attualmente interessate dal fenomeno di sormonto in occasione dell'evento di piena cinquecentennale. Lo scenario ipotetico preso a riferimento fornisce indicazioni precise relativamente ai volumi di piena da gestire esternamente alle arginature maestre ipotizzando che non avvengano fenomeni di rotta arginale. L'identificazione di detti volumi costituisce un primo passo nella direzione del controllo e della gestione degli eventi di piena al limite della prevedibilità; essendo infatti lo scenario preso a riferimento, come già detto, del tutto ipotetico, e non essendo possibile neppure realizzare per i motivi illustrati nella Premessa (paragrafo 1.1) una configurazione arginale tale da evitare la tracimazione di fronte a qualsiasi evento di piena (c. d. eventi di piena al limite della prevedibilità, cinquecentennali o millenari), i limite suddetti eventi al della prevedibilità devono necessariamente essere gestiti anche attraverso laminazione controllata all'esterno delle arginature maestre ad ed. DISTART - AdB-Po, 2008). A tal fine vanno quantificati i volumi da scolmare (primo passo compiuto nel presente lavoro di Tesi), identificare le zone esterne alle aginature maestre più adatte ad accogliere i volumi laminazione nell'ottica di minimizzare le condizioni rischio idraulico e, infine, proteggere i tratti arginali tracimabili dai fenomeni erosivi, con l'auspicio scongiurare rotte catastrofiche come quella di Occhiobello (FE) del novembre del 1951. Esse infatti provocano pericolose incontrollate e ingenti danni al patrimonio socioeconomico in un territorio, come anticipato, densamente popolato e intensamente sfruttato da un punto di vista agricolo e industriale.

Per poter valutare i volumi di piena da laminare in maniera controllata, il modello è stato modificato impedendo formazione delle brecce (comando Delete all Breaches nel Lateral Structure Breach Editor, Figura 42) ed è stata condotta una nuova simulazione, i cui esiti sono stati studiati poi confrontati con quelli precedentemente е ottenuti ed illustrati nel capitolo 4.

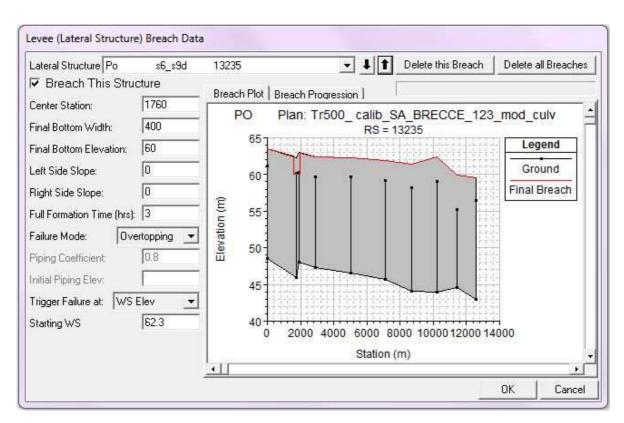


Figura 42 - Adattamento del modello alla configurazione con argini inerodibili

5.1 Risultati

La simulazione condotta sotto l'ipotesi di argini inerodibili ha evidenziato una differente dinamica della propagazione della piena e delle esondazioni all'esterno delle arginature maestre, con tredici comparti su ventuno interessati da esondazione (Tabella 10, Figura 43 e Figura 44, Grafico 46, Grafico 47, Grafico 48, Grafico 49, Grafico 50, Grafico 51, Grafico 52, Grafico 53, Grafico 54, Grafico 55, Grafico 56, Grafico 57, Grafico 58, Grafico 59, Grafico 60, Grafico 61, Grafico 62, Grafico 63, Grafico 64, Grafico 65 e Grafico 66)

e tiranti che si attestano ovunque al di sotto dei sette metri (Tabella 11).

Posizione	Comparto	Data inizio	Ora inizio
destra	staf_vers	2-Dec	21:30
destra	vers_po	3-Dec	01:30
destra	chia_arda	3-Dec	13:30
sinistra	adda_ogli	3-Dec	18:00
sinistra	lamb_adda2	4-Dec	01:30
sinistra	rogg_lamb	4-Dec	02:30
sinistra	lamb_adda0	4-Dec	02:30
sinistra	lamb_adda1	4-Dec	03:30
destra	parm_enza	4-Dec	03:30
destra	nure_chia	4-Dec	04:00
destra	enza_cros	4-Dec	07:00
destra	tido_treb	4-Dec	11:30
destra	cros_secc	4-Dec	14:30

Tabella 10 - Comparti idraulici interessati da esondazione nella configurazione con argini inerodibili in ordine di allagamento

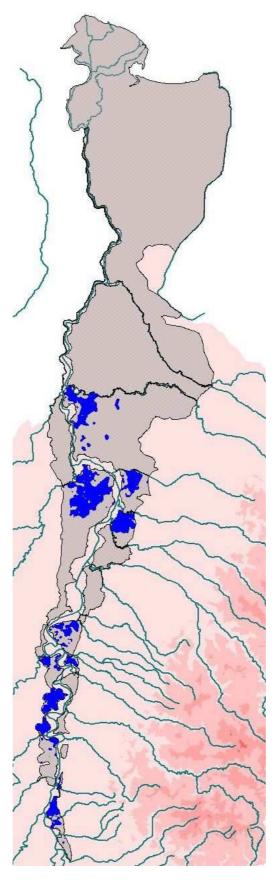


Figura 43 - Allagamento dei comparti nella configurazione con argini inerodibili

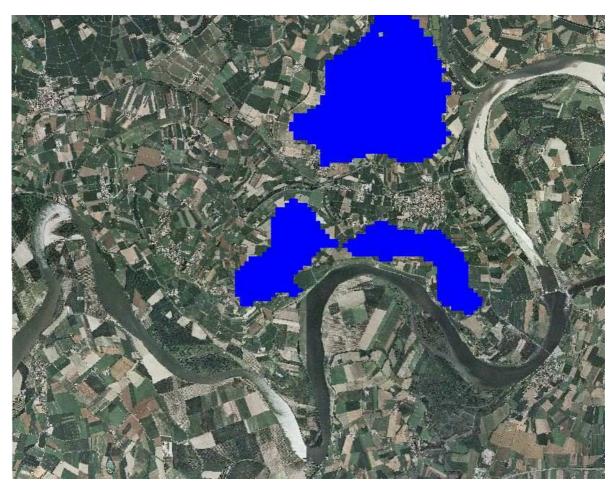


Figura 44 - Dettaglio dell'allagamento del comparto lamb_adda2 nella configurazione con argini inerodibili

	Comparto	Tirante [m]	Volume [1000 m ³]
	staf_vers	4.45	160.52
	vers_po	4.51	68.19
	tido_treb	0.35	64.14
destra	nure_chia	4.53	13189.26
idraulica	chia_arda	3.44	13878.89
	parm_enza	3.46	60429.14
	enza_cros	2.46	36365.01
	cros_secc	3.93	68546.90

	Comparto	Tirante [m]	Volume [1000 m ³]
	rogg_lamb	2.50	6852.48
sinistra	lamb_adda0	6.94	52563.46
idraulica	lamb_adda1	5.10	81573.21
Idraulica	lamb_adda2	4.33	19611.70
	adda_ogli	2.61	150400.23

Tabella 11- Tiranti e volumi massimi nei comparti interessati da esondazione nella configurazione con argini inerodibili

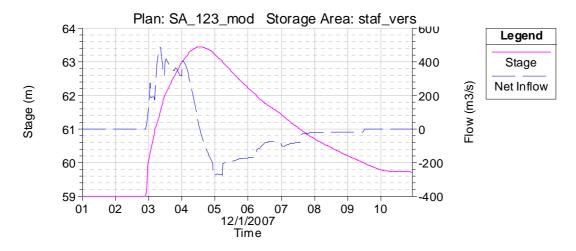


Grafico 46 - Andamento nel tempo di tirante e portata nel comparto staf_vers nella configurazione con argini inerodibili

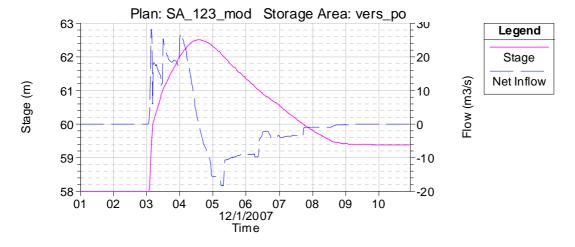


Grafico 47 - Andamento nel tempo di tirante e portata nel comparto vers_po nella configurazione con argini inerodibili

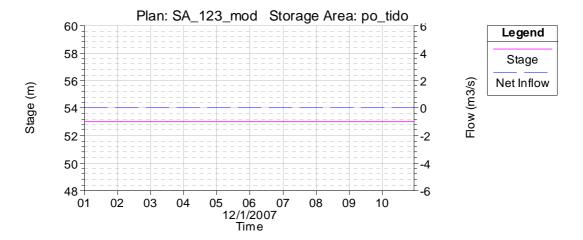


Grafico 48 - Andamento nel tempo di tirante e portata nel comparto po_tido nella configurazione con argini inerodibili

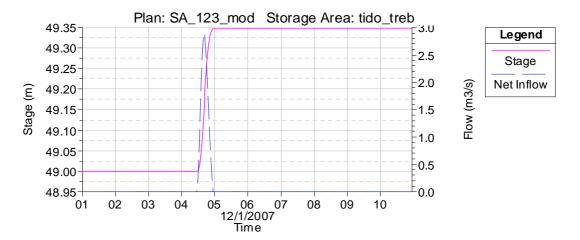


Grafico 49 - Andamento nel tempo di tirante e portata nel comparto tido_treb nella configurazione con argini inerodibili

Grafico 50 - Andamento nel tempo di tirante e portata nel comparto treb_nure nella configurazione con argini inerodibili

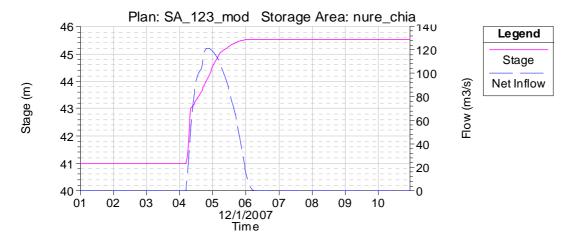


Grafico 51 - Andamento nel tempo di tirante e portata nel comparto nure_chia nella configurazione con argini inerodibili

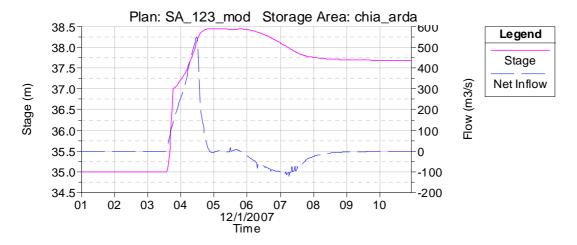


Grafico 52 - Andamento nel tempo di tirante e portata nel comparto chia_arda nella configurazione con argini inerodibili

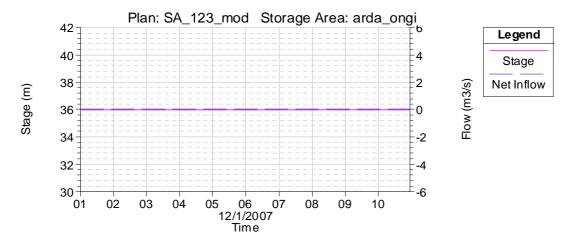


Grafico 53 - Andamento nel tempo di tirante e portata nel comparto arda_ongi nella configurazione con argini inerodibili

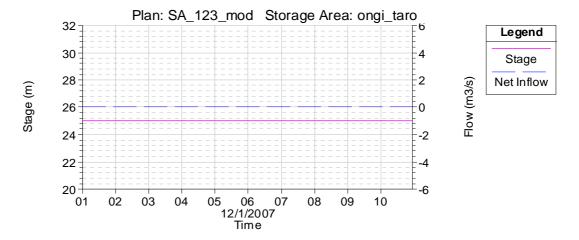


Grafico 54 - Andamento nel tempo di tirante e portata nel comparto ongi_taro nella configurazione con argini inerodibili

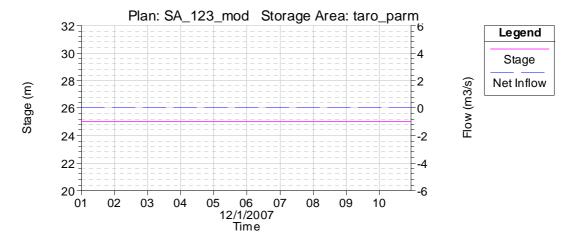


Grafico 55 - Andamento nel tempo di tirante e portata nel comparto taro_parm nella configurazione con argini inerodibili

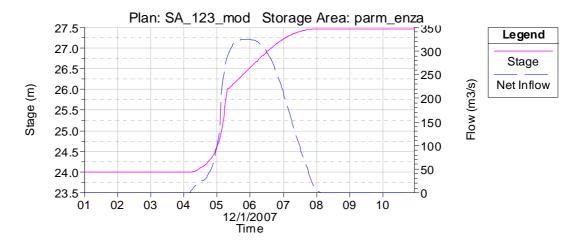


Grafico 56 - Andamento nel tempo di tirante e portata nel comparto parm_enza nella configurazione con argini inerodibili

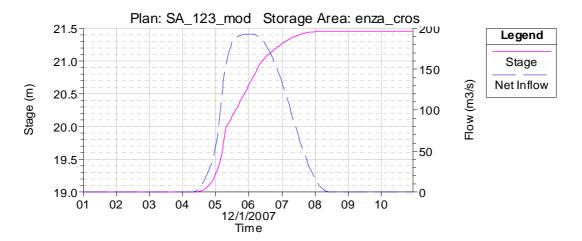


Grafico 57 - Andamento nel tempo di tirante e portata nel comparto enza_cros nella configurazione con argini inerodibili

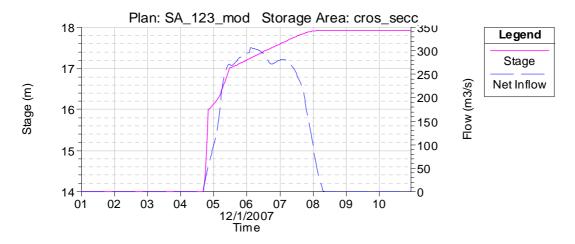


Grafico 58 - Andamento nel tempo di tirante e portata nel comparto cros_secc nella configurazione con argini inerodibili

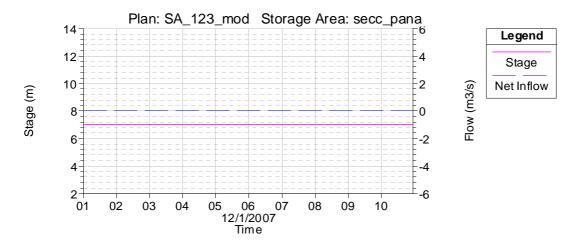


Grafico 59 - Andamento nel tempo di tirante e portata nel comparto secc_pana nella configurazione con argini inerodibili

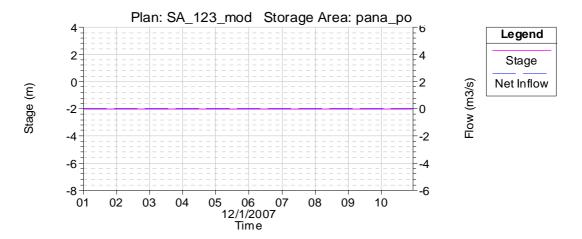


Grafico 60 - Andamento nel tempo di tirante e portata nel comparto pana_po nella configurazione con argini inerodibili

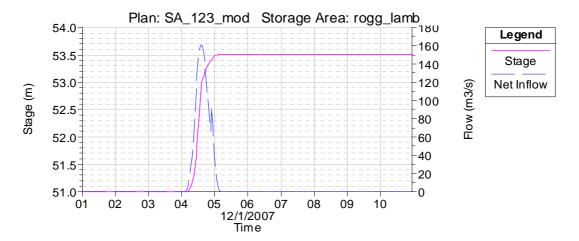


Grafico 61 - Andamento nel tempo di tirante e portata nel comparto rogg_lamb nella configurazione con argini inerodibili

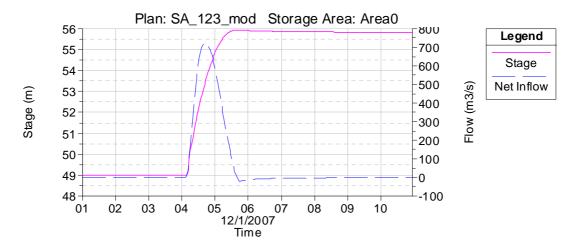


Grafico 62 - Andamento nel tempo di tirante e portata nel comparto lamb_adda0 nella configurazione con argini inerodibili

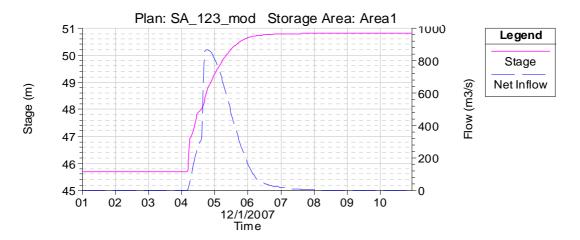


Grafico 63 - Andamento nel tempo di tirante e portata nel comparto lamb_addal nella configurazione con argini inerodibili

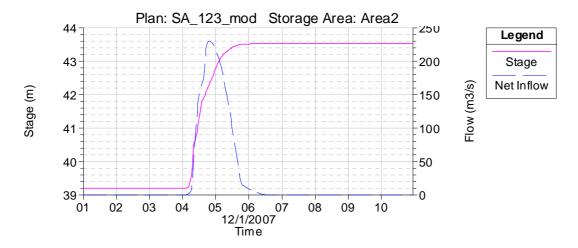


Grafico 64 - Andamento nel tempo di tirante e portata nel comparto lamb_adda2 nella configurazione con argini inerodibili

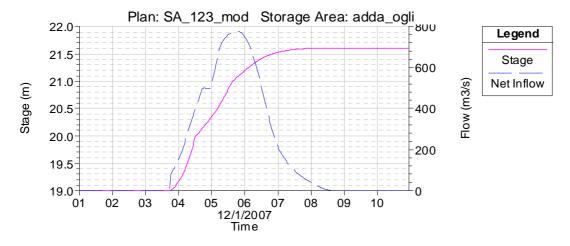


Grafico 65 - Andamento nel tempo di tirante e portata nel comparto adda_ogli nella configurazione con argini inerodibili

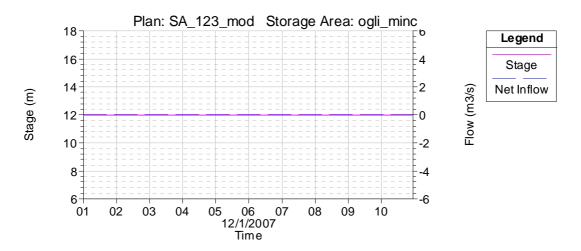


Grafico 66 - Andamento nel tempo di tirante e portata nel comparto ogli_minc nella configurazione con argini inerodibili

Dai risultati in termini di portata (Tabella 12) emerge ancora la presenza di portate provenienti dai comparti in direzione del corso d'acqua; i casi si sono però ridotti di numero e, facendo riferimento alla catalogazione illustrata nel paragrafo 4.4, ne permane uno solo dovuto ai limiti intrinseci del programma utilizzato.

	Comparto	Inflow [m³/s]	Outflow [m ³ /s]
	staf_vers	488.43	278.91
	vers_po	28.33	18.35
	tido_treb	2.91	0
destra	nure_chia	121.32	0
idraulica	chia_arda	548.67	120.12
	parm_enza	325.03	0
	enza_cros	193.14	0
	cros_secc	306.61	0
	rogg_lamb	160.93	0
sinistra idraulica	lamb_adda0	724.71	18.58
	lamb_adda1	867.79	0
TULAULICA	lamb_adda2	230.14	0
	adda_ogli	776.49	0

Tabella 12 - Portate massime in ingresso e in uscita dalle Storage Area nella configurazione con argini inerodibili

Comparto	Origine della portata negativa	Tipologia
staf_vers	LS 22927	unica LS
vers_po	LS 11401	unica LS
chia_arda	130_chia_arda	Storage Area Connection
lamb_adda0	LS 22212	unica LS

Tabella 13 - Origine delle portate negative ottenute dalla simulazione nella configurazione con argini inerodibili

6 CONFRONTO DEI RISULTATI

Il confronto dei risultati ottenuti dalle simulazioni con la configurazione arginale attuale e con quella ipotetica di arqini inerodibili evidenzia nel secondo scenario un netto calo dei volumi idrici tracimati (Tabella 14 e Grafico 67), con il valore totale che si riduce a meno della metà e una differente distribuzione che, a fronte di un modesto aumento comparti di monte in destra idraulica, comunque interessanti in maniera contenuta, prospetta un notevole calo nei comparti più a valle e in quelli situati in sinistra idraulica, ovvero quelli nei quali nell'attuale configurazione arginale l'evento di piena si rivelerebbe più dannoso.

	Volume invasato [1000 m³]		
Comparto	Argini erodibili	Argini inerodibili	
staf_vers	142.6	160.52	
vers_po	56.1	68.19	
po_tido	0	0	
tido_treb	0	64.14	
treb_nure	0	0	
nure_chia	19677.55	13189.26	
chia_arda	16577.99	13878.89	
arda_ongi	0	0	
ongi_taro	0	0	
taro_parm	0	0	
parm_enza	160349.96	60429.14	
enza_cros	301204.99	36365.01	
cros_secc	0	68546.9	
secc_pana	0	0	
pana_po	0	0	
rogg_lamb	222478.28	6852.48	
lamb_adda0	28996.14	52563.46	
lamb_adda1	97468.41	81573.21	
lamb_adda2	49132.81	19611.7	

	Volume invasato [1000 m³]	
Comparto	Argini erodibili	Argini inerodibili
adda_ogli	262381.03	150400.23
ogli_minc	0	0
TOTALE	1158465.86	503703.13

Tabella 14 - Confronto tra i volumi idrici invasati nei comparti idraulici nelle configurazioni con argini erodibili e inerodibili

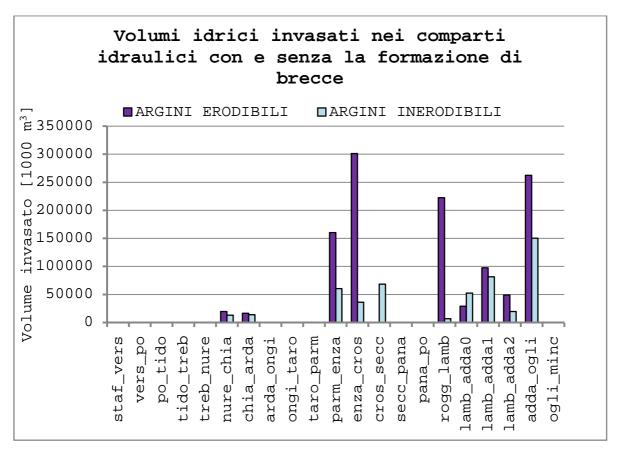


Grafico 67 - Confronto tra i volumi idrici invasati nei comparti idraulici nelle configurazioni con argini erodibili e inerodibili

Anche lo studio delle portate evidenzia le ricadute positive dell'ipotesi di laminazione controllata dell'evento di piena cinquecentennale sui comparti più coinvolti, il cui contraltare è rappresentato dal coinvolgimento nel processo di tracimazione del comparto cros_secc.

	Portata massima [m³/s]	
Comparto	Argini erodibili	Argini inerodibili
staf_vers	488.43	488.43
vers_po	28.33	28.33
po_tido	0	0
tido_treb	0	2.91
treb_nure	0	0
nure_chia	1198.64	121.32
chia_arda	1095.57	548.67
arda_ongi	0	0
ongi_taro	0	0
taro_parm	0	0
parm_enza	1645.26	325.03
enza_cros	801.41	193.14
cros_secc	0	306.61
secc_pana	0	0
pana_po	0	0
rogg_lamb	1579.47	160.93
lamb_adda0	1901.85	724.71
lamb_adda1	1824.61	867.79
lamb_adda2	708.21	230.14
adda_ogli	820.56	776.49
ogli_minc	0	0

Tabella 15 - Confronto tra le portate massime in ingresso nei comparti idraulici nelle configurazioni con argini erodibili e inerodibili

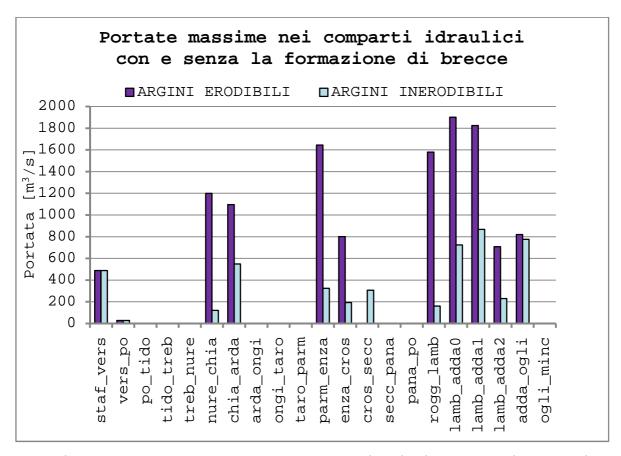


Grafico 68 - Confronto tra le portate massime in ingresso nei comparti idraulici nelle configurazioni con argini erodibili e inerodibili

Il confronto tra i tiranti conferma infine la tendenza già rilevata, con il tirante medio che per lo scenario ipotetico di argini maestri tracimabili diminuisce di ottanta centimetri, e il suo valore locale che subisce lievi rialzi nei comparti situati nella fascia più di monte in destra idraulica e notevoli abbassamenti nei comparti più critici, arrivando spesso a dimezzarsi e, nel caso del comparto rogg_lamb, a ridursi a meno di un terzo.

	Tirante [m]	
Comparto	Argini erodibili	Argini inerodibili
staf_vers	4.19	4.45
vers_po	4.19	4.51
po_tido	0	0
tido_treb	0	0.35
treb_nure	0	0

	Tirante [m]	
Comparto	Argini erodibili	Argini inerodibili
nure_chia	7.04	4.53
chia_arda	3.62	3.44
arda_ongi	0	0
ongi_taro	0	0
taro_parm	0	0
parm_enza	6.59	3.46
enza_cros	6.69	2.46
cros_secc	0	3.93
secc_pana	0	0
pana_po	0	0
rogg_lamb	8.14	2.5
lamb_adda0	7.64	6.94
lamb_adda1	6.59	5.1
lamb_adda2	7.01	4.33
adda_ogli	3.34	2.61
ogli_minc	0	0
MEDIA	3.10	2.31

Tabella 16 - Confronto tra i tirnati massimi nei comparti idraulici nelle configurazioni con argini erodibili e inerodibili

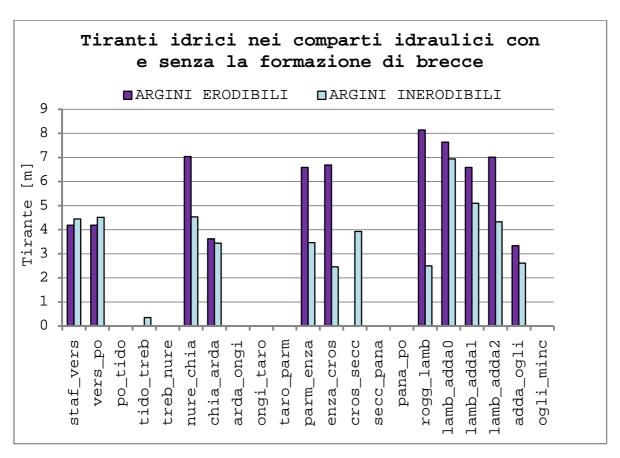


Grafico 69 - Confronto tra i tirnati massimi nei comparti idraulici nelle configurazioni con argini erodibili e inerodibili

7 CONCLUSIONI

illustrato nella presente dissertazione prefisso il compito di studiare la propagazione di un evento di piena al limite della prevedibilità lungo il corso medio inferiore del Fiume Po. In questo contesto si è definito come evento di piena al limite della prevedibiltà un evento con tempo di ritorno pari a cinquecento anni. Lo studio ha necessariamente preso in considerazione е riprodotto attraverso una schematizzazione concettuale le esondazioni all'esterno delle arginature maestre che si verificherebbero in conseguenza ad un evento estremo, quale quello preso in esame, nei comparti idraulici prospicienti l'asta fluviale, costituiti dalle zone classificate dall'Autorità di Bacino come Fascia C e comprese tra due affluenti contigui. Tale obiettivo colloca il presente studio all'interno delle linee strategiche individuate dall'AdB-Po per la mitigazione del rischio residuale, ossia quello che permane anche in presenza di opere di difesa progettate e verificate con riferimento ad un ben preciso tempo di ritorno (nel caso in esame TR di progetto = 200 anni).

Il punto di partenza è stato il modello numerico quasibidimensionale precedentemente sviluppato in HEC-RAS, la cui schematizzazione geometrica copriva unicamente l'alveo del (Fasce A e B secondo la denominazione dall'AdB-Po) e le cui condizioni iniziali e al rispecchiavano un evento con tempo di ritorno pari a duecento anni. Si è proceduto alla definizione di nuove sollecitazioni progetto attraverso ripetute simulazioni, riprodurre nelle sezioni strumentate del Po gli idrogrammi sintetici con tempo di ritorno di cinquecento anni messi a punto dal D.I.I.A.R. (Dipartimento di Ingegneria Idraulica, Ambientale e del Rilevamento, DIIAR, 2001) del Politecnico di Ιl modello poi Milano. stesso è stato aggiornato considerevolmente modificato. Il risultato consiste in nuovo modello numerico idraulico di tipo quasi-bidimensionale che, attraverso una schematizzazione concettuale, riproduce il comportamento idraulico in occasione di eventi di piena al limite della prevedibilità per tutte e tre le Fasce Fluviali considerate nel PAI dell'AdB-Po (Fasce A, B C, v. PAI, 1999).

I diversi comparti idraulici in cui può essere suddivisa la Fascia C sono stati inseriti nel modello e geometricamente descritti in termini di curve di riempimento, ricavate a partire dal DTM del Bacino del Po attraverso specifiche funzioni del software ArcView.

Una volta predisposto il modello sono state condotte due tipologie di simulazioni. Una prima serie è stata volta alla definizione in maniera iterativa dei punti critici degli argini maestri, ovvero quelli nei quali si prevedeva avvenisse la tracimazione, e alla modellazione in essi della formazione di brecce, decisive per una corretta riproduzione fenomeno di esondazione all'esterno delle arginature nell'attuale configurazione. maestre Pare opportuno sottolineare in questo contesto come le arginature maestre vengano comunemente progettate con il solo fine di contenere le portate di piena in alveo, e come quindi una eventuale tracimazione induca fenomeni erosivi che solitamente portano all'apertura di una breccia nel manufatto (rotta arginale). Un'ulteriore simulazione ha permesso di valutare l'evoluzione l'ipotesi di del fenomeno sotto un intervento consolidamento degli argini maestri critici nei tratti (interessati dai sormonti) e quindi di rotta arginale impedita.

Il confronto dei risultati ottenuti ha evidenziato i benefici associati ad una laminazione controllata dell'evento di piena all'esterno delle arginature. In questo contesto il termine "controllata" è esclusivamente associato al fenomeno di rotta arginale, come detto inibita per lo scenario ipotetico. I benefici di tale controllo si hanno in termini di volumi e portate esondate e di tiranti attesi nei comparti idraulici. E' bene sottolineare come tale scenario sia un punto di partenza per un affinamento della strategia di difesa gestione delle piene al limite della prevedibilità. Infatti le ampie aree allagate nello scenario ipotetico coinvolgono anche zone di pregio ad elevata vulnerabilità, nelle quali le condizioni simulate sono potenzialmente pericolose per gli abitanti e i beni situati in una zona nevralgica per il bacino del Po. Si auspica quindi che ulteriori proseguano nella direzione indicata, e in particolare nel senso dell'individuazione di aree poco sensibili nelle quali provocare un'esondazione controllata, essendo riconosciuta nell'ambiente scientifico l'impossibilità di prevenire tale fenomeno di fronte a qualunque evento di piena.

8 BIBLIOGRAFIA

- A. Brath, A. Castellarin, G. Di Baldassarre, A. Domeneghetti.

 (2010) Nuovi indirizzi per la difesa dal rischio idraulico lungo l'asta fluviale del Fiume Po. Biologia Ambientale, 24 (1): 1-18.
- A.I.PO. www.agenziainterregionalepo.it. Sito Ufficiale dell'Agenzia Interregionale per il Fiume Po.
- AdB-Po DISTART. (2008). Attività di studio, ricerca e supporto tecnico-scientifico nell'ambito del Progetto strategico per il miglioramento delle condizioni di sicurezza idraulica dei territori di pianura lungo l'asta principale del Fiume Po. (Contratto di Ricerca tra Autorità di bacino del Fiume Po e Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento e del Territorio dell'Università di Bologna, Resp. Scient. Prof. A. Brath); Relazione Finale, Autorità di Bacino del Fiume Po, Parma.
- AdB-Po. (1999). Progetto di Piano Stralcio per l'Assetto Idrogeologico (PAI). Autorità di Bacino del Fiume Po, Parma.
- AdB-Po. www.adbpo.it. Sito ufficiale dell'Autorità di Bacino del Fiume Po.
- AdB-Po, Segreteria Tecnica dell'Autorità di Bacino del Fiume Po. (2005). Progetto strategico per il miglioramento delle condizioni di sicurezza idraulica dei territori di pianura lungo l'asta medio inferiore del Fiume Po. Relazione Tecnica.
- Brath A., Di Baldassarre G. (2006). Modelli Matematici per l'analisi della sicurezza idraulica del territorio. L'Acqua, 6, 39 48.
- L. Galletti. Predisposizione di un modello idraulico quasibidimensionale del corso medio inferiore del Fiume Po

- sulla base di un rilievo topografico laser-scanning. Tesi di Laurea, Università degli Studi di Bologna, Anno Accademico 2005-2006.
- M. G. Tanda, P. Mignosa, M. Tomirotti, R. Gardelli, S. Adami. (2001). Caratterizzazione idrologica dell'asta principale del Fiume Po nel tratto che va dalla confluenza della Dora Baltea all'incile del Po di Goro. Politecnico di Milano, Dipartimento di Ingegneria Idraulica, Ambientale e del Rilevamento (D.I.I.A.R.).
- M. Govi, O. Turitto. (2000). Casistica storica sui processi di iterazione delle correnti di piena del Po con arginature e con elementi morfotopografici del territorio adiacente. Istituto Lombardo Accademia di Scienza e Lettere.
- U. Majone, M. Tomirotti. (2006). Eventi di piena imprevedibili. XXX Convegno di Idraulica e Costruzioni Idrauliche IDRA2006.

RINGRAZIAMENTI

In procinto di creare l'ultima versione pdf di questa tesi (denominata tesi_finale_def_last.pdf.. e ho detto tutto), mi trovo a riflettere sui ringraziamenti che vorrei fare. Ho spesso pensato a questa parte della tesi, sotto un certo punto di vista marginale ma, d'altro canto, l'unica che esula dal lavoro e che parla un po' più di me, dell'iceberg che sono stati questi mesi sotto tesi³ la cui punta è questa relazione. Avrei voluto scrivere tante cose, ringraziare ad una ad una tutte le persone che, in un modo o nell'altro, mi sono state accanto e mi hanno aiutata, cogliere l'occasione per mostrare loro il mio affetto. Ma è un giovedì domattina devo stampare, sono preoccupata presentazione che non ne vuole sapere di scendere sotto le quarantaquattro (quarantaquattro?!?) slide e per assassini dei negozi in cui devo fare gli ultimi acquisti (o discuterò scalza) che sorridendo mi dicono che "c'è la nuova collezione primavera" e intanto fuori nevica e contrattura alla schiena non aspetta altro.. Insomma, non ce la faccio a scrivere uno di quei ringraziamenti ex post in cui si tirano le somme e ci si quarda indietro con serenità e sorridente distacco.

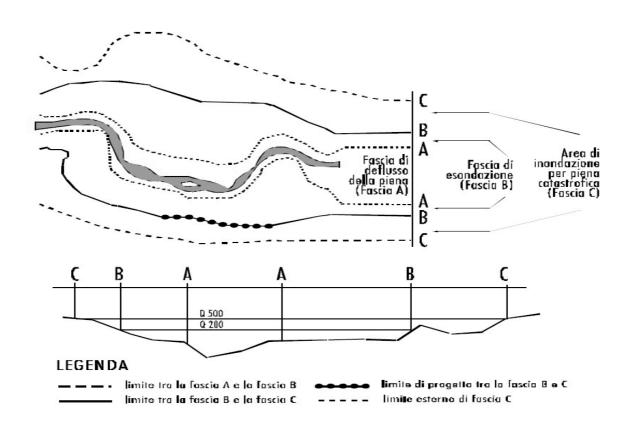
Perciò, ringraziamenti essenziali e concisi.

Un sentito ringraziamento va a chi mi ha permesso di realizzare questa tesi, il prof. Brath e l'ing. Castellarin, che mi ha aiutato e sostenuto nello svolgimento del lavoro con grande competenza e calore umano, aiutandomi a superare le difficoltà modellistiche così come le crisi d'ansia. Grazie di cuore.

Grazie ai miei genitori, che mi hanno appoggiato e che lo avrebbero fatto anche se avessi deciso di cambiare strada. Spero alla fine di avervi resi orgogliosi.

Grazie ai miei amici, per avermi incoraggiato e aiutato a trovare la forza per sopravvivere a tutto questo. E per non avermi strozzato quando non riuscivo a parlare di altro, nè a smettere di parlarne.

³ Per Nino: hai visto che c'era pure un'altra parola??


Last but not least, un grazie grosso come una casa va a Riccardo, che mi è stato accanto con infinita pazienza dall'inizio di questa epopea. Mezza laurea è tua.

Per tutti, spero di riuscire a dimostrarvi davvero la mia gratitudine di persona.

A1 FASCE FLUVIALI: DEFINIZIONE

Il Piano Stralcio per l'Assetto Idrogeologico (PAI, AdB-Po 2001)riporta la seguente definizione delle Fasce Fluviali:

- Fascia di deflusso della piena (Fascia A): costituita dalla porzione di alveo che è sede prevalente del deflusso della corrente per la piena di riferimento (200 anni per la maggior parte dei corsi d'acqua del bacino), che è costituita dall'insieme delle forme fluviali riattivabili durante gli stati di piena. All'esterno di tale fascia la velocità della corrente deve essere minore o uguale a 0,4 m/s;
- Fascia di esondazione (Fascia B): esterna alla precedente, costituita dalla porzione di territorio interessata da inondazione al verificarsi della piena di riferimento. Il limite di tale fascia si estende fino al punto in cui le quote naturali del terreno sono superiori ai livelli idrici corrispondenti alla piena di riferimento, ovvero sino alle opere idrauliche esistenti o programmate di controllo delle inondazioni (argini o altre opere di contenimento) (...);
- inondazione per piena catastrofica (Fascia C): costituita dalla porzione di territorio esterna precedente (Fascia B), che può essere interessata inondazione al verificarsi di eventi di piena più gravosi di quella di riferimento. Si assume come riferimento la massima piena storica registrata, se corrisponde a un tempo di ritorno superiore a 200 anni o, in assenza di essa, la piena di ritorno a 500 anni. Per i corsi d'acqua non arginati la delimitazione dell'area soggetta ad inondazione viene eseguita con gli stessi criteri adottati fascia B (...). Per i corsi d'acqua arginati l'area è delimitata unicamente nei tratti cui in 10 rendano possibile gli elementi morfologici disponibili.

A2 TABELLE QUOTA INVASO - VOLUME -SUPERFICIE E CURVE DI RIEMPIMENTO DEI COMPARTI IDRAULICI

	staf_vers			vers_po	
z [m]	V [1000 m ³]	A [m ²]	z [m]	V [1000 m ³]	A [m ²]
59	0.0000	0	58	0.0000	0
60	217.2842	419993	59	29.6392	59999
61	3627.1170	4479928	60	167.2791	209997
62	13628.0347	11229820	61	588.3457	469992
63	29696.8381	17479720	62	1458.6275	1049983
64	54228.9215	26319579	63	2967.5757	1889970
65	87519.8323	34739444	64	5297.9407	2649958
66	125345.2886	39219372	65	8292.0432	3219948
67	168380.2766	44179293	66	11568.8945	3349946
68	216466.6146	48789219	67	14959.1894	3439945
69	267131.5071	51069183	68	18424.4672	3499944
70	319174.1119	52279164			
71	372471.5404	53509144			
72	427134.7283	54809123			
73	482564.5054	55449113			

	po_tido					tido_treb	
Z	[m]	V [1000 m ³]	A [m ²]	z [[m]	V [1000 m ³]	$A [m^2]$
	53	0.0000	0		49	0.0000	0
	55	1419.2824	1619974		51	371.3965	489992
	57	10848.3921	6069903		53	7121.0276	5449913
	59	25656.6037	7839875		55	26084.7364	11629814
	60	33641.7371	8079871		57	53780.4237	14689765
					59	85749.5264	16459737
					61	119750.8965	17229724
					63	154305.5293	17309723
				6	3.9	169894.3090	17309723

	treb_nure			nure_chia	
z [m]	V [1000 m ³]	$A [m^2]$	z [m]	V [1000 m ³]	$A [m^2]$
44	0.0000	0	41	0.0000	0
		116	5		

	treb_nure			nure_chia	
46	3284.7721	4069935	43	239.7848	399994
48	29146.6928	17119726	45	8181.0309	6309899
50	69643.6258	22189645	47	27131.7827	11169821
52	116686.1795	24189613	49	53247.4439	13879778
54	166098.6747	25159597	50.4	73023.5924	14229772
56	216776.6103	25439593			
58	267945.6347	25649590			
59.5	306473.4362	25699589			

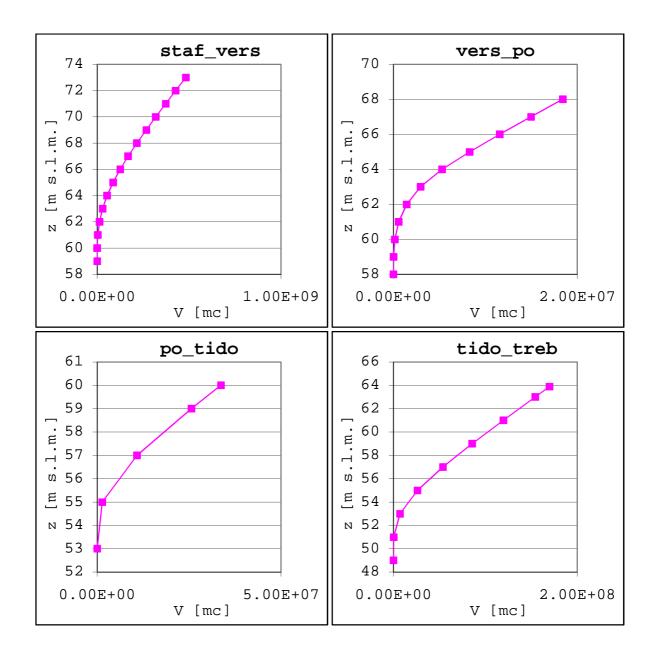
	chia_arda			arda_ongi	
z [m]	V [1000 m ³]	$A [m^2]$	z [m]	V [1000 m ³]	A [m ²]
35	0.0000	0	36	0.0000	0
37	1356.1216	1599974	37	21.6429	59999
39	38229.2019	31329499	38	735.1039	909985
41	156749.1131	66498936	39	3606.9665	3129950
43	301425.7045	74138814	39.7	6916.6026	4789923
45	453281.1849	76558775			
45.8	514574.6573	76628774			

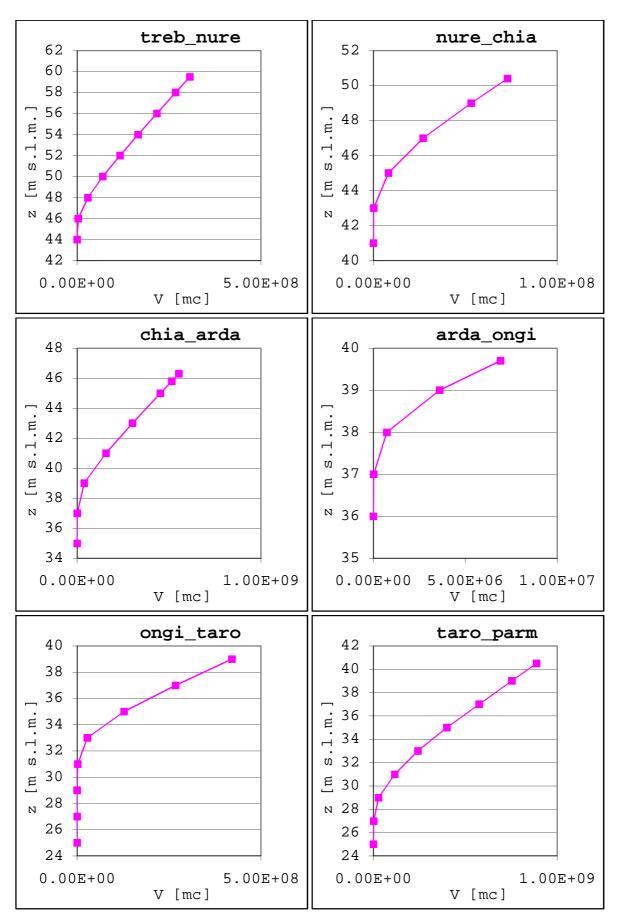
	ongi_taro			taro_parm	
z [m]	V [1000 m ³]	$A [m^2]$	z [m]	V [1000 m ³]	A [m ²]
25	0.0000	0	25	0.0000	0
27	34.2587	39999	27	1934.9837	2619958
29	233.9523	179997	29	27853.5646	14789763
31	1806.8544	1989968	31	115740.4431	54799123
33	28082.4021	24709605	33	242110.9309	67998912
35	127528.1744	59219052	35	400012.9747	84558647
37	267846.5933	74568807	37	575643.0943	88818579
39	421031.8572	77048767	39	753597.7860	89098574
			40.5	887295.6468	89168573

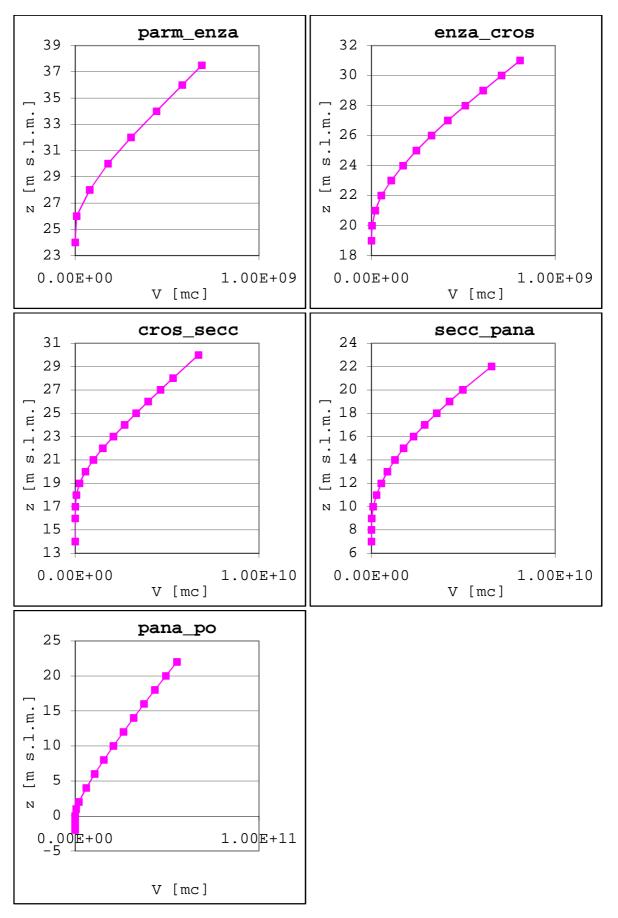
	parm_enza			enza_cros	
z [m]	V [1000 m ³]	$A [m^2]$	z [m]	V [1000 m ³]	$A [m^2]$
24	0.0000	0	19	0.0000	0
26	7931.1881	8999856	20	4047.3671	5399914
28	79760.7111	43479304	21	21372.1340	18979696
30	178415.5910	52799155	22	54208.6991	36119422

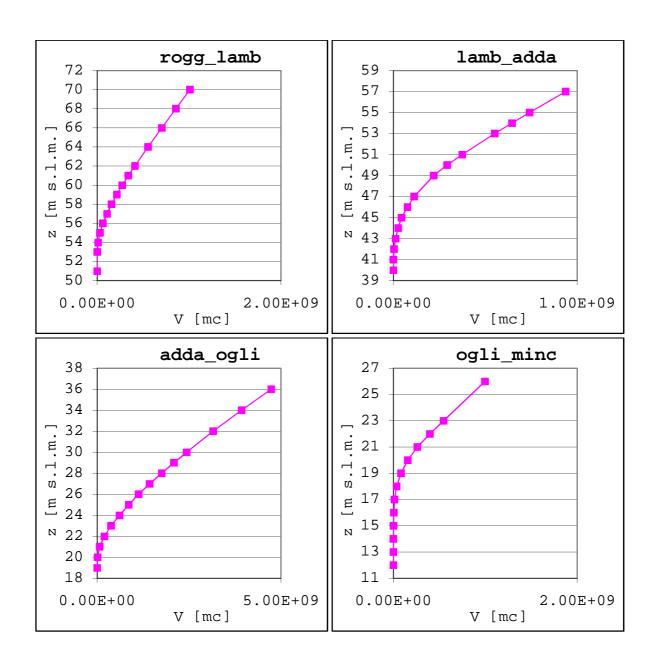
	parm_enza			enza_cros	
32	304167.7700	65808947	23	108387.8961	56699093
34	442100.3872	69978880	24	172541.4165	65958945
36	582959.5397	70598870	25	244867.2284	74318811
37.5	688939.2893	70698869	26	326329.3771	83718660
			27	415963.6570	91038543
			28	510018.3115	95158477
			29	608294.1344	98828419
			30	707997.3141	99848402

	C	cros_secc			secc_pana						
z [m	V [1	L000 m ³]	Α [m^2]	z	[m]	V I	1000	m^3]	A	$[m^2]$
1	4	0.0000		0		7		0	.0000		0
1	5	368.7020	5	39991		8		146	.9183		279996
1	7	9431.7230	109	09825		9		20535	.3331	22	999632
1	3 7	3157.6122	678	358914		10		97767	.6856	83	138670
1	9 23	86567.7157	1708	377266		11	2	78276	.2095	188	276988
2	5 5	5540.5465	3350	74639		12	5	42215	.3409	271	175661
2	1 99	7048.9737	4525	82759		13	8	74701	.4735	340	094558
2	2 150	9188.5944	5203	301675		14	12	83990	.4905	416	773332
2	3 208	35879.8540	5830	30671		15	17	56540	.8272	479	642326
2	269	3500.1671	6117	10213		16	22	90757	.2297	540	021360
2	332	2306.0849	6327	769876		17	29	02075	.4667	617	490120
2	397	4979.8145	6556	29510		18	35	57374	.8913	660	099438
2	7 464	1150.8093	6684	29305		19	42	50584	.7161	697	458841
2	531	.8609.0000	6793	869130		20	49	77562	.0000	731	288299
3	670	4570.0000	6982	218828		22	65	28682	.0000	791	817331
3	2 811	9446.0000	7114	48617		24	81	80805	.0000	837	536599
3	955	55604.0000	7206	88469		26	98	82562	.2630	857	296283
3	1100	5070.0000	7258	308387		28	116	24271	.6263	877	015968
3	7 1173	31230.0000	7262	208381		30	133	98856	.8862	891	075743
						32	151	94901	.7648	900	535591
						34	170	03560	.0000	905	725508


	pana_po							
z	[m]	V [1000 m ³]	A [m ²]					
	-2	0.0000	0					
	-1	920.1336	2119966					
	0	25793.7617	31999488					


		pana_po	
Z	[m]	V [1000 m ³]	A [m ²]
	1	569796.9581	663889378
	2	1994285.1531	1560315035
	4	6056545.4915	2157235484
	6	10662690.2625	2370442072
	8	15611153.3665	2519769683
	10	20852949.0023	2665037359
	12	26306242.9539	2745186076
	14	31847825.2978	2785675429
	16	37494738.6668	2859094254
	18	43387350.4333	2953782739
	20	49364586.5504	3001021983
	22	55431710.5087	3044931281
	24	61574342.5821	3083620661
	26	67785268.2051	3112370201
	28	74024483.3765	3122080046
	30	80281953.2562	3133189868
	32	86562677.7637	3142519719
	34	92855097.0842	3147399641
	36	99150246.3600	3147699636
3	7.9	105131024.6839	3147829634


	rogg_lamb			lamb_adda	
z [m]	V [1000 m ³]	A [m ²]	z [m]	V [1000 m ³]	A [m ²]
51	0.0000	0	40	0.0000	0
53	3064.9360	2929953	41	313.3270	439993
54	10606.5132	8279868	42	3758.2610	4549927
55	32152.6283	22279644	43	12648.1042	10229836
56	63978.9666	32169485	44	25953.5868	14609766
57	107836.5735	44669285	45	44751.0846	20819667
58	157069.1958	51019184	46	76461.3883	33619462
59	214003.1579	58039071	47	113484.0143	38369386
60	274496.6236	61839011	49	219626.2750	66008944
61	340192.6819	66678933	50	293021.7927	75868786
62	410586.0288	70238876	51	374342.1538	82948673
64	554669.8361	73588823	53	551242.8234	91988528
66	704313.5746	75828787	54	645382.4081	94858482
68	857043.3965	76728772	55	741425.4759	96628454


rogg_lamb				lamb_adda	
z [m]	V [1000 m ³]	A [m ²]	z [m]	V [1000 m ³]	$A [m^2]$
70	1011174.0000	77298763	57	936983.9925	98308427
72	1165938.0000	77508760	59	1134380.0000	98868418
73	1243447.0000	77508760	61	1332236.0000	98958417

		adda_ogli		ogli_minc		
Z	[m]	V [1000 m ³]	A [m ²]	z [m]	V [1000 m ³]	A [m ²]
	19	0.0000	0	12	0.0000	0
	20	14609.7788	14469768	13	52.8547	119998
	21	72465.4411	64298971	14	593.6433	809987
	22	200870.6898	135427833	15	2252.4039	2129966
	23	381210.6193	186557015	16	5797.6807	4219932
	24	610336.3673	230106318	17	12500.8331	7879874
	25	856887.6178	249426009	18	34874.6600	25139598
	26	1128002.0000	273955617	19	83931.4966	53359146
	27	1431010.0000	305365114	20	157521.1375	77148766
	28	1753446.0000	323574823	21	261579.3527	107978272
	29	2090504.0000	338224588	22	397796.4477	138877778
	30	2436588.0000	347854434	23	547134.8395	150037599
	32	3157453.8268	367784115			
	34	3926183.0000	390313755			
	36	4731103.0000	406493496			
	38	5559325.0000	417293323			
	40	6409976.4251	430653109			
	42	7285251.4342	440552951			
	44	8170056.0000	443432905			
	46	9058177.0000	444352890			

A3 SCHEMATIZZAZIONE DEGLI ARGINI MAESTRI

A3.1 Lateral Structure

River Station:	22927	River Station:	13235
Reach:	s6_s9d	Reach:	s6_s9d
SA:	staf_vers	SA:	rogg_lamb
Distance to	0	Distance to	0
Upstream XS [m]:	O	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	64.59	0	63.53
2073.43	64.47	1759.47	62.33
4341.07	61.57	1903.17	62.98
5850.01	61.66	2912.16	62.37
7079.5	59.7	5022.36	62.24
9020.83	63.55	7113.53	61.94
		8686.98	61.47
		10246.65	62.45
		11428.78	59.98
		12586.17	59.56

River Station:	11401	River Station:	2770
Reach:	s6_s9d	Reach:	s6_s9d
SA:	vers_po	SA:	po_tido
Distance to	0	Distance to	0
Upstream XS [m]:	U	Upstream XS [m]:	U
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	62	0	61.14
1379.75	59.37	1038.92	61.48
3101.52	64.18	2150	60.3

River Station:	33820	River Station:	27356
Reach:	s10_s18	Reach:	s10_s18
SA:	po_tido	SA:	tido_treb
Distance to	0	Distance to	0
Upstream XS [m]:	U	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	59.82	0	58.66
764.01	60.74	977.15	58.26

River Station:	33820	River Station:	27356
Reach:	s10_s18	Reach:	s10_s18
SA:	po_tido	SA:	tido_treb
Distance to	0	Distance to	0
Upstream XS [m]:	0	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
		1803.24	57.92
		3725.37	57.93
		5101.66	57.6
		5883.63	57.28
		8338.55	57.15
		9706.92	56.97

River Station:	22212	River Station:	12735
Reach:	s10_s18	Reach:	s10_s18
SA:	lamb_adda0	SA:	lamb_adda1
Distance to	0	Distance to	271 005
Upstream XS [m]:	U	Upstream XS [m]:	371.985
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	57.67	0	56.17
2626.43	57.32	1487.94	56.3
3220.49	56.69	2311.58	56.14
4613.46	56.69	4837.32	55.58
5891.2	56.78	5310.22	55.47
7380.02	56.29	7096.67	53.85
8220.49	55.78	9487.88	53.82
8592.475	55.91	10200	53.6

River Station:	7413	River Station:	2632
Reach:	s10_s18	Reach:	s10_s18
SA:	tido_treb	SA:	treb_nure
Distance to	0	Distance to	0
Upstream XS [m]:	U	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	54.69	0	54.14
2871.27	54.84	837.52	54.18

River Station:	40800	River Station:	34529
Reach:	s18a_s25	Reach:	s18a_s25
SA:	treb_nure	SA:	lamb_adda2
Distance to	0	Distance to	0
Upstream XS [m]:	0	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	54.18	0	50.9
157.63	53.66	2690.81	50.41
2866.74	52.34	3720.71	50.15
4669.63	51.72	4570.06	49.95
6378.31	51.3	5662.21	49.87
8358.94	50.92	6802.21	49.96
9018.57	50.67	7915.23	49.68
9820.71	50.23	9040.455	48.99
10790.21	50.18	12341.92	47.37
12107.09	49.36	13916.25	47.06
		14478.87	47

River Station:	23793	River Station:	13517
Reach:	s18a_s25	Reach:	s18a_s25
SA:	nure_chia	SA:	chia_arda
Distance to	0	Distance to	0
Upstream XS [m]:	U	Upstream XS [m]:	U
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	49.06	0	46.49
2759.59	48.18	655.73	46.3
4713.15	48.97		
6350.64	46.82		

River Station:	5959	River Statio	n:		281
Reach:	s18a_s25	Reach:		s18a_	_s25
SA:	adda_ogli	SA:		chia_a	arda
Distance to	0	Distance	to		0
Upstream XS [m]:	O	Upstream XS	[m]:		U
Station [m]	Elevation [m]	Station [m]		Elevation	[m]
0	44.66		0		43
2020.97	44.4		100		43
3849.44	44.11				
5035.12	43.73				

River Station:	19139	River Station:	19138
Reach:	s25_02_s27c	Reach:	s25_02_s27c
SA:	chia_arda	SA:	adda_ogli
Distance to	0	Distance to	0
Upstream XS [m]:	0	Upstream XS [m]:	Ö
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	43	0	43.15
714.96	43	336.07	43.12
		791.08	43.09
		1196.18	42.99
		1722.63	44.25
		2216.35	42.14
		3148.02	41.96
		3766.72	41.76
		4293.31	42.24
		4762.81	43.5
		5174.59	40.54
		5750	41.45

River Station:	13794	River Station:	10222
Reach:	s25_02_s27c	Reach:	s25_02_s27c
SA:	chia_arda	SA:	adda_ogli
Distance to	0	Distance to	340
Upstream XS [m]:	O	Upstream XS [m]:	340
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	43.49	0	39.66
409.04	41.56	348.66	40.72
666.91	41.55	635.23	40.35
1072.68	41.53	1167	40.37
1706.87	41.15		
2000	40		

River Station:	9645	River Station:	6171
Reach:	s25_02_s27c	Reach:	s25_02_s27c
SA:	chia_arda	SA:	adda_ogli
Distance to	0	Distance to	0
Upstream XS [m]:	U	Upstream XS [m]:	U
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	40.96	0	39.88

River Station:	9645	River Station:	6171
Reach:	s25_02_s27c	Reach:	s25_02_s27c
SA:	chia_arda	SA:	adda_ogli
Distance to	0	Distance to	0
Upstream XS [m]:	O	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
244.24	40.49	915.19	39.47
908.04	40.49	1603.78	39.32
1000	40.49	2286.37	39.26
		2742.09	39.21
		3125	39.1

River Station:	3100	River Station:	1604
Reach:	s25_02_s27c	Reach:	s25_02_s27c
SA:	arda_ongi	SA:	ongi_taro
Distance to	1200	Distance to	0
Upstream XS [m]:	1200	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	38.7	0	38.81
579	38.73	1785.67	38.7
779	38.78		

River Station:	9696	River Station:	14047
Reach:	s28_s29	Reach:	s30_s33b
SA:	ongi_taro	SA:	ongi_taro
Distance to	0	Distance to	0
Upstream XS [m]:	O	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	38.7	0	36.4
640.59	38.7	1931.21	35.78
2040.04	38.36	3479.37	35.6
3000	38.36		

River Station:	9135	River Station:	19057
Reach:	s30_s33b	Reach:	s33c_s36a
SA:	taro_parm	SA:	taro_parm
Distance to	0	Distance to	0
Upstream XS [m]:	O	Upstream XS [m]:	0
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	35.51	0	33.41
1782.82	35.06	1841.39	33.57
3777.68	34.5	2659	33.4
5751.49	34.1		

River Station:	14553	River Station:	8000
Reach:	s33c_s36a	Reach:	s33c_s36a
SA:	adda_ogli	SA:	parm_enza
Distance to	803.1	Distance to	90
Upstream XS [m]:	803.1	Upstream XS [m]:	90
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	32.49	0	30.5
700	32.47	430.199	30.5
1240.65	32.46		
1591.5	32.12		
3208.02	31.76		
5366.82	31.52		
7103.33	31.07		
8264.11	30.97		
10068.16	30.56		
11883.81	30.6		
12580.53	30.4		

River Station:	32590	River Station:	28359
Reach:	s37_s41a	Reach:	s37_s41a
SA:	enza_cros	SA:	adda_ogli
Distance to	0	Distance to	400
Upstream XS [m]:	O	Upstream XS [m]:	400
Station [m]		C	
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	30.23		Elevation [m] 29.95
0 682.46	30.23	0	29.95
0	30.23 30.98	0 998.436	29.95 29.68
0 682.46	30.23 30.98 30.17	0 998.436 1946.996	29.95 29.68 29.62

River Station:	32590	River Station:	28359
Reach:	s37_s41a	Reach:	s37_s41a
SA:	enza_cros	SA:	adda_ogli
Distance to	0	Distance to	400
<pre>Upstream XS [m]:</pre>	0	Upstream XS [m]:	400
Station [m]	Elevation [m]	Station [m]	Elevation [m]
4301.82	29.87	3682.016	28.91
5000	28.4	4884.366	29.21
		5894.086	28.9
		7022.006	27.15
		8065.446	28.06
		8989.176	27.56
		9900	27.68

River Statio	n:	14952	River Station:	11244
Reach:		s37_s41a	Reach:	s37_s41a
SA:		cros_secc	SA:	adda_ogli
Distance	to	817	Distance to	0
Upstream XS	[m]:		Upstream XS [m]:	U
Station [m]		Elevation [m]	Station [m]	Elevation [m]
	0	27.3	0	26.78
	1200	27.3	617.94	27.37
	2100	27.25	1238.28	26.87

River Station:	7711	River Station:	7710
Reach:	s37_s41a	Reach:	s37_s41a
SA:	cros_secc	SA:	ogli_minc
Distance to	0	Distance to	0
Upstream XS [m]:	0	Upstream XS [m]:	O .
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	26.34	0	26.64
607.96	26.21	1196.65	26.64
1469.33	26.09	3158.51	26.64
2012.49	26.09	3782.58	27.28
2809.82	26.34	4523.12	26.67
4215.25	25.92	6159.62	27.04
4946.77	26.39	6980.61	26.72
6023.51	25.75	7636.36	26.09

20900.1	River Station:	20900
s41b_s45c	Reach:	s41b_s45c
ogli_minc	SA:	cros_secc
0	Distance to	0
U	Upstream XS [m]:	U
vation [m]	Station [m]	Elevation [m]
26.09	0	25.75
25.8	1267.46	25.3
26.45	1700	25.4
25.79		
26.06		
26		
	s41b_s45c ogli_minc 0 evation [m] 26.09 25.8 26.45 25.79 26.06	s41b_s45c Reach: ogli_minc SA: Distance to Upstream XS [m]: evation [m] Station [m] 26.09 0 25.8 1267.46 26.45 1700 25.79 26.06

River Station:	16451	River Station:	14097
Reach:	s41b_s45c	Reach:	s41b_s45c
SA:	cros_secc	SA:	ogli_minc
Distance to	0	Distance to	100
Upstream XS [m]:	U	Upstream XS [m]:	100
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	25.34	0	25.68
1186.47	25.28	967.94	25.68
2339.56	24.99	1720.6	25.65
3272.19	25.09	2181.49	25.82
4439.35	24.68	2608.9	25.43
4950.65	25.02	3434.52	25.34
5304.33	24.95	4827.26	25.31
5600	24.5	5100	25

River Station:	5578	River Station:	3952
Reach:	s41b_s45c	Reach:	s41b_s45c
SA:	cros_secc	SA:	ogli_minc
Distance to	116	Distance to	700
Upstream XS [m]:	110	Upstream XS [m]:	700
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	24.08	0	24.49
1200.61	23.91	1008.22	24.68
1968.79	23.66	2956.73	24.26
2832.48	23.66	3593.24	24.1

River Station:	833	River Station:	27564.1
Reach:	s41b_s45c	Reach:	s46_s54a
SA:	cros_secc	SA:	ogli_minc
Distance to	0	Distance to	0
Upstream XS [m]:	U	Upstream XS [m]:	U
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	24.08	0	24.1
717.86	23.16	638.98	25.8
		969.54	23.57

River Station:	27564	River Station:	24620
Reach:	s46_s54a	Reach:	s46_s54a
SA:	cros_secc	SA:	pana_po
Distance to	0	Distance to	60
Upstream XS [m]:	O	Upstream XS [m]:	00
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	23.16	0	23.35
825.27	23.36	329.89	23.45
1297.99	23.2	710.82	23.7
1649.34	23.05	1077.17	23.54
2126.63	23.15	2090.6	23.4
2545	23.16		
3000	23.1		

River Station:	21408	River Station:	14673
Reach:	s46_s54a	Reach:	s46_s54a
SA:	secc_pana	SA:	pana_po
Distance to	0	Distance to	0
Upstream XS [m]:	O	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	22.2	0	22.3
1093.27	22.18	807.64	22.34
2115.15	22.32	2183.55	21.98
3133.19	22.52	3117.95	21.99
4483.15	21.82	4414.88	22.12
5721.11	22.3	4414.89	22.12
6985.57	22.14	4989.84	21.93
8189.73	22.09	5129.22	21.52
9200	21.92	5350	21.4

River Station:	10167	River Station:	5437
Reach:	s46_s54a	Reach:	s46_s54a
SA:	secc_pana	SA:	pana_po
Distance to	100	Distance to	1500
Upstream XS [m]:	100	Upstream XS [m]:	1300
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	20.96	0	21.03
618.78	21.78	754.12	21.07
774.72	21.99	3291	20.61
1743.63	22.12	4068.05	20.53
3851.04	22.04		
5137.92	21.4		
7202.11	21.28		

River Station:	20591.9	River Statio	on:	20591.8
Reach:	s55_s59b	Reach:		s55_s59b
SA:	secc_pana	SA:		pana_po
Distance to	0	Distance	to	0
Upstream XS [m]:	O	Upstream XS	[m]:	O
Station [m]	Elevation [m]	Station [m]		Elevation [m]
0	19.78		0	20.44
2040.49	20.01		500	20.44
2600.32	20.45			
4700.22	20.39			
6441.04	19.69			
8562.89	19.42			
9488.17	19.47			

River Station:	17846	River Station:	13439
Reach:	s55_s59b	Reach:	s55_s59b
SA:	pana_po	SA:	secc_pana
Distance to	0	Distance to	0
Upstream XS [m]:	O	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	20.25	0	19.42
2706.48	20.2	925.28	19.47
4646.5	19.53	2254.05	19.74
6354.08	19.48	3289.35	19.88
6849.75	19.49		

River Station:	11301	River Station:	8271
Reach:	s55_s59b	Reach:	s55_s59b
SA:	pana_po	SA:	secc_pana
Distance to	650	Distance to	438.83
Upstream XS [m]:	030	Upstream XS [m]:	430.03
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	18.97	0	19.37
696.53	19.27	800	19.16
2471.48	18.66	2315.61	18.95
3608.27	18.69	3311.7	18.98
		4000	18.84

River Station:	5640	River Station:	23153
Reach:	s55_s59b	Reach:	s59c_s64c
SA:	pana_po	SA:	secc_pana
Distance to	500	Distance to	0
Upstream XS [m]:	500	Upstream XS [m]:	U
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	18.44	0	17.98
566.78	18.39	1230.97	17.56
1579.11	18.46	2261.75	17.89
2577.36	18.08	2970.03	18.08
3775.28	18.25	3662.52	18.05
		4500	17.95

River Station:	23152	River Station:	17441
Reach:	s59c_s64c	Reach:	s59c_s64c
SA:	pana_po	SA:	pana_po
Distance to	0	Distance to	0
Upstream XS [m]:	O	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	18	0	17.85
1739.29	18	1414.02	17.6
3341.43	17.74	3472.34	17.29
3962.54	17.36	5087.73	17.22
4530.69	17.5	7097.81	16.76
4974.92	17.38	9561.7	16.84
5759.88	17.23	10562.05	16.38
7798.66	17.3	12726.53	16.1

River Station:	23152	River Station:	17441
Reach:	s59c_s64c	Reach:	s59c_s64c
SA:	pana_po	SA:	pana_po
Distance to	0	Distance to	0
Upstream XS [m]:	O	Upstream XS [m]:	O
Station [m]	Elevation [m]	Station [m]	Elevation [m]
9466.15	17.01	13066.8	15.94
11477.78	16.8	14602.7	15.73
14478.03	16.69	16005.08	15.69
15507.71	16.58		
17780.29	16.32		
17978.77	16.65		
20243.8	16.12		

A3.2 Lateral Structure con Culvert

River Station:			33820.1
Reach:			s10_s18
SA:			rogg_lamb
Wei	r	Culvert	
Distance to		Span:	9400
<pre>Upstream XS [m]:</pre>		0 Rise:	8
Station [m]	Elevation [m	Lenght:	3
0	7	0 Entrance Loss Coeff.	0.5
9555.34	7	OExit Loss Coeff.	1
		Manning	0.012
		Upstream Invert Elev.	58.5
		Downstream Invert Elev.	58.5
		Centerline Stati	ons.
		Upstream	Downstream
		4770	0

River Station:			36364
Reach:			s18a_s25
SA:			lamb_adda1
Wei	r	Culvert	
Distance to		Span:	1700
Upstream XS	1847	Rise:	10
[m]:		Kipe.	10
Station [m]	Elevation [m]	Lenght:	3
0	65	Entrance Loss Coeff.	0.5
1847.465	65	Exit Loss Coeff.	1
		Manning	0.012
		Upstream Invert Elev.	51.2
		Downstream Invert Ele	v. 51.2
		Centerline Sta	tions
		Upstream	Downstream
		9:	20 0

River Station:				10029
Reach:				s18a_s25
SA:				lamb_adda2
We	ir		Culvert	
Distance to)		Span:	2300
Upstream X	5	300	Rise:	2
[m]:			KI26.	2
Station [m]	Elevation	[m]	Lenght:	2
	D	50	Entrance Loss Coeff.	0.5
232	1	50	Exit Loss Coeff.	1
			Manning	0.012
			Upstream Invert Elev.	45.92
			Downstream Invert Elev.	45.95
			Centerline Stati	ons
			Upstream	Downstream
			1160	1160

A3.3 Storage Area Connection

SA Conn:	44a_chia_arda	SA Conn:	44b_chia_arda
From:	44a	From:	44b
To:	chia_arda	To:	chia_arda
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	43.03	0	42.49
1109.44	42.51	494.07	42.34
1549.65	42.49	993.01	42.26
		1386.58	42.08
		1844.97	42.29
		2248.61	42.03
		2602.87	43.49

SA Conn:	42_chia_arda	SA Conn:	130_chia_arda
From:	42	From:	130
To:	chia_arda	To:	chia_arda
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	41.15	0	40.4
208.97	39.45	608.14	40.33
716.24	40.84	1160.09	37.68
1270.86	43.31	1780.83	37.67
		2387.09	39.57

SA Conn:	129a_chia_arda	SA Conn:	124_ongi_taro
From:	129a	From:	124
To:	chia_arda	To:	ongi_taro
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	39.57	0	38.36
575.58	39.4	1505.21	37.33
1111	39.2	2769.47	37.1
1863.19	39.06	4770.56	36.64

SA Conn:	123_ongi_taro	SA Conn:	117_taro_parm
From:	123	From:	117
To:	ongi_taro	To:	taro_parm
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	36.8	0	33.57
58.33	36.64	807.06	33.23

SA Conn:	123_ongi_taro	SA Conn:	117_taro_parm
From:	123	From:	117
To:	ongi_taro	To:	taro_parm
Station [m]	Elevation [m]	Station [m]	Elevation [m]
1143.48	36.8	1673.84	33.23
2894.04	36.29	2191.52	33.17
3726.91	36.4		

SA Conn:	116_taro_parm	SA Conn:	115a_parm_enza
From:	116	From:	115a
To:	taro_parm	To:	parm_enza
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	33.17	0	32.28
337.93	32.15	1884.37	31.82
2009.38	31.84	3404.35	31.25
4566.96	32.29	4361.635	30.66

SA Conn:	115f_parm_enza	SA Conn:	115c_parm_enza
From:	115f	From:	115c
To:	parm_enza	To:	parm_enza
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	30.66	0	30.1
765.828	30.1	191.457	30.06
		766.085	30.06

SA Conn:	114_enza_cros	SA Conn:	112b_enza_cros
From:	114	From:	112b
To:	enza_cros	To:	enza_cros
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	30.06	0	29.9
861.942	30.05	824.831	27.96
2056.942	30.2	1901.541	29.37
		2740.441	29.24
		3281.811	29.07

From: 112a From: 111d To: enza_crosTo: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 29.07 0 28.89 541.37 28.89 829.267 30.1 956.003 29.52 983.357 30.3 SA Conn: 111b_cros_secc 111a_cros_secc From: 111b From: 111a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] To: cros_secc Con: 110a_cros_secc From: 110b From: 110a 28.25 SA Conn: 110b From: 110a cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 28.54 1309.71 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24From: 107 To:	SA Conn:	 112a_enza_cros	SA Conn:	111d_cros_secc
To: enza_cros To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 29.07 0 28.89 541.37 28.89 829.267 30.1 956.003 29.52 983.357 30.3 30.3				
Station [m] Elevation [m] Station [m] Elevation [m]				
0				
SA Conn: 111b_cros_secc SA Conn: 111a_cros_secc From: 111b From: 111a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 30.3 0 30.8 717 30.8 797.81 28.6 2010.7 28.25 SA Conn: 110b_cros_secc SA Conn: 110a_cros_secc From: 110b From: 110a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.4 3953.62 26.31	0	29.07	0	28.89
SA Conn: 111b_cros_secc SA Conn: 111a_cros_secc From: 111b 111a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 30.3 0 30.8 717 30.8 797.81 28.6 2010.7 28.25 SA Conn: 110b_cros_secc SA Conn: 110a_cros_secc From: 110b cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.4 3953.62 26.31	541.37	28.89	829.267	30.1
From: 111b From: 111a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 30.3 0 30.8 717 30.8 797.81 28.6 2010.7 28.25 2010.7 28.25 SA Conn: 110b_cros_secc SA Conn: 110a_cros_secc From: 110b From: 110a cros_secc Station [m] Elevation [m] Station [m] Elevation [m] Sa Conn: 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 cros_secc Station [m] Elevation [m] Elevation [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 <td< td=""><td>956.003</td><td>29.52</td><td>983.357</td><td>30.3</td></td<>	956.003	29.52	983.357	30.3
From: 111b From: 111a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 30.3 0 30.8 717 30.8 797.81 28.6 2010.7 28.25 2010.7 28.25 SA Conn: 110b_cros_secc SA Conn: 110a_cros_secc From: 110b From: 110a cros_secc Station [m] Elevation [m] Station [m] Elevation [m] Sa Conn: 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 cros_secc Station [m] Elevation [m] Elevation [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 <td< td=""><td></td><td></td><td></td><td></td></td<>				
To:	SA Conn:	111b_cros_secc	SA Conn:	111a_cros_secc
Station [m] Elevation [m] Station [m] Elevation [m] 0 30.3 0 30.8 717 30.8 797.81 28.6 2010.7 28.25 SA Conn: 110b_cros_secc SA Conn: 110a_cros_secc From: 110b From: 110a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31	From:	111b	From:	111a
SA Conn:	To:	cros_secc	To:	cros_secc
SA Conn:	Station [m]	Elevation [m]	Station [m]	Elevation [m]
SA Conn: 110b_cros_secc SA Conn: 110a_cros_secc From: 110b From: 110a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31	0	30.3	0	30.8
SA Conn: 110b_cros_secc SA Conn: 110a_cros_secc From: 110b From: 110a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31	717	30.8	797.81	28.6
From: 110b From: 110a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Elevation [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31			2010.7	28.25
From: 110b From: 110a To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Elevation [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31				
To:	SA Conn:	110b_cros_secc	SA Conn:	110a_cros_secc
Station [m] Elevation [m] Station [m] Elevation [m] 0 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31	From:	110b	From:	110a
0 28.25 0 28.54 1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31	To:			cros_secc
1309.71 28.54 1211.04 28.06 SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 107 To: cros_secc To: cros_secc Secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31	Station [m]	Elevation [m]	Station [m]	Elevation [m]
SA Conn: 24_cros_secc SA Conn: 107_cros_secc From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31				
From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31	1309.71	28.54	1211.04	28.06
From: 24 From: 107 To: cros_secc To: cros_secc Station [m] Elevation [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31			T	
To: cros_secc To: cros_secc Station [m] Elevation [m] Elevation [m]				
Station [m] Elevation [m] Station [m] Elevation [m] 0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31				
0 28.06 0 27.22 707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31				
707.08 27.59 1640.34 26.95 2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31				
2422.74 27.33 2765.31 27.26 3359.56 27.4 3953.62 26.31				
3359.56 27.4 3953.62 26.31				
3953.62 26.31	2422.74	27.33		
			3953.62	26.31
SA Conn: s37s41_1_cros_se SA Conn: 19b_cros_secc	SA Conn:	s37s41 1 cros se	SA Conn:	19b_cros_secc
From: \$37\$41_1_c10\$_\$e5A colin: 19b_c10\$_\$e6C				
To: cros_seccTo: cros_secc		_		
Station [m] Elevation [m] Station [m] Elevation [m]				
0 26.31 0 25.35				
389.24 26.34 800 25.52				

SA Conn:	19a_cros_secc	SA Conn:	106_cros_secc
From:	19a	From:	106
To:	cros_secc	To:	cros_secc
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	25.52	0	24.95
941.29	25.41	641.62	24.38
2292.79	25.34	1122.94	24.43

SA Conn:	105_cros_secc	SA Conn:	s41bs45c_1_cro_s
From:	105	From:	s41bs45c_1
To:	cros_secc	To:	cros_secc
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	24.43	0	23.76
481.32	24.48	750	23.96
1438.04	24.27		
2191.53	24.94		
4663.66	24.08		

SA Conn:	13_cros_secc	SA Conn:	s46s54_1_cro_s
From:	13	From:	s46s54_1
To:	cros_secc	To:	cros_secc
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	23.01	0	22.86
307.8	22.78	1017.27	22.79
563.85	22.73		
925.68	22.86		

SA Conn:	s46s54_2_secc_pa	SA Conn:	s46s54_3secc_pan
From:	s46s54_2	From:	s46s54_3
To:	secc_pana	To:	secc_pana
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	22.8	0	22.79
170	22.79	1115.37	22.2

SA Conn:	s46s54_4_secc_pa	SA Conn:	s46s54_5_secc_pa
From:	s46s54_4	From:	s46s54_5
To:	secc_pana	To:	secc_pana
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	22.14	0	21.89
6985.57	22.09	622.6	20.83
		1077.41	20.82

SA Conn:	s46s54_6_secc_pa	SA Conn:	s55s59b_4_sec_pa
From:	s46s54_6	From:	s55s59b_4
To:	secc_pana	To:	secc_pana
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	21.28	0	19.88
1863.49	20.99	1599.65	19.37
3014.28	20.5	2219.065	19.16

SA Conn:	s55s59b_6_sec_pa	SA Conn:	s18as25_1_lam
From:	s55s59b_6	From:	s18as25_1
To:	secc_pana	To:	lamb_adda1
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	18.88	0	53.26
406.637	18.84	2086.83	52.24
1276.977	18.59	3639.77	51.75
2467.467	18.16	5487.235	50.9

SA Conn:	s18as25_2_lam	SA Conn:	s18as25_6_lam
From:	s18as25_2	From:	s18as25_6
To:	lamb_adda2	To:	lamb_adda2
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	47.06	0	46.48
1168.725	46.73	939	47.38
1470.405	48.29		
2096.975	47.23		
2835.46	44.66		

SA Conn:	43_adda_ogli	SA Conn:	41_adda_ogli
From:	43	From:	41
To:	adda_ogli	To:	adda_ogli
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	41.52	0	40.37
585.45	41.22	590.01	40.05
876.05	41.06	1010.35	40.12
1254.52	39.51	1523.71	39.85
1707.29	39.6	2076.23	39.88
2291.84	39.66		
2980.5	40.72		

SA Conn:	127_adda_ogli	SA Conn:	126_adda_ogli
From:	127	From:	126
To:	adda_ogli	To:	adda_ogli
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	39.21	0	37.45
583.81	39.05	3181.95	37.3
1062.43	38.91		
1433.84	38.93		
3474.06	38.37		
5290.11	38.37		
SA Conn:	125_adda_ogli	SA Conn:	122_adda_ogli
From:	125	From:	122
To:	adda_ogli	To:	adda_ogli
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	37.3	2007.98	35.67
2066	36.96	2877.62	35.64
3250.19	36.09	4203.13	35.73
		5382.13	35.35

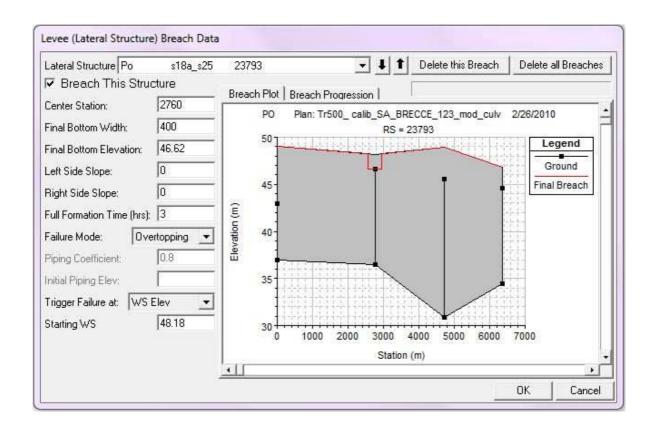
SA Conn:	121_adda_ogli	SA Conn:	120a_adda_ogli
From:	121	From:	120a
To:	adda_ogli	To:	adda_ogli
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	35.35	0	35.02
1179	35.01	782.39	35.02
2980.13	35.02	3460.53	34.35
		4677.175	33.81

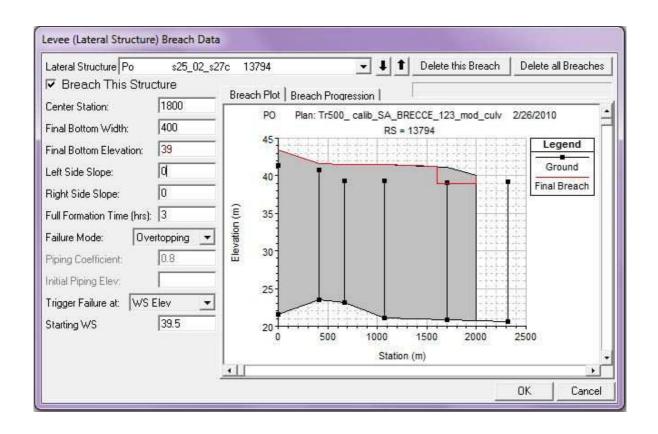
SA Conn:	119_adda_ogli	SA Conn:	118_adda_ogli
From:	119	From:	118
To:	adda_ogli	To:	adda_ogli
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	34.35	0	33.13
1216.645	33.27	331.13	33.07
1973.445	33.2	1541.73	33.11
3105.255	33.13	4516.53	32.49

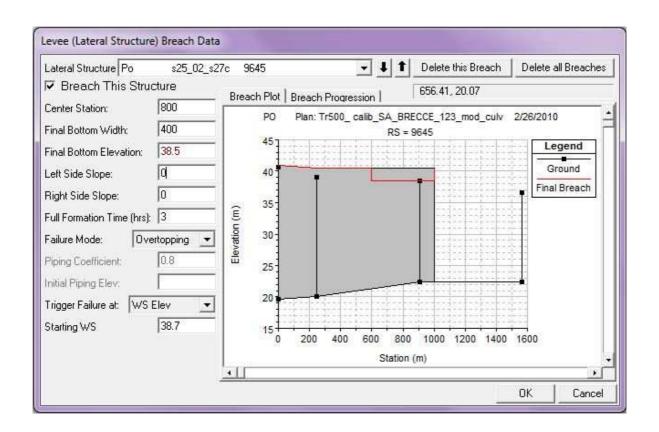
SA Conn:	113_adda_ogli	SA Conn:	109_adda_ogli
From:	113	From:	109
To:	adda_ogli	To:	adda_ogli
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	30.2	0	27.56
63.55	30.2	606.485	27.68
592.42	30.46	2482.405	27.66
1377.28	30.15		
2428.49	30		
4028.62	29.95		

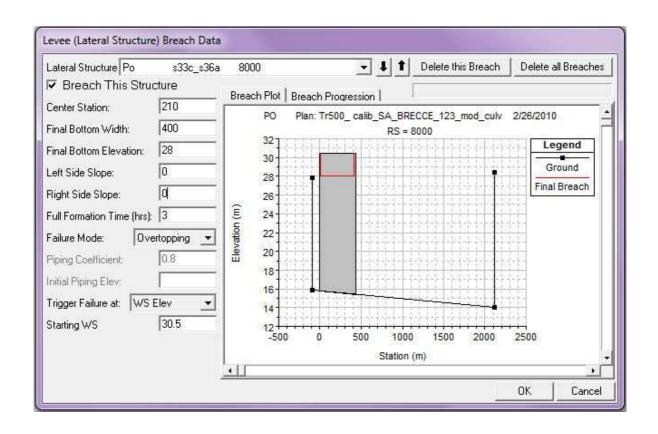
SA Conn:	22_adda_ogli	SA Conn:	18_ogli_minc
From:	22	From:	18
To:	adda_ogli	To:	ogli_minc
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	26.87	0	26
762.13	27.13	518.04	25.95
1256.73	26.87	1874.84	25.68

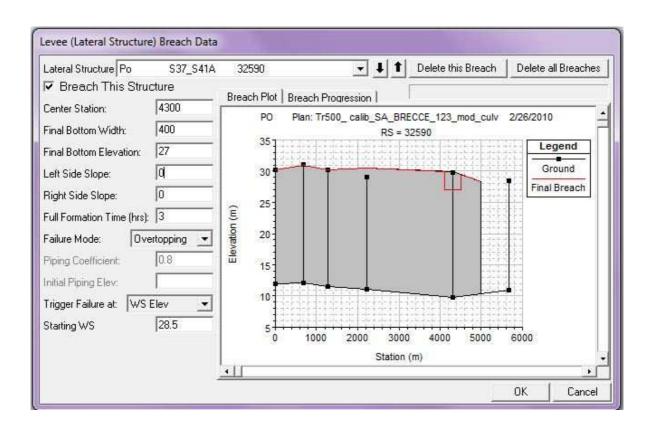
SA Conn:	104b_ogli_minc	SA Conn:	104a_ogli_minc
From:	104b	From:	104a
To:	ogli_minc	To:	ogli_minc
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	25.31	0	24.9
1301.77	24.9	701.04	25.68
		1864.13	25.13
		2505.99	25.01
		3309.25	24.49


SA Conn:	14_ogli_minc	SA Conn:	103_pana_po
From:	14	From:	103
To:	ogli_minc	To:	pana_po
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	25.8	0	23.4
330.56	23.57	1027.33	23.22
713.4	23.57	2116.17	23.13
1161.8	21.45	3107.25	22.91
		4078.32	22.69
		5177.44	23.06
		6258.69	22.46
		7214.77	22.3


SA Conn:	101a_pana_po	SA Conn:	s55s59b_1_pan_p
From:	101a	From:	s55s59b_1
To:	pana_po	To:	pana_po
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	21.43	0	20.33
477.335	21.35	817.32	20.22
2032.275	21.11	1690.06	20.24
3066.695	21.03		
4193.755	21.07		


SA Conn:	s55s59b_2_secc	SA Conn:	s55s59b_3_pana
From:	s55s59b_2	From:	s55s59b_3
To:	secc_pana	To:	pana_po
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	20.39	0	19.49
1740	19.69	1314.41	18.97
		2660.94	19.27


SA Conn:	s55s59b_5_pana	SA Conn:	s18a_s25_3_chia
From:	s55s59b_5	From:	s18a_s25_3
To:	pana_po	To:	chia_arda
Station [m]	Elevation [m]	Station [m]	Elevation [m]
0	18.69	0	44.3
1366.63	18.44	2300	43.3
1900.02	18.42		


A4 SCHEMATIZZAZIONE DELLE BRECCE NEL MODELLO NUMERICO DEL PO

